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BURNING THE PLANE: DENSITIES OF THE INFINITE

CARTESIAN GRID

ANTHONY BONATO, KAREN GUNDERSON, AND AMY SHAW

Abstract. Graph burning is a discrete-time process on graphs, where vertices are
sequentially burned, and burned vertices cause their neighbours to burn over time. We
consider extremal properties of this process in the new setting where the underlying
graph is also changing at each time-step. The main focus is on the possible densities
of burning vertices when the sequence of underlying graphs are growing grids in the
Cartesian plane, centred at the origin. If the grids are of height and width 2cn+ 1 at
time n, then all values in

[

1

2c2 , 1
]

are possible densities for the burned set. For faster
growing grids, we show that there is a threshold behaviour: if the size of the grids at
time n is ω(n3/2), then the density of burned vertices is always 0, while if the grid
sizes are Θ(n3/2), then positive densities are possible. Some extensions to lattices of
arbitrary but fixed dimension are also considered.

1. Introduction

Numerous recent works have analyzed the spread of social contagion in real-word
networks. As an example, [17] demonstrated that emotional states can be transferred
to others on Facebook without direct interaction between people and in the complete
absence of nonverbal cues. Graph burning is a new, discrete-time process that measures
how prone a network is to fast social contagion. The input of the process is an undirected
finite graph and at each step, vertices are either burning (also called burned) or not.
Initially, a single vertex, called an activator, is burning and in each subsequent round,
every neighbour of a burning vertex becomes burned and a fire is ignited at a new
activator which is also burning. The process is complete once all vertices are burning. In
this paper, the focus is on the behaviour of the process when the sequence of activators
is chosen deterministically to minimize the number of rounds. The burning number of a
graph G is the minimum number of rounds it takes for all vertices to be burned in G.

Bonato et al. [5, 6, 22] first introduced the burning process, found bounds, and char-
acterized the burning number for various graph classes. It was proved by Bessy et al. in
[4] that for a connected graph of order n, the burning number is at most 2⌈√n⌉−1, and

this bound was improved by Land and Lu [18] to
√
6
2

√
n. In [4], Bessy et al. conjectured

that the burning number of a connected graph of order n is at most ⌈√n⌉, and this was
shown to hold for spider graphs in [8] by Bonato and Lidbetter. Mitsche, Pra lat, and
Roshanbin [19] considered randomized burning on the path and Fitzpatrick and Wilm
[12] considered burning for circulants. It was proved by Bessy et al. in [3] that it is NP-
hard to determine the burning number even in elementary graph families such as trees
with maximum degree three, spider graphs, and forests consisting of disjoint unions of
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paths. Approximation algorithms for graph burning were given by Bonato and Kamali
[7].

The process of graph burning finds a place among several models that measure the
spread of a fire or contagion against time. One process in which a fire spreads to neigh-
bours of burning vertices, is firefighting on graphs. Introduced by Hartnell [16] in 1995,
the goal of firefighting is to extinguish or limit the growth of a ‘fire’ that breaks out at
one or several vertices in a graph by protecting a limited number of vertices at each time
step. See Finbow and MacGillivray [11] for a survey of firefighting results. A notion of
density for firefighting, called the surviving rate, was introduced by Cai and Wang [10].

Another model measuring the spread of an activation or ‘infection’ in a graph is the
r-neighbour bootstrap process, a discrete-time process where a vertex becomes infected
when at least r of its neighbours are. Recently, extremal questions regarding the time
to full infection have been considered by Benevides and Przykucki [1, 2] and Przykucki
[20].

There are a number of further models for a randomized spread of infection in a graph.
These models often arise in the context of diffusion or rumour-spreading in social net-
works. These include Hammersley and Welsh’s first-passage percolation model [14],
Richardson’s model for the spread of disease [21], Harris’s contact process [15], diffusion
models given by Granovetter [13] and Schelling [23], and randomized push&pull gossip
algorithms given by Boyd, Ghosh, Prabhakar, and Shah [9].

In this paper, we consider a variant of the burning process, where the underlying
graph is also growing at each step. In the case that the underlying graph becomes
arbitrarily large, it need not be the case that there is ever a particular step in the
burning process where all vertices of the current graph are burned. We may ask instead
about the behaviour of the proportion of burning vertices. The precise statement of this
new burning process is given below in Definition 1. Included in the definition is the
possibility that no new vertex is activated at a particular time step. Having the ability
to ‘skip a chance’ to activate a new vertex is particularly useful for analysis of an infinite
sequence of growing graphs in which burning sets in sequences of disjoint subgraphs are
considered separately.

Definition 1. Let V be an infinite set and let G = (G0, G1, . . . ) be a sequence of graphs
with the property that for every n ≥ 1, V (Gn) ⊂ V and Gn−1 is an induced subgraph of
Gn. Let v ∈

∏

n≥0(V (Gn) ∪ {•}). The sequence v is the sequence of activator vertices.
The notation vn = • indicates that no vertex was activated. Define the sequences of
burning sets by B0 = {v0}, and for every n ≥ 0, define

Bn+1 =

{

NGn+1 [Bn] if vn+1 = •,
NGn+1 [Bn] ∪ {vn+1} otherwise.

The sequence v is valid if for all n ≥ 0 with vn+1 6= •, vn+1 ∈ V (Gn+1) \NGn+1[Bn]. In a
valid sequence of activated vertices, at each time step, the newly activated vertex is not
already burned by a vertex from the previous time step.

The proportion of vertices burning at time n is then |Bn|/|V (Gn)| and the burning

density of a sequence v in G is defined to be

δ(G, v) = lim
n→∞

|Bn|
|V (Gn)| ,
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if this limit exists. As the limit above need not exist, the lower burning density is defined
to be

δ(G, v) = lim inf
n→∞

|Bn|
|V (Gn)| .

Similarly, the upper burning density is defined to be

δ(G, v) = lim sup
n→∞

|Bn|
|V (Gn)| .

Note that in the traditional version of the burning process, a new unburned vertex
must be activated at each step. The possibility of having vn = • in a burning sequence
corresponds to either allowing a ‘pass’ for vertex activation, or allowing the possibility
of activating an already-burning vertex.

The main focus here is on graphs that are square grids in the integer lattice. Unless
otherwise specified, [a, b]× [c, d] is used to denote the graph with vertex set [a, b]× [c, d]
and with vertices at L1-distance 1 joined by an edge. The corresponding notation is used
for the d-dimensional lattice graphs.

Let N0 denote the natural numbers including 0. The classes of sequences of grids
studied here are of the following form: Given an increasing function f : N0 → N0,
consider the sequence of graphs given by ([−f(n), f(n)]2)n≥0. The main question is:
Given the function f , which real numbers are achievable as the burning density of some
sequence of activated vertices that contains no •; that is, no skipped step? Also, for which
functions is the burning density always 0 and for which is a positive density possible?

In the case that f(n) grows linearly, Theorem 2 gives an interval of all achievable
burning densities.

Theorem 2. Let c ≥ 1 and let S be the sequence of square grids with Sn = [−⌈cn⌉, ⌈cn⌉]2.
For each ρ ∈ [ 1

2c2
, 1], there is a valid sequence of activated vertices v = (v1, v2, . . . ) ∈

∏

n≥0 V (Sn) such that the burning density in S is δ(S, v) = ρ.

The proof of Theorem 2 is given in Section 2. The proof proceeds by first giving
a proof for the case c = 1 that involves considering a different sequence of graphs:
[0, n]2, determining the achievable burning densities in these, and then combining burning
sequences for each of the four quadrants to achieve a given density in the larger grid.
The case c ≥ 1 and ρ = 1 is then given in Theorem 10. These results are combined to
prove Theorem 2.

Note that nothing is lost by restricting our attention to valid sequences of activated
vertices. In the case c = 1, unless v = (•)∞i=1, then δ(S, v) ≥ 1/2. Indeed, if the first
vertex u is activated at time k, then Bn contains every vertex at distance at most n− k
from u, so that

δ(S, v) ≥ lim
n→∞

2(n− k)2 + 2(n− k) + 1

(2n + 1)2
=

1

2
.

For faster-growing grids, Theorem 3 shows that if there is a constant c with f(n) =
⌈cn3/2⌉, then a positive lower burning density is possible, while Corollary 5 shows that
in contrast, when f(n) = ω(n3/2), the burning density is always 0.

Theorem 3. For any positive constant c, let S be the sequence of square grids such that

Sn =
[

−⌈cn3/2⌉, ⌈cn3/2⌉
]2

. Then there is a sequence of activated vertices v with lower
burning density δ(S, v) > 0.
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It is a relatively straightforward consequence of Theorem 3 that if f : N0 → N0 is a
function with f(n) = Θ(n3/2) then there exists a valid sequence of activated vertices v
with lower burning density δ(([−f(n), f(n)]2)n≥0, v) > 0.

For faster growing grids, the result is stated for arbitrary dimensions, as the proof is
the same for any fixed dimension.

Theorem 4. For any d ≥ 2, let f : N0 → N0 be a function with f(n) = ω(n(d+1)/d). For
every n ≥ 0, let Sn = [−f(n), f(n)]d, and let S = (Sn)n≥0. Then, for every sequence of
activated vertices v the burning density is δ(S, v) = 0.

In the case d = 2, Theorem 4 gives the following result in contrast to Theorem 3.

Corollary 5. Let f : N0 → N0 be a function with f(n) = ω(n3/2), for every n ≥ 0, let
Sn = [−f(n), f(n)]2, and let S = (Sn)n≥0. For every sequence of activated vertices v the
burning density is δ(S, v) = 0.

The proof of Theorem 3 is given in Section 3. In Section 4, Theorem 4 is proved and
results generalizing Theorem 3 are given for grids of arbitrary, but fixed, dimension. In
particular, in Theorem 13, it is shown that for any fixed dimension d, the graph sequence
(Sn)n≥1 given by Sn = [−⌈n(d+1)/d⌉, ⌈n(d+1)/d⌉]d always has a sequence of activated ver-
tices with positive lower burning density. While the proof of Theorem 3 is constructive,
the proof of Theorem 13 is probabilistic.

As distances within the lattice are used regularly within the proofs, for every x ∈ Z
d

and r ≥ 0, let B1(x, r) be the closed L1-ball of radius r centred at x: B1(x, r) = {y ∈
Z
d : ||x − y||1 ≤ r}. For any x, y ∈ Z

d, d(x, y) is used to denoted the graph distance
between x and y, which is the same as the L1-distance, denoted d1(x, y). The L2-distance
between two points is denoted d2(x, y).

2. Slowly growing grids

The results in this section address the case that for some c ≥ 1, the sequence of
underlying graphs is ([−cn, cn]2)n≥0 and a vertex is activated at every time step, but we
first examine the case in which c = 1. Within this framework, which burning densities
are achievable? Since the vertex (0, 0) will always be activated, the ball of radius n about
the origin in [−n, n]2 is always a subset of the burned vertices at time n. Because of this
central L1 ball that is burned, if the burning density of a sequence of activated vertices
exists, the density is in the real interval [1/2, 1]. The first aim of this section is to show
that, in fact, each of these values is achievable as a burning density.

One feature of having the ball of radius n about the origin in [−n, n]2 being burned
is that the effect of newly activated vertices on future burned sets is only seen in the
quadrant in which that activated vertex was chosen. For this reason, we first determine
the achievable burning densities in a single quadrant: the sequence of graphs (Qn)n≥0 =
([0, n]2)n≥0. In Lemma 6, it is shown that, as long as no vertex is activated in at least
one of the time steps n = 1 or n = 2, then burning density 1/2 in (Qn)n≥0 is achievable.
In Lemma 7, for any ρ ∈ (1/2, 1), a sequence of activated vertices is defined that achieves
burning density ρ in (Qn)n≥0. Finally, in Lemma 8, it is shown that as long as there
are bounded gaps between times that vertices are activated, a sequence can be chosen
in Qn with burning density 1. Together, these three regimes of vertex-activation can be
combined to produce sequences of activated vertices achieving any density in [1/2, 1] for
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the sequence of graphs ([−n, n]2)n≥0. These combinations are described in the proof of
Theorem 9.

Lemma 6. Let Q be the sequence of square grids such that Qn = [0, n]2. Define v to be
a valid sequence of activated vertices such that either v1 = • or v2 = •, and such that
for any n with vn 6= •, vn ∈ V (Qn) is the unburned vertex nearest to (0, 0) with the
greatest y-coordinate. Then we have that

|Bn| ≤
(n + 2)(n + 1)

2
+ (2 + log2 n)(n + 1).

Proof. The purpose of choosing vertices to activate as close as possible to (0, 0) and with
the greatest y-coordinate is to ensure that the burning set is contained in a ball centred
at the origin with a radius that is growing only slightly faster than the growth-rate of
the underlying grid. For every t ≥ 0, and n ≥ 1, call the set of vertices whose cartesian
coordinates satisfy x+y = n+t and 0 ≤ x, y ≤ n, the t-th diagonal at time n. Within the
grid, the line x+y = n is the boundary of the ball of radius n around the origin and will
always be burning at time n. This is the 0-th diagonal at time n. The way in which the
activated vertices are chosen will result in a burning set with the property that for some
t ≥ 1, B1((0, 0), n+ t−1) is burning and the remaining burned vertices will be an initial
sequence of the vertices in the t-th diagonal: (t, n), (t+ 1, n− 1), (t+ 2, n− 2), . . . , (n, t),
ordered by increasing x-coordinates (or equivalently, by decreasing y-coordinates).

At time n, there are n − t + 1 vertices in the t-th diagonal. Suppose that the first
i < n − t + 1 of these vertices are burned at time n, then if, in the next step, the next
vertex on the t-th diagonal is activated, then at step n + 1, the ‘new’ t-th diagonal has
(n + 1) − t + 1 vertices, of which, i + 2 are burned. Continuing in this way, at time
n + (n− t + 1 − i), every vertex in the t-th diagonal is burned.

If either v1 = • or v2 = •, then at time n = 3, the burned set is contained in the
vertices of the grid whose cartesian coordinates satisfy x + y ≤ 4. In particular, there
are no burned vertices in the 2nd diagonal at time 3. For every t ≥ 2, let nt be the
largest n for which the t-th diagonal has no burned vertices at time n. We then have
that n2 ≥ 3. Since the t-th diagonal at time nt contains nt − t + 1 vertices and will be
entirely burned after at least nt − t + 1 time steps, nt+1 ≥ 2nt − t + 1. Hence, we find
that nt ≥ (n2 − 2)2t−2 + t. For any t and n with nt ≤ n < nt+1, Bn ⊆ B1((0, 0), n + t)
and

|B1((0, 0), n + t) ∩ [0, n]2| = |B1((0, 0), n) ∩ [0, n]2| +

n
∑

i=n−t+1

i

=
(n + 1)(n + 2)

2
+ t(n + 1) − t(t + 1)

2

≤ (n + 1)(n + 2)

2
+ t(n + 1).

If n ≥ nt ≥ 2t−2 = 1
4
2t, then t ≤ 2 + log2(n) so that

|Bn| ≤
(n + 1)(n + 2)

2
+ (2 + log2(n))(n + 1),

and the proof follows. �

We need the following lemma.
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Lemma 7. Let Q be the sequence of square grids such that Qn = [0, n]2 and let ρ ∈ (0, 1).
Let v be the sequence of activated vertices defined by v0 = (0, 0) and for every n ≥ 1,

vn =

{

(⌊ρn⌋, n) if ⌊ρn⌋ − ⌊ρ(n− 1)⌋ = 1,

• if ⌊ρn⌋ − ⌊ρ(n− 1)⌋ = 0.

We then have that δ(Q, v) = 1
2
(1 + ρ).

Proof. For the choice of activators defined in the statement of the theorem, a vertex is
activated approximately every 1

ρ
steps. Each time a new vertex is activated, it is always

chosen at the top edge of the grid at that time step and adjacent to a burned vertex. For
every k ≥ 1, the top vertex in the k-th diagonal is activated at time n with n defined by

ρ(n − 1) < k ≤ ρn. That is, the vertex (k, n) is activated at time n =
⌈

k
ρ

⌉

. For every

n ≥
⌈

k
ρ

⌉

, the number of burned vertices in the k-th diagonal at time n is n−
⌈

k
ρ

⌉

+ 1.

As the first vertex burned is the origin, for any n, all vertices in the ball of radius
n about the origin are burned at time n. In the graph Qn, this set of vertices has size
(n+2)(n+1)

2
. Furthermore, for every k ≤ nρ, there are n− ⌈k/ρ⌉+ 1 vertices burned along

the k-th diagonal at time n. Thus,

|Bn| =
(n + 2)(n + 1)

2
+

⌊nρ⌋
∑

k=1

(

n + 1 − ⌈kρ−1⌉
)

=
(n + 2)(n + 1)

2
+ ⌊nρ⌋(n + 1) −

⌊nρ⌋
∑

k=1

⌈

k

ρ

⌉

.(1)

To bound the size of the burned set, note that the sum in the expression in (1) is bounded
above by

⌊nρ⌋
∑

k=1

⌈

k

ρ

⌉

≤
⌊nρ⌋
∑

k=1

k + ρ

ρ

=
1

ρ

⌊nρ⌋(⌊nρ⌋ + 1)

2
+ ⌊nρ⌋

≤ nρ(nρ + 1)

2ρ
+ nρ

=
n2ρ

2

(

1 +
1

nρ
+

2

n

)

.(2)

The same sum is bounded below by

⌊nρ⌋
∑

k=1

⌈

k

ρ

⌉

≥
⌊nρ⌋
∑

k=1

k

ρ

=
1

ρ

⌊nρ⌋(⌊nρ⌋ + 1)

2

≥ (nρ− 1)nρ

2ρ
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=
n2ρ

2

(

1 − 1

nρ

)

.(3)

Combining (1) with (3) gives that

|Bn| ≤
(n + 2)(n + 1)

2
+ ⌊nρ⌋(n + 1) − n2ρ

2

(

1 − 1

nρ

)

≤ (n + 2)(n + 1)

2
+

n2ρ

2

(

1 +
2

n
+

1

nρ

)

.(4)

Similarly, combining (1) with (2) gives

|Bn| ≥
(n + 2)(n + 1)

2
+ ⌊nρ⌋(n + 1) − n2ρ

2

(

1 +
1

nρ
+

2

n

)

≥ (n + 1)2

2
+ (nρ− 1)n− n2ρ

2

(

1 +
1

nρ
+

2

n

)

≥ (n + 1)2

2
+

n2ρ

2

(

2 − 2

nρ
− 1 − 1

nρ
− 2

n

)

=
(n + 1)2

2
+

n2ρ

2

(

1 − 3

nρ
− 2

n

)

.(5)

The inequalities (4) and (5) together show that

lim
n→∞

|Bn|
|V (Qn)| = lim

n→∞

|Bn|
(n + 1)2

=
1

2
+

ρ

2
,

and the proof follows. �

We need one more lemma before we prove Theorem 9.

Lemma 8. Let Q be the sequence of square grids such that Qn = [0, n]2 and let k be
an arbitrary positive integer. Let v = (vn)n≥0 be a sequence of activated vertices such
that there are never more than k consecutive •’s and with the property that if vn 6= •,
then vn = (n, n). For such a sequence v, we have that δ(Q, v) = 1.

Proof. For such a sequence v, at a given time n, the unburned region in the graph Qn

consists of ‘triangular regions’ along the top and right edges and a region contained in a
ball centred at the top-righthand corner.

Along the top edge of the grid, each of these triangular regions consist of at most
k unburned vertices in the top-most row, above at most k − 2 consecutive unburned
vertices, and continuing in this way to a row of either 1 or 2 consecutive unburned
vertices. These unburned triangular regions are contained inside an n×⌈k/2⌉ grid. The
same applies to the right edge of the grid.

It will take up to k steps until the burned region around a vertex activated at a
particular moment will be in the same connected component of the subgraph of burned
vertices as the origin. Hence, there may be some unburned vertices in a ball of radius
2k−1 around the vertex in the top-righthand corner. All these vertices are either within
the top k rows of the grid, or within the right-most k columns of the grid.

Estimating very roughly, all the unburned vertices are either contained in a n×k grid
along the top edge or a k× n grid along the right-most edge. These two regions contain
at most 2nk vertices.
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Thus, at time step n, the number of unburned vertices is at most 2nk. Therefore,

|Bn| ≥ (n + 1)2 − 2nk

and so

lim
n→∞

|Bn|
(n + 1)2

= 1 − lim
n→∞

2nk

(n + 1)2

= 1 − 0 = 1,

as k is fixed. �

Together, the activated sequences given by each of Lemma 6, Lemma 7, and Lemma 8
can be used to prove Theorem 2 in the case c = 1, which we restate here.

Theorem 9. Let S be the sequence of square grids such that Sn = [−n, n]2. For each
ǫ ∈ [1

2
, 1], there is a valid sequence of activated vertices v = (v1, v2, . . . ) such that the

burning density in S is δ(S, v) = ǫ.

Proof. The construction of sequences of activated vertices is given by choosing separate
sequences for each of the four quadrants: [0, n]2, [−n, 0] × [0, n], [−n, 0]2, and [0, n] ×
[−n, 0]. The sequences are chosen so that at each time step, exactly one quadrant has
an activated vertex. Except for the first activated vertex v0 = (0, 0), there are no other
activated vertices chosen on the overlapping regions between these quadrants. The region
of overlap, [−n, n] × {0} ∪ {0} × [−n, n], has density tending to 0 in the square grid Sn.
Thus, the total limiting density of the sequence v is the average density of the restriction
of this sequence to each of the four quadrants.

Let a ∈ {0, 1, 2, 3, 4} and 0 ≤ ρ < 1 be such that ǫ = 1
2

+ a+ρ
8

. The values of a and ρ
will determine the type of construction used.

If ρ = 0, then burn a vertex in each quadrant every fourth step as follows. For a of
the quadrants, choose activated vertices according to Lemma 8 and for the remaining
quadrants, activate vertices according to Lemma 6.

If ρ > 0, then a ∈ {0, 1, 2, 3}. We produce a sequence u (containing •’s) using Lemma
7, which is constrained to one quadrant and has density 1

2
(1 + ρ) in that quadrant.

Let {ai}∞i=0 be the sequence of indices ai such that uai = •. It remains to define three
sequences of activated vertices for the remaining quadrants so that for every i, a vertex is
activated in exactly one of these at time ai and with the property that a of the quadrants
have burning density tending to 1 and the remaining have burning density tending to
1/2. For every i, at time ai, activate a vertex in the first such quadrant if i ≡ 0 (mod 3),
in the second if i ≡ 1 (mod 3), and in the third, otherwise. Since none of these three
quadrants are burned on consecutive steps, the conditions of Lemma 6 are satisfied for
quadrants of density 1/2. Since u contains at least one • every ⌈(1 − ρ)−1⌉ steps, each
of these three quadrants are burned at least once every 3 ⌈(1 − ρ)−1⌉ steps, so that the
conditions of Lemma 8 are satisfied for quadrants of density 1. Combining the burning
sequences of each quadrant, we then have the desired sequence v. �

Next, it is shown that burning density 1 can be realized for any growth function
f(n) = cn, where c is a positive constant.

Theorem 10. For any constant c ≥ 1, let S be the sequence of square grids such that
Sn = [−⌈cn⌉, ⌈cn⌉]2. Then there is a sequence of activated vertices v with burning
density δ(S, v) = 1.
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Proof. The sequence of activated vertices is defined so that, in alternating time steps,
the newly activated vertex is placed in one of four different regions. The sequence of
activated vertices in the region y ≥ |x| is defined here and the complete sequence is
obtained by three rotations of these points, staggered at distinct times modulo 4.

In the region y ≥ |x|, the activated vertices form the subsequence (v4t)t≥0. At each
time step n that is divisible by 4, an activated vertex is placed along the top-most
edge of the grid, the line y = ⌈cn⌉, with the x-coordinates of the activated vertices
changing in the following recursive way. Set v0 = (0, 0) and for every t ≥ 1, given
v4(t−1) = (x4(t−1), ⌈4c(t− 1)⌉), define

v4t =

{

(x4(t−1) + ⌈
√
t⌉, ⌈4ct⌉) if x4(t−1) + ⌈

√
t⌉ ≤ ⌈4ct⌉

(x4(t−1) + ⌈
√
t⌉ − 2⌈4ct⌉, ⌈4ct⌉) otherwise.

That is, the x-coordinate of v4t is ⌈
√
t⌉ more than the x-coordinate of v4(t−1), unless

such a point would be outside the region y ≥ |x|, in which case the gap of ⌈
√
t⌉ ‘wraps

around’ to the left-hand boundary of the region.
It is shown in this proof that there is a constant C0 so that for any time N , that

is sufficiently large, any point in the region defined by the equations y ≥ |x| + C0

√
N

and y ≤ ⌈cN⌉ − C0N
2/3 is burned. As this smaller region contains all but at most

2C0cN
√
N + C0cN · N2/3 = o(N2) vertices from the entire region of the graph defined

by y ≥ |x| and y ≤ ⌈cN⌉, this shows that the burning density of the sequence in this
triangular region is 1.

Set C0 = 60c2 and fix any vertex P = (a, b) in the region defined by y ≥ |x| + C0

√
N

and y ≤ ⌈cN⌉−C0N
2/3. If b ≤ N/2, then d(P, v0) ≤ 2(N/2) = N and so at time N , the

vertex P is burned by the first activated vertex v0.
Therefore, suppose that b > N/2. We will show that there is an activated vertex with

x-coordinate within
√
N of a that is close enough to P to burn it by time N .

Set t0 = ⌊b/4c⌋ so that the activated vertex v4t0 is the one with the largest y-coordinate
that is at most b.

Consider the vertices v4t with t0−15c
√
t0 + 1 ≤ t ≤ t0. Note that since b > N/2, then

for N large enough, t0 − 15c
√
t0 + 1 ≥ 1. For any such t, the region y ≥ |x| contains the

point (a, ⌈4ct⌉) (with the same y-coordinate as v4t) since

|a| ≤ b− 60c2
√
N

≤ b− 60c2
√
t0

≤ 4c(t0 + 1) − 60c2
√
t0

= 4c(t0 − 15c
√
t0 + 1)

≤ 4ct ≤ ⌈4ct⌉.

Setting t1 = ⌊t0 − 15c
√
t0 + 1⌋, the horizontal gaps, measured from left to right cycli-

cally, between the vertices v4t1 , v4(t1+1), . . . , v4t0 are, respectively, ⌈
√
t1 + 1⌉, ⌈

√
t1 + 2⌉, . . . , ⌈√t0⌉.

Since the sum of these gaps is

⌈
√
t1 + 1⌉+⌈

√
t1 + 2⌉ + . . . + ⌈

√
t0⌉ ≥

∫ t0

t1

√
x dx ≥

∫ t0

t0−15c
√
t0+1

√
x dx
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=
2

3

(

t
3/2
0 − (t0 − 15c

√
t0 + 1)3/2

)

≥ 2

3

(

t
3/2
0 −

√
t0(t0 − 15c

√
t0 + 1)

)

= 10ct0 −
2

3

√
t0

≥ 8ct0 + 2 = 2(4ct0 + 1) ≥ 2⌈4ct0⌉,
which is the maximum width of any horizontal line within the region containing v4t with
t ∈ [t0 − 15c

√
t0 + 1, t0]. Note that the final line of the above inequality follows as long

as N , and hence t0, is sufficiently large.
Since each of the horizontal gaps between consecutive activated vertices in this region

are all at most
√
t0, there is some T with t0 − 15c

√
t0 + 1 ≤ T ≤ t0 so that if v4T =

(x4T , ⌈4cT ⌉), then |x4T − a| ≤ √
t0. For this T , we have that

d(P, v4T ) = |x4T − a| + |⌈4cT ⌉ − b|
≤

√
t0 + (4c(t0 + 1) − 4c(t0 − 15c0

√
t0 + 1)) = (1 + 60c2)

√
t0.

Thus, P will be burned by the activated vertex v4T at time

4T + d(P, v4T ) ≤ 4t0 + (1 + 60c2)
√
t0

≤ 1

c

(

⌈cN⌉ − 60c2N2/3
)

+ (1 + 60c2)
√
N

≤ N + 1 − 60cN2/3 + (1 + 60c2)
√
N < N.

Thus, at time N , P is burned.
Therefore, at time N , every vertex in the quadrant is burned, except for possibly some

in the three boundary strips of width at most C0cN
2/3. The number of unburned vertices

in a quadrant is at most 3C0cN
5/3 and so, considering all four regions and activating

one new vertex in each time step gives at most 12C0cN
5/3 unburned vertices and so

|BN |
| [−⌈cN⌉, ⌈cN⌉]2 |

≥ 1 − 12cC0N
5/3

(2⌈cN⌉ + 1)2
= 1 − o(1).

Thus, the limiting burning density of the sequence (vt)t≥0 in the sequence of grids
([−⌈cN⌉, ⌈cN⌉]2)N≥0 is 1. �

Theorem 10, in combination with the fact that every density in [1
2
, 1] can be achieved

when c = 1, shows that for any constant c > 1, any density in the interval [1/2c2, 1] is at-
tainable in the sequence of grids ([−⌈cn⌉, ⌈cn⌉]2)n≥1. Indeed, for any density in

[

1
2c2

, 1
c2

]

,
chose activated vertices only inside the central square grids ([−n, n]2)n≥1, according to
Theorem 9. At every time n, all of these vertices and their burned neighbours will
themselves be inside the grid [−n, n]2. To achieve any density ρ ∈

[

1
c2
, 1
]

, set d = c
√
ρ

and apply Theorem 10 to the central sequence of square grids ([−⌈dn⌉, ⌈dn⌉]2)n≥1. This
completes the proof of Theorem 2.

3. Fast growing grids

In this section, the proof of Theorem 3 is given. Throughout the following proofs,
multiple distances in the plane are used. Let dp(P,Q) denote Lp distance between points

P and Q. By the Cauchy-Schwarz inequality, d1(P,Q) ≤
√

2d2(P,Q). Also, for P ∈ R
2,
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let P ∗ be the point in Z
2 such that ‖P ∗‖1 ≤ ‖P‖1 and d1(P, P

∗) is minimum; this
is essentially the nearest vertex between P and the origin. By the triangle inequality,
d1(P,Q

∗) ≤ d1(P,Q) + 2.
Polar coordinates are used throughout the proof of Theorem 3. In polar coordinates,

the pair (r, θ) denotes the point at distance r from the origin, at angle θ from the positive
x-axis.

For reference, we re-state Theorem 3 before we proceed to its proof.

Theorem 3. For any positive constant c, let S be the sequence of square grids such that

Sn =
[

−⌈cn3/2⌉, ⌈cn3/2⌉
]2

. Then there is a sequence of activated vertices v with lower
burning density δ(S, v) > 0.

Proof. The goal is to show that, with a suitable choice of activated vertices, for sufficiently
large N there is a disk of radius Ω(N3/2) in the set of burned vertices at time N , denoted
by BN . Points close to the origin will be burned by the first activated vertex (that is,
the origin), while the vast majority will be burned by another activated vertex within
distance O(N).

P1

P2

y

Figure 1. Spiral of activated vertices.

For all n ≥ 0, define vn =
(

cn3/2,
√
n
)∗

, in polar coordinates, and let v = (vn)n≥0 be
the sequence of activated vertices. Assume that N ≥ 600c. It is shown that, given the
sequence v, at time N , a positive fraction of the vertices, not depending on N , in the
grid SN are burned.

Let y = (d, θ) be an arbitrary vertex in SN , written in polar coordinates. If d < 400c,
then d1(y, 0) ≤

√
2d < 600c ≤ N and so y is contained in the ball of burned vertices

centred at the origin.
Suppose now that y = (d, θ) with d ≥ 400c. To find a point in v that is close

to y, we will use the spiral defined in polar coordinates by
(

ct3/2,
√
t
)

for reference.

Let P1 =
(

ct1
3/2,

√
t1
)

and P2 =
(

ct2
3/2,

√
t2
)

be the points on this spiral that satisfy
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θ ≡ √
t1 ≡ √

t2 (mod 2π) and ct
3/2
1 ≤ d < ct

3/2
2 , as in Figure 1. Without loss of

generality, assume that
√
t1 = θ and

√
t2 = θ + 2π.

Since d ≥ 400c, then 400c < ct
3/2
2 = c(

√
t1 + 2π)3 and so t1 ≥ (4001/3 − 2π)2 > 1.

Furthermore, since θ =
√
t1, we have that P1 = (cθ3, θ) and P2 = (c(θ + 2π)3, θ + 2π).

Thus,

d2(y, P1) ≤ d2(P1, P2)

= c(θ + 2π)3 − cθ3

= cθ3 + 6cθ2π + 12cθπ2 + 8cπ3 − cθ3

= 6cθ2π + 12cθπ2 + 8cπ3

= 6cπt1 + 12cπ2
√
t1 + 8cπ3

≤ 386ct1 ≤ 386c

(

d

c

)2/3

,(6)

where the fourth equality follows since θ =
√
t1, and the inequalities in the final line

follow since 1 ≤ t1 ≤ (d/c)2/3.

Now let P3 =
(

c⌊t1⌋3/2,
√

⌊t1⌋
)

so that P ∗
3 = v⌊t1⌋. The distance between P1 and P3

is bounded by the sum of length of the arc of the circle centred at the origin between

the point P1 and the point (ct
3/2
1 ,
√

⌊t1⌋) and the distance between P3 and this point.
We derive that

d2(P1, P3) ≤ ct
3/2
1

(√
t1 −

√

⌊t1⌋
)

+ (ct
3/2
1 − c⌊t1⌋3/2)

≤ ct
3/2
1

(√
t1 −

√
t1 − 1

)

+ (ct
3/2
1 − c(t1 − 1)3/2)

≤ c
t
3/2
1√
t1

+
3c

2

√
t1 ≤ c

(

1 +
3

2

)

t1 ≤
5c

2

(

d

c

)2/3

,(7)

where the final inequality follows since 1 ≤ t1 ≤ (d/c)2/3.
These estimates are now used to bound the L1 distances between the points y, P ∗

1 ,
and P ∗

3 = v⌊t1⌋. Indeed, the distance between y and P ∗
1 is

d1(y, P
∗
1 ) ≤ d1(y, P1) + 2

≤
√

2d2(y, P1) + 2

≤ 386c
√

2

(

d

c

)2/3

+ 2(8)

≤ 546c

(

d

c

)2/3

+ 2,

where the third inequality follows by (6).
Analogously, we find that

d1(P
∗
1 , v⌊t1⌋) = d1(P

∗
1 , P

∗
3 )

≤ d1(P1, P3) + 4(9)

≤
√

2d2(P1, P3) + 4
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≤ c
√

2
5

2

(

d

c

)2/3

+ 4

≤ 4c

(

d

c

)2/3

+ 4,(10)

where the third inequality follows by (7).
Summing the bounds in Equations (8) and (10) gives

d1(y, v⌊t1⌋) ≤ d1(y, P
∗
1 ) + d1(P

∗
1 , v⌊t1⌋)

≤ 550c

(

d

c

)2/3

+ 6.

Since v⌊t1⌋ was activated by time
(

d
c

)2/3
, then y ∈ BN if d1(v⌊t1⌋, y) ≤ N −

(

d
c

)2/3
, which

occurs if

550c

(

d

c

)2/3

+ 6 ≤ N −
(

d

c

)2/3

or equivalently if d ≤ c
(

N−6
550c+1

)3/2
. Thus, for N ≥ 600c, BN contains all points within L2

distance c
(

N−6
600c+1

)3/2
from the origin, and so BN also contains all points at L1 distance

at most c
(

N−6
600c+1

)3/2
from the origin. Therefore, δ(v, x) ≥ 1

8
(600c + 1)−3. �

The construction given in this proof can also be used to show that if either f(n) =
Θ(n3/2) or f(n + 1) − f(n) = O(

√
n), then positive burning densities are possible in

the sequence of graphs ([−f(n), f(n)])n≥0. However, it need not be true that if f(n) =
O(n3/2) that positive burning densities are achievable. Some such examples are detailed
in Section 5.

4. Higher dimensional grids

In this section, it is shown that there is a threshold result generalizing Theorem 3
to positive burning densities in arbitrary dimension grids, depending on their speed of
growth. First it is shown that faster growing grids have burning density 0. Theorem 4
is restated for convenience.

Theorem 4. For any d ≥ 2, let f : N0 → N0 be a function with f(n) = ω(n(d+1)/d). For
every n ≥ 0, let Sn = [−f(n), f(n)]d, and let S = (Sn)n≥0. Then, for every sequence of
activated vertices v the burning density is δ(S, v) = 0.

Proof. To prove the theorem, some bounds on the cardinalities of d-dimensional balls
are needed. For any k ≥ 0, the number of solutions to

∑d
i=1 vi = k with vi ∈ [0, k] is

(

k+d−1
d−1

)

and so the number of solutions to
∑d

i=1 vi ≤ k is

k
∑

i=0

(

i + d− 1

d− 1

)

=

(

k + d

d

)

.

Therefore, considering the possible signs in the case when vi ∈ [−k, k],

(11) |B1(0, k)| ≤ 2d

(

k + d

d

)

.
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Let v be any sequence of activated vertices in the sequence of graphs (Sn)n≥0. For any
n, Bn is bounded by

|Bn| ≤
n
∑

k=0

|B1(vk, n− k)|

≤
n
∑

k=0

2d

(

k + d

d

)

= 2d

(

n + d + 1

d + 1

)

≤ 2d(n + d + 1)d+1.(12)

Therefore, the burning density satisfies

δ(S, v) = lim
n→∞

|Bn|
(2f(n) + 1)d

≤ lim
n→∞

2d(n + d + 1)d+1

2df(n)d

= lim
n→∞

(n + d + 1)d+1

ω(nd+1)

= 0,

where the first inequality follows by (12), and the second equality follows by the definition
of f(n).

Thus, for any sequence v, δ(S, v) = 0. �

What remains is to prove the corresponding result for positive densities in slower
growing grids. For the proofs to come, some estimates on the cardinalities of balls of a
given radius in Z

d, their vertex boundaries, and their intersections with other balls are
needed. These are given first in Lemmas 11 and 12 before proceeding with the proof of
the next threshold result, Theorem 13. For any point P ∈ Z

d and integer x, let S1(P, x)
be the set of points at L1-distance exactly x from P ; the sphere of radius x.

Lemma 11. For any d ≥ 2 and r ≥ d+ 1, the number of vertices in an L1 ball of radius
r satisfies

|B1(0, r)|
|[−r, r]d| ≥ 1

2ddd
.

Furthermore, the number of vertices at L1 distance exactly r from the origin is bounded
above and below as

2d

(d− 1)!
(r − d + 1)d−1 ≤ |S1(0, r)| ≤ 2d

(d− 1)!
(r + d− 1)d−1.

Proof. Since a vertex v = (v1, v2, . . . , vd) is in the L1 ball if
∑

|vi| ≤ r, the ball contains
all vertices such that |vi| ≤

⌊

r
d

⌋

for all 1 ≤ i ≤ d. Thus, the ball contains a cube of width

2
⌊

r
d

⌋

+ 1, which has volume
(

2
⌊r

d

⌋

+ 1
)d

≥
(

2
r

d
− 1
)d

.
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Since the volume of a d-dimensional cube of width 2r + 1 is (2r + 1)d, for r ≥ d + 1, the
ball satisfies

|B1(0, r)|
(2r + 1)d

≥ 1

dd

(

2r − d

2r + 1

)d

≥ 1

dd2d
.

As described in the proof of Theorem 4, the number of vertices in S1(0, r) is the

number of integer solutions to
∑d

i=1 |vi| = r with vi ∈ [−r, r]. As before, the upper
bound is

|S1(0, r)| ≤ 2d

(

r + d− 1

d− 1

)

≤ 2d

(d− 1)!
(r + d− 1)d−1.

The lower bound is obtained by disregarding the solutions with some vi = 0, which gives,

|S1(0, r)| ≥ 2d

(

r − 1

d− 1

)

≥ 2d

(d− 1)!
(r − d + 1)d−1.

�

We need the following lemma.

Lemma 12. Let S = S1(0, x), let P be a vertex at distance r from the origin and let
B = B1(P, y) be the L1 ball of radius y centered at P . If r ≤ x + y and r + x ≥ y, then

|S ∩B| ≥ 1

(d− 1)!

(

1

2
(x + y − r) − d

)d−1

Proof. The proof is given by showing that the set B1(0, x) ∩ B contains a ball of radius
⌊

1
2
(x + y − r)

⌋

, one face of which is contained in the set S. Toward this end, let l be a

path of length r from 0 to P , and let M be the vertex on l at distance
⌈

1
2
(r + x− y)

⌉

from 0.
Let M ′ be a point on the same path with d(0,M ′) = x so that M ′ ∈ S. Since x, r, and

y are all integers, x+r−y ≡ x−r+y (mod 2). Since r ≤ x+y, then x ≥ ⌈1
2
(x+r−y)⌉

and so d(M,M ′) = x−⌈1
2
(x+r−y)⌉ = ⌊1

2
(x−r+y)⌋. Also, since d(M ′, P ) = r−x ≤ y,

then M ′ ∈ B ∩ S.
Furthermore, since x ≤ r + y, then r ≥ ⌈1

2
(x + r − y)⌉ and so d(M,P ) = r − ⌈1

2
(x +

r − y)⌉ = ⌊1
2
(r − x + y)⌋.

For any point Q with d(M,Q) ≤ ⌊1
2
(x− r + y)⌋, then

d(0, Q) ≤ d(0,M) + d(M,Q) ≤
⌈

1

2
(x + r − y)

⌉

+

⌊

1

2
(x− r + y)

⌋

= x

and

d(Q,P ) ≤ d(Q,M) + d(M,P ) ≤
⌊

1

2
(x− r + y)

⌋

+

⌊

1

2
(r − x + y)

⌋

≤ y.

It follows that B1

(

M,
⌊

1
2
(x + y − r)

⌋)

⊂ B1(0, x) ∩ B. The vertex M ′ is contained in

a ‘face’ of the ball B1

(

M,
⌊

1
2
(x + y − r)

⌋)

and of S. Furthermore, any other vertex in

the same face of this ball is also contained in the set S. Since there are 2d different faces
of the ball, by Lemma 11

|S ∩ B| ≥ 1

2d

2d

(d− 1)!

(⌊

1

2
(x + y − r)

⌋

− d + 1

)d−1
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≥ 1

(d− 1)!

(

1

2
(x + y − r) − d

)d−1

,

and the proof follows. �

Lemmas 11 and 12 are now used to prove that in the case that the grids do not
grow too quickly, a random selection of activated vertices within particular sets gives a
proportion of burning vertices bounded away from 0 at any fixed time. These random
sequences are combined to give an infinite sequence with positive lower burning density.

Theorem 13. For any integer d ≥ 2, let S be the sequence of d-dimensional grids such

that Sn =
[

−⌈n(d+1)/d⌉, ⌈n(d+1)/d⌉
]d

. Then there is a sequence of activated vertices v
such that δ(S, v) > 0.

Proof. Let N ≥ max
{

2
(

3d
d+1

)d
, 2d+2, 16d

}

be large and consider the sequence of grids

(Sn)Nn=1. Vertices are activated at random in the following way: for every time-step n ∈
[⌊N/6⌋ + 1, ⌊N/2⌋], choose one vertex at distance

⌊

n(d+1)/d
⌋

from the origin uniformly
at random to be the vertex vn activated at time n and make this choice independently of
all others. Note that for n ≥ 1, (n+ 1)(d+1)/d ≥ n(d+1)/d + 1 and so these chosen vertices
are all distinct.

We will then show that there is a constant λd > 0, depending only on d, such that with
positive probability the fraction of burning vertices in SN at time N is at least λd. While
the proof that such a constant λd > 0 exists is probabilistic, we then deterministically
concatenate infinitely many such sequences of activated vertices to obtain the sequence
of activated vertices for (Sn)n≥1. This sequence will have upper burning density at least
λd and, by choosing the ‘time scales’ appropriately, we will show that the lower burning
density is still at least λd/3d+1.

We begin by computing the expected number of burned vertices whose distance from
the origin is in the range

[

(N/4)(d+1)/d, (N/2)(d+1)/d
]

. For any (N/4)(d+1)/d ≤ r ≤
(N/2)(d+1)/d, let P be any vertex at distance r from the origin and consider the proba-
bility that P is burned by time N . In fact, only activated vertices vn with n ≤ rd/(d+1)

and n ≥ rd/(d+1) − 21/dd
4(d+1)

N1−1/d + 1 are considered as sources for a fire to burn P . Note

that for this choice of n,

⌊n(d+1)/d⌋ ≥ n(d+1)/d − 1

≥
(

rd/(d+1) − 21/dd

4(d + 1)
N1−1/d + 1

)(d+1)/d

− 1

= r

(

1 − 21/dd

4(d + 1)rd/(d+1)
N1−1/d +

1

rd/(d+1)

)(d+1)/d

− 1

≥ r

(

1 − d + 1

d

21/dd

4(d + 1)rd/(d+1)
N1−1/d +

d + 1

d

1

rd/(d+1)

)

− 1

= r − 21/d

4
N1−1/dr1/(d+1) +

d + 1

d
r1/(d+1) − 1

≥ r − 21/d

4
N1−1/d

(

N

2

)1/d

+
(d + 1)

d

(

N

4

)1/d

− 1
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≥ r − N

4
(13)

For any n ≤ rd/(d+1), P is burned by vn by time N iff d(P, vn) ≤ N − n. Thus, for
n ≤ rd/(d+1), if d(P, vn) ≤ N − rd/(d+1), then P is burned by time N . Since activated
vertices are chosen uniformly at random, the probability that vn burns P by time N is,

(14) P(P is burned by time N by vn)

≥
∣

∣S1

(

0,
⌊

n(d+1)/d
⌋)

∩ B1

(

P,N − rd/(d+1)
)
∣

∣

|S1 (0, ⌊n(d+1)/d⌋)| .

Lemma 12 is used to bound the numerator of Equation (14). To verify the conditions
of Lemma 12, note that

⌊n(d+1)/d⌋ + (N − rd/(d+1)) ≥ r − N

4
+ N − rd/(d+1)

≥ r +
3N

4
− N

2
= r +

N

4
> r

where the first inequality follows from (13) and the second from the upper bound for r.
Again using (13),

r + ⌊n(d+1)/d⌋ ≥ r + r − N

4
= 2r − N

4

≥ 2

(

N

4

)(d+1)/d

− rd/(d+1)

≥ N − rd/(d+1)

where the second inequality follows from the lower bound on r and the third inequality
follows since N ≥ 2d+2.

Therefore, by Lemma 12, the numerator of (14) is

|S1

(

0,
⌊

n(d+1)/d
⌋)

∩ B1

(

P,N − rd/(d+1)
)

|

≥ 1

(d− 1)!

(

1

2
(⌊n(d+1)/d⌋ + N − rd/(d+1) − r) − d

)d−1

≥ 1

(d− 1)!

(

1

2
(−N/4 + N − rd/(d+1)) − d

)d−1

≥ 1

(d− 1)!

(

1

2
(3N/4 −N/2) − d

)d−1

=
1

(d− 1)!

(

N

8
− d

)d−1

≥ 1

(d− 1)!

(

N

16

)d−1

(15)

where the second inequality follows from equation (13) and the final inequality follows
since N ≥ 16d.

For the denominator of (14), Lemma 11 is used for an upper bound

|S1(0, ⌊n(d+1)/d⌋)| ≤ 2d

(d− 1)!
(⌊n(d+1)/d⌋ + d− 1)d−1
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≤ 2d

(d− 1)!
(2⌊n(d+1)/d⌋)d−1

≤ 2d

(d− 1)!

(

2(N/2)(d+1)/d
)d−1

=
2d−1+1/dNd−1/d

(d− 1)!
.(16)

Combining Equations (14), (15), and (16) gives

(17) P(P is burned by time N by vn) ≥
1

(d−1)!
(N/16)d−1

2d−1+1/d

(d−1)!
Nd−1/d

=
1

25d−5+1/dN1−1/d
.

Therefore, setting l = rd/(d+1) − d21/d

4(d+1)
N1−1/d, the probability that P is not burned by

time N by vn with n ∈ [l + 1, rd/(d+1)] is

P(P is not burned by time N)

≤
rd/(d+1)
∏

n=l+1

P(P is not burned by time N by vn)

≤
rd/(d+1)
∏

n=l+1

(

1 − 1

25d−5+1/dN1−1/d

)

=

(

1 − 1

25d−5+1/dN1−1/d

)rd/(d+1)−l

=

(

1 − 1

25d−5+1/dN1−1/d

)
d21/d

4(d+1)
N1−1/d

≤ exp

(

− 1

25d−5+1/dN1−1/d

)
d21/d

4(d+1)
N1−1/d

= exp

(

− 1

25d−5+1/dN1−1/d
· d21/d

4(d + 1)
N1−1/d

)

= exp

(

− d

(d + 1)25d−3

)

< 1,

where the second inequality follows by (17).
Since this bound depends only on d, we have the desired λd. To construct an infi-

nite sequence with positive lower density from the existing finite sequences, let N1 >

max
{

2
(

3d
d+1

)d
, 2d+2, 16d

}

and for every i ≥ 1, set Ni+1 = 3Ni. For every i ≥ 1, let vi
be a sequence of activated vertices given by the probabilistic proof above. That is, for
every n ∈ [⌊Ni/6⌋+ 1, ⌊Ni/2⌋], (vi)n is a vertex in SNi

so that at time Ni, the fraction of
vertices in SNi

burning (because of activated vertices in vi) is at least λd. Construct an
infinite sequence of activated vertices v by concatenating the sequences (vi)i≥1 (selecting
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activated vertices arbitrarily for all times before N1/6). Since

Ni+1

6
+ 1 =

3Ni

6
+ 1 >

Ni

2
,

there is no overlap between the sequences vi.
The construction guarantees that the burning density is at least λd at time Ni for all

i. Since Ni+1

Ni
= 3, for any t ≤ 2Ni, the burning density in SNi+t at time Ni + t is at least

λd(2N
(d+1)/d
i + 1)d

(2(Ni + t)(d+1)/d + 1)d
≥ λd

(

2N
(d+1)/d
i + 1

2(3Ni)(d+1)/d + 1

)d

≥ λd

(

1

3(d+1)/d

)d

=
λd

3d+1
.

Therefore, the minimum burning density at any time is at least λd/3d+1 and so δ(S, v) ≥
λd/3d+1. �

5. Further directions

One possible variation on the burning density is the following. Let (G0, G1, . . .) be a
sequence of graphs with the property that for every n ≥ 1, Gn−1 is an induced subgraph
of Gn. A sequence of activated vertices, v, is a connected burning sequence if for every
n ≥ 0 with vn 6= •, vn is adjacent to a vertex in NGn [Bn].

In a connected burning sequence, an activated vertex is always chosen adjacent to an
already burning vertex and so the set of burned vertices is always a connected subgraph.
Which burning densities are achievable by connected burning sequences? The sequences
of activated vertices given by Lemmas 6 and 7 are always connected burning sequences.
This shows, as in the proof of Theorem 9, that in the sequence of grids ([−n, n]2)n≥0,
connected burning sequences can achieve any density in [1/2, 5/8]. Are any other values
achievable by connected burning sequences?

With regard to burning in higher dimensional grids, it would be interesting to deter-
mine a meaningful condition on grid-size growth that determines whether or not posi-
tive burning density is achievable. We have made such determinations concerning the
“threshold” n(d+1)/d, but what about growth functions that are not well-behaved or even
strictly increasing? Certain considerations obstruct a straightforward generalization; for
example, the burning density need not always exist. Indeed, take f(n) = 2⌊logn⌋. Then if
n = 2k − 1, f(n) = 2k−1 and any vertex within distance 2k − 1 of the origin is burned at
time n, leaving at most 4 vertices unburned (the corners of the grid). However, if n = 2k,

then f(n) = 2k and at most
(

2k−1 + 1
)2

vertices are burned at time n. In the former

case, the burning density is at least 1 − o(1), while in the later it is at most 1
4

+ o(1).
Thus, the burning density does not exist.

A similar result follows when f(n) is of maximum order. For this, let f(n) =
⌊

(

22⌊log log n⌋
)3/2

⌋

. If n = 22k − 1, then f(n) =

⌊

(

22k−1
)3/2

⌋

and every vertex in the

graph is burned. If n = 22k , then f(n) =

⌊

(

22k
)3/2

⌋

and at most
(

22k−1
+ 1
)3

vertices

are burned. Hence, the upper burning density is 1, and since

lim
k→∞

(

22k−1

22k

)3

= 0
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the lower burning density is 0.
Also notice that it is not merely the order of the graphs that determines whether

positive density is achievable. We showed that grids of order
(

n3/2
)2

= n3 can yield
positive lower density. However, even graphs of order n2+ǫ in Z

2 may force density
0. This is simply because “thin” grids mimic the 1-dimensional model, in which the
threshold for positive densities is n2. For example, let the graph sequence be defined
by Sn = [0, nε/2] × [0, n2+ε/2]. Then at arbitrary time N , we have that the number of
burned vertices is at most

N
∑

k=1

2knε/2 ≤ N2 ·N ε/2 = o(|SN |).

Thus, it is necessary to consider the structure of the grids comprising the graph sequence.
As with the firefighting problem, one may also study graph burning on other infinite

lattices. Further, what happens to the burning density when the sequence of grids is not
symmetric about the origin?
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