Skip to main content
Log in

A Relation Between Schröder Paths and Motzkin Paths

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A small q-Schröder path of semilength n is a lattice path from (0, 0) to (2n, 0) using up steps \(U = (1, 1)\), horizontal steps \(H = (2, 0)\), and down steps \(D = (1,-1)\) such that it stays weakly above the x-axis, has no horizontal steps on the x-axis, and each horizontal step comes in q colors. In this paper, we provide a bijection between the set of small q-Schröder paths of semilength \(n+1\) and the set of \((q+2, q+1)\)-Motzkin paths of length n. Furthermore, a one-to-one correspondence between the set of small 3-Schröder paths of semilength n and the set of Catalan rook paths of semilength n is obtained, and a bijection between small 4-Schröder paths and Catalan queen paths is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barcucci, E., Lungo, A., Pergola, E., Pinzani, R.: ECO: a methodology for the enumeration of combinatorial objects. J. Differ. Equ. Appl. 5, 435–490 (1999)

    Article  MathSciNet  Google Scholar 

  2. Barcucci, E., Lungo, A., Pergola, E., Pinzani, R.: Some combinatorial interpretations of \(q\)-analogs of Schröder numbers. Ann. Combin. 3, 171–190 (1999)

    Article  Google Scholar 

  3. Bonin, J., Shapiro, L., Simion, R.: Some \(q\)-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths. J. Stat. Plann. 34, 35–55 (1993)

    Article  Google Scholar 

  4. Chen, Z., Pan, H.: Identities involving weighted Catalan, Schröder and Motzkin paths. Adv. Appl. Math. 86, 81–98 (2017)

    Article  MathSciNet  Google Scholar 

  5. Chen, C., Wang, C.: Noncrossing linked partitions and large \((3, 2)\)-Motzkin paths. Discrete Math. 312, 1918–1922 (2012)

    Article  MathSciNet  Google Scholar 

  6. Chen, C., Yan, F., Yang, M.: Identities from weighted Motzkin paths. Adv. Appl. Math. 41, 329–334 (2008)

    Article  MathSciNet  Google Scholar 

  7. Coker, C.: Enumerating a class of lattice paths. Discrete Math. 271, 13–28 (2003)

    Article  MathSciNet  Google Scholar 

  8. Comtet, L.: Advanced Combinatorics. D. Reidel Publishing Company, Boston (1974)

    Book  Google Scholar 

  9. Deng, E., Yan, W.: Some identities on the Catanlan, Motzkin and Schröder numbers. Discrete Appl. Math. 156, 2781–2789 (2008)

    Article  MathSciNet  Google Scholar 

  10. Deutsch, E.: An involution on Dyck paths and its consequences. Discrete Math. 204, 163–166 (1999)

    Article  MathSciNet  Google Scholar 

  11. Deutsch, E.: Dyck path enumeration. Discrete Math. 204, 167–202 (1999)

    Article  MathSciNet  Google Scholar 

  12. Deutsch, E., Munarini, E., Rinaldi, S.: Skew Dyck paths. J. Stat. Plann. Inference 140, 2191–2203 (2010)

    Article  MathSciNet  Google Scholar 

  13. Deutsch, E., Shapiro, L.: A bijection between ordered trees and \(2\)-Motzkin paths and its many consequences. Discrete Math. 256, 655–6700 (2002)

    Article  MathSciNet  Google Scholar 

  14. Dutour, I., Fédou, J.M.: Object grammars and bijections. Theor. Comput. Sci. 290, 1915–1929 (2003)

    Article  MathSciNet  Google Scholar 

  15. Dziemiańczuk, M.: Counting lattice paths with four types of steps. Graphs Combin. 30, 1427–1452 (2014)

    Article  MathSciNet  Google Scholar 

  16. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  17. Foata, D., Zeilberger, D.: A classic proof of a recurrence for a very classical sequence. J. Combin. Theory Ser. A 80, 380–384 (1997)

    Article  MathSciNet  Google Scholar 

  18. Gessel, I.M.: Lagrange inversion. J. Combin. Theory Ser. A 144(2), 212–249 (2016)

    Article  MathSciNet  Google Scholar 

  19. Hennessy, A.: Bijection of Motzkin paths using Riordan decompositions. Graphs Combin. 35, 169–187 (2019)

    Article  MathSciNet  Google Scholar 

  20. Huh, J.S., Park, S.K.: Generalized small Schröder numbers. Electron. J. Combin. 22(3), #P3.14 (2015)

  21. Humphreys, K.: A history and a survey of lattice path enumeration. J. Stat. Plann. 140(8), 2237–2254 (2010)

    Article  MathSciNet  Google Scholar 

  22. Kung, J.P.S., Mier, A.: Catalan lattice paths with rook, bishop and spider steps. J. Combin. Theory Ser. A 120(2), 379–389 (2013)

    Article  MathSciNet  Google Scholar 

  23. Mohanty, S.G.: Lattice Path Counting and Applications. Academic Press, New York (1979)

    MATH  Google Scholar 

  24. Narayana, T.V.: Lattice Path Combinatorics with Statistical Applications. University of Toronto Press, Toronto (1979)

    Book  Google Scholar 

  25. Shapiro, L.W., Wang C.J.: A bijection between \(3\)-Motzkin baths and Schröder baths with no peak at odd height. J. Integer Seq. 12, Article 09.3.2 (2009)

  26. Sloane, N.J.A.: The On-line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org (2020)

  27. Song, C.: The generalized Schröder theory. Electron. J. Combin. 12, #R53 (2005)

  28. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  29. Sulanke, R.A.: The Narayana distribution. J. Stat. Plann. Inference 101, 311–326 (2002)

    Article  MathSciNet  Google Scholar 

  30. Woan, W.: A recurisive relation for weighted Motzkin sequences. J. Integer Seq. 8, Article 05.1.6 (2005)

  31. Woan, W.: A relation between restricted and unrestricted weighted Motzkin paths. J. Integer Seq. 9, Article 06.1.7 (2006)

  32. Yan, S.H.F.: From \((2,3)\)-Motzkin paths to Schröder paths. J. Integer Seq. 10, Article 07.9.1 (2007)

  33. Yan, S.H.F., Zhang, Y.: On lattice paths with four types of steps. Graphs Combin. 31, 1077–1084 (2015)

    Article  MathSciNet  Google Scholar 

  34. Yang, S.L., Zheng, S.N., Yuan, S.P., He, T.X.: Schröder matrix as inverse of Delannoy matrix. Linear Algebra Appl. 439(12), 3605–3614 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their helpful suggestions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11861045, 11561044) and the Hongliu Foundation of First-class Disciplines of Lanzhou University of Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yang, SL. A Relation Between Schröder Paths and Motzkin Paths. Graphs and Combinatorics 36, 1489–1502 (2020). https://doi.org/10.1007/s00373-020-02185-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-020-02185-6

Keywords

Mathematics Subject Classification

Navigation