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Abstract

Given a graph G and a positive integer k, define the Gallai-Ramsey

number to be the minimum number of vertices n such that any k-edge
coloring of Kn contains either a rainbow (all different colored) triangle
or a monochromatic copy of G. In this paper, we consider two classes of
unicyclic graphs, the star with an extra edge and the path with a triangle
at one end. We provide the 2-color Ramsey numbers for these two classes
of graphs and use these to obtain general upper and lower bounds on the
Gallai-Ramsey numbers.

1 Introduction

In this work, we consider only edge-colorings of graphs. A coloring of a graph
is called rainbow if no two edges have the same color.

Colorings of complete graphs that contain no rainbow triangle have very
interesting and somewhat surprising structure. In 1967, Gallai [6] first examined
this structure under the guise of transitive orientations. The result was reproven
in [8] in the terminology of graphs and can also be traced to [1]. For the following
statement, a trivial partition is a partition into only one part.
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Theorem 1 ([1, 6, 8]). In any coloring of a complete graph containing no
rainbow triangle, there exists a nontrivial partition of the vertices (that is, with
at least two parts) such that there are at most two colors on the edges between
the parts and only one color on the edges between each pair of parts.

For ease of notation, we refer to a colored complete graph with no rainbow
triangle as a Gallai-coloring and the partition provided by Theorem 1 as a
Gallai-partition. The induced subgraph of a Gallai colored complete graph
constructed by selecting a single vertex from each part of a Gallai partition is
called the reduced graph of that partition. By Theorem 1, the reduced graph is
a 2-colored complete graph.

Given two graphs G and H , let R(G,H) denote the 2-color Ramsey number
for finding a monochromatic G or H , that is, the minimum number of vertices
n needed so that every red-blue coloring of Kn contains either a red copy of
G or a blue copy of H . Although the reduced graph of a Gallai partition uses
only two colors, the original Gallai-colored complete graph could certainly use
more colors. With this in mind, we consider the following generalization of the
Ramsey numbers. Given two graphs G and H , the general k-colored Gallai-
Ramsey number grk(G : H) is defined to be the minimum integer m such that
every k-coloring of the complete graph on m vertices contains either a rainbow
copy of G or a monochromatic copy of H . With the additional restriction of
forbidding the rainbow copy of G, it is clear that grk(G : H) ≤ Rk(H) for any
graph G.

In this work, we consider the Gallai-Ramsey numbers for finding either a
rainbow triangle or monochromatic graph coming from two classes of unicyclic
graphs: a star with an extra edge that forms a triangle, and a path with an
extra edge from an end vertex to an internal vertex formaing a triangle. In
order to produce sharp results for the Gallai-Ramsey numbers of these graphs,
we first prove the 2-color Ramsey numbers for these graphs.

These graphs are particularly interesting because although they are not bi-
partite, they are very close to being a tree (and therefore bipartite). The di-
chotomy between bipartite and non-bipartite graphs is critical in the study of
Gallai-Ramsey numbers in light of the following result.

Theorem 2 ([7]). Let H be a fixed graph with no isolated vertices. If H is
not bipartite, then grk(K3 : H) is exponential in k. If H is bipartite, then
grk(K3 : H) is linear in k.

We refer the interested reader to [11] for a dynamic survey of small Ramsey
numbers and [5] for a dynamic survey of rainbow generalizations of Ramsey
theory, including topics like Gallai-Ramsey numbers.

Section 2 contains two known results that will be used as part of our proofs.
Section 3 discusses the case where H is a star with the addition of an extra
edge to form a triangle. Section 4 discusses the case where H is a path with
the addition of an extra edge betwen the first vertex and the third vertex, again
forming a triangle.
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2 Preliminaries

In this section, we recall two results about cycles and a helpful lemma which
will be used later in our proofs. First the known Ramsey number for cycles.

Theorem 3 ([3, 10, 12]). Given integers m,n ≥ 3,

R(Cm, Cn) =







































2n− 1

for 3 ≤ m ≤ n, m odd, (m,n) 6= (3, 3),

n− 1 +m/2

for 4 ≤ m ≤ n, m and n even, (m,n) 6= (4, 4),

max{n− 1 +m/2, 2m− 1}

for 4 ≤ m < n, m even and n odd.

Next the general k-color Gallai-Ramsey number for even cycles is not yet
known but the following bound have been shown.

Theorem 4 ([4], [9]). Given integers n ≥ 2 and k ≥ 1,

(n− 1)k + n+ 1 ≤ grk(K3 : C2n) ≤ (n− 1)k + 3n.

Finally we present a lemma from [13].

Lemma 1 ([13]). Let k ≥ 3, H be a graph with |H | = m, and let G be a
Gallai coloring of the complete graph Kn containing no monochromatic copy of
H. If G = A ∪ B1 ∪ B2 ∪ · · · ∪ Bk−1 where A uses at most k colors (say from
[k]), |Bi| ≤ m − 1 for all i, and all edges between A and Bi have color i, then
n ≤ grk(K3 : H)− 1.

Note that this lemma uses the assumed structure to provide a bound on |G|
even if G itself uses more than k colors.

3 Star with an extra edge

Let St denote the star with t total vertices (and t−1 edges). Then for t ≥ 3, let
S+
t denote graph consisting of the star St with the addition of an edge between

two of the pendant vertices, forming a triangle. Note that S+
3 = K3.

Before beginning the discussion of the Gallai-Ramsey number for S+
t , we

must first find the 2-color Ramsey number.

Theorem 5. For t ≥ 3,
R(S+

t , S+
t ) = 2t− 1.

Proof. The lower bound follows from the graph constructed by taking two copies
of Kt−1 each colored entirely with red and adding all blue edges in between the
two copies. Each red component is too small to contain a monochromatic copy
of S+

t and the blue subgraph is bipartite so cannot contain a copy of S+
t . The
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order of this constructed graph is 2t− 2, meaning that the Ramsey number is
at least 2t− 1.

For the upper bound, consider an arbitrary vertex v in any 2-coloring of
K2t−1. If v has at least t− 1 incident red edges, then the graph induced on the
set of vertices at the opposite end of these red edges must contain no red edges
to avoid a red S+

t . This induces a blue complete graph so there must be at most
t− 1 such vertices. The same holds for incident blue edges at v, meaning that
v must have precisely t − 1 incident red edges and t − 1 incident blue edges.
Let R and B be the corresponding sets of vertices, as above, inducing blue and
red complete graphs respectively and let r ∈ V (R) and b ∈ V (B). The edge rb
must be either red or blue, but either one creates the desired monochromatic
copy of S+

t centered at one of r or b, completing the proof.

Next we prove a lemma which provides the lower bound on the Gallai-
Ramsey number.

Lemma 2. For k ≥ 1,

grk(K3 : S+
t ) ≥

{

2(t− 1) · 5
k−2

2 + 1 if k is even,

(t− 1) · 5
k−1

2 + 1 if k is odd.

Proof. We prove this result by inductively constructing a k-coloring ofKn where

n =

{

2(t− 1) · 5
k−2

2 if k is even,

(t− 1) · 5
k−1

2 if k is odd,

which contains no rainbow triangle and no monochromatic copy of S+
t .

If k is odd, let G1 be a complete graph on t − 1 vertices colored entirely
with color 1. Note that with only t−1 vertices, this contains no monochromatic
copy of S+

t . Suppose we have constructed a colored complete graph G2i−1

where i is a positive integer and 2i − 1 < k, using the 2i − 1 colors 1,2, . . . ,
2i− 1 and having order n2i−1 = (t− 1) · 5i−1. Construct G2i+1 by making five
copies of G2i−1 and inserting edges of color 2i and 2i+ 1 between the copies to
form a blow-up of the unique 2-colored K5 which contains no monochromatic
triangle. This coloring clearly contains no rainbow triangle and, since there
is no monochromatic triangle in either of the two new colors, there can be no
monochromatic copy of S+

t in G2i+1. Ultimately, Gk is a k-colored complete
graph containing no rainbow triangle and no monochromatic copy of S+

t with
|Gk| = (t− 1) · 5(k−1)/2.

If k is even, let G2 be a 2-colored complete graph on 2t − 2 vertices con-
taining no monochromatic copy of S+

t using colors 1 and 2. That is, G2 is the
sharpness example from Theorem 5. Suppose we have constructed a coloring of
G2i where i is a positive integer and 2i < k, using 2i colors 1, 2, . . . , 2i and
having order n2i = (2t − 2) · 5i−1 such that G2i contains no rainbow triangle
and no monochromatic copy of S+

t . Construct G2i+2 by making five copies
of G2i and inserting edges of colors 2i + 1 and 2i + 2 between the copies to
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form a blow-up of the unique 2-colored K5 which contains no monochromatic
triangle. This coloring clearly contains no rainbow triangle and, since there
is no monochromatic triangle in either of the two new colors, there can be no
monochromatic copy of S+

t in G2i+2. Ultimately, Gk is a k-colored complete
graph containing no rainbow triangle and no monochromatic copy of S+

t with
|Gk| = 2(t− 1) · 5(k−2)/2.

At last, the main result of this section, the precise Gallai-Ramsey number
for S+

t .

Theorem 6. For k ≥ 1 and t ≥ 3,

grk(K3 : S+
t ) =

{

2(t− 1) · 5
k−2

2 + 1 if k is even,

(t− 1) · 5
k−1

2 + 1 if k is odd.

Proof. The lower bound follows from Lemma 2. We prove the upper bound
by induction on k. The case k = 1 is trivial and the case k = 2 is precisely
Theorem 5, so suppose k ≥ 3 and let G be a Gallai coloring of Kn where

n =

{

2(t− 1) · 5
k−2

2 + 1 if k is even,

(t− 1) · 5
k−1

2 + 1 if k is odd.

Since G is a Gallai coloring, by Theorem 1, there is a Gallai partition of
G. Suppose red and blue are the two colors appearing in the Gallai partition.
Let m be the number of parts in this partition and choose such a partition
where m is minimized. By Theorem 5 applied on the reduced graph, we see
that m ≤ 2t− 2. Let H1, H2, . . . , Hm be the parts of this partition and suppose
|Hi| ≥ |Hi+1| for all i with 1 ≤ i ≤ m− 1. Let r be the number of parts of the
Gallai partition with order at least t− 1, so |Hr| ≥ t− 1 and |Hr+1| ≤ t− 2.

First suppose 2 ≤ m ≤ 3. If m ≤ 3, then by the minimality of m, we
may assume m = 2, say with corresponding parts H1 and H2. Without loss of
generality, suppose all edges between H1 and H2 are blue. Since k ≥ 3, we have
|G| = |H1| + |H2| ≥ 5t− 4, so there is at least one part of order at least t− 1,
meaning that |H1| ≥ t− 1. If |Hi| ≥ t− 1 for i = 1, 2, then to avoid a blue S+

t ,
there can be no blue edges within H1 and H2. Since a color is missing within
each Hi, apply induction on k within Hi. This means that

|G| = |H1|+ |H2| ≤ 2[grk−1(K3 : S+
t )− 1] < n,

a contradiction. Otherwise if |H2| < t − 1, then still there are no blue edges
within H1 so by induction on k within H1, we have

|G| = |H1|+ |H2| ≤ [grk−1(K3 : S+
t )− 1] + (t− 2) < n,

a contradiction. We may therefore assume m ≥ 4.
If r ≥ 4 and m ≥ 6, then any choice of 6 parts containing the 4 parts

H = {H1, H2, H3, H4} will contain a monochromatic triangle in the reduced
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graph. Such a triangle must contains at least one part from H, meaning that
the corresponding subgraph of G must contain a monochromatic copy of S+

t , a
contradiction. Thus, we may assume either 4 ≤ m ≤ 5 or r ≤ 3. We consider
cases based on the value of r. First a couple of claims that will be helpful in
the later analysis.

Claim 1. If there are several parts of a Gallai partition, each of order at most
t− 2, such that all edges in between pairs of these parts are red, then there are
at most a total of 2t− 4 vertices in these parts.

Proof. Let H ′

1, H
′

2, . . . , H
′

m′ be these parts. If m′ ≤ 2, then |H ′

1 ∪H ′

2| ≤ 2t− 4
by assumption. If m′ ≥ 3, to avoid creating a red S+

t using a vertex of H ′

1 as the
center of the star, we have |H ′

2∪H
′

3∪· · ·∪H
′

m′ | ≤ t−2, so |H ′

1∪H
′

2∪· · ·∪H
′

m′ | ≤
2t− 4, completing the proof.

Claim 2. If H1 and H2 are two parts of a Gallai partition each with order at
least t− 1, say with blue edges in between H1 and H2, then there is at most one
part with blue edges to H1 and with red edges to H2, and similarly, there is at
most one part with red edges to H1 and with blue edges to H2. If c is the color
of the edges between H1 and H2, then there are no parts of the Gallai partition
with edges of color c to both H1 and H2.

Proof. For a contradiction, suppose there are two parts H3 and H4 with red
edges to H1 and blue edges to H2. If the edges from H3 to H4 are red, then
H1 ∪H3 ∪H4 contains a red copy of S+

t . Otherwise, if the edges from H3 to H4

are blue, then H2 ∪H3 ∪H4 contains a blue copy of S+
t , either case providing a

contradiction. The proof is symmetric for two parts with red edges to H2 and
blue edges to H1.

For the second conclusion, if there was a part H3 with blue edges to both H1

and H2, then H1 ∪H2 ∪H3 contains a blue copy of S+
t , for a contradiction.

Case 1. r = 0.

Consider the colors of the edges from H1 to H2 ∪H3 ∪ · · · ∪Hm. Let A be
the union of the parts with blue edges to H1 and let B be the union of the parts
with red edges to H1. If |A| (or similarly |B|) is at least t − 1, then there can
be no blue edges within A (respectively red edges within B). Then all edges
between the parts in A (respectively B) must be red (respectively blue) so by
Claim 1, we have |A| ≤ 2t− 4 and |B| ≤ 2t− 4. This means

|G| = |H1|+ |A|+ |B| ≤ 5(t− 2) < n,

a contradiction.

Case 2. r = 1.

Again let A be the union of the parts with blue edges to H1 and let B be
the union of the parts with red edges to H1. As in the previous case, we have
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|A| ≤ 2t − 4 and |B| ≤ 2t − 4. Since m is minimal, neither A nor B can be
empty. There can therefore be no red or blue edges within H1, we have

|G| = |H1|+ |A|+ |B|

≤ [grk−2(K3 : S+
t )− 1] + 2(2t− 4)

< n,

a contradiction.

Case 3. r = 2.

Suppose blue is the color of the edges between H1 and H2, so neither H1

nor H2 can contain blue edges and by Claim 2, there is no part with blue edges
to both H1 and H2. By Claim 2, there is at most one part H3 with blue edges
to H1 and with red edges to H2, and there is at most one part H4 with red
edges to H1 and with blue edges to H2. Let A be the union of the remaining
parts, with all red edges to H1 ∪ H2. By Claim 1, we have |A| ≤ 2t − 4. By
the minimality of m, all parts have incident edges from other parts in both red
and blue so both H1 and H2 contain no red edges or blue edges. This means
|Hi| ≤ grk−2(K3 : S+

t )− 1, so

|G| = |H1|+ |H2|+ |H3|+ |H4|+ |A|

≤ 2[grk−2(K3 : S+
t )− 1] + 4(t− 2)

< n,

a contradiction.

Case 4. r = 3.

To avoid a monochromatic copy of S+
t , the triangle in the reduced graph

corresponding to the parts {H1, H2, H3} must not be monochromatic. Without
loss of generality, suppose the edges from H2 to H3 are red and all edges from
H1 to H2 ∪ H3 are blue. Then H2 and H3 contain neither red nor blue edges,
and H1 contains no blue edges.

First we claim that there is no part having blue edges to H1. Otherwise
suppose there is such a part, say H ′ with blue edges to H1. To avoid a blue copy
of S+

t , all edges from H ′ to H2∪H3 must be red, but then H ′∪H2∪H3 contains
a red copy of S+

t , a contradiction. Thus, all edges from H1 to H4 ∪ . . . ∪ Hm

must be red. Since m ≥ 4, this means H1 also contains no red edges so |Hi| ≤
grk−2(K3 : S+

t )− 1 for 1 ≤ i ≤ 3.

By Claim 2, there is at most one part with blue edges to H2 and red edges
to H3, say H4, and there is at most one part with red edges to H2 and blue
edges to H3, say H5. Also by Claim 2, there is at most one part with blue edges
to H2 ∪H3, say H6. Note that H4 ∪H5 ∪H6 6= ∅ by the minimality of m. This
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covering all the possibilities, we get

|G| =

6
∑

i=1

|Hi|

≤ 3[grk−2(K3 : S+
t )− 1] + 3(t− 2)

< n,

a contradiction.

Case 5. r ≥ 4.

As observed previously, this implies that 4 ≤ m ≤ 5. Within the subgraph
of the reduced graph induced on the r parts of order at least t − 1, there can
be no monochromatic triangle. If r = 5, there is only one coloring of K5 with
no monochromatic triangle and if r = 4, there are two colorings of K4 with no
monochromatic triangle. In each of these colorings, every vertex has at least
one incident edge in both colors, meaning that all of the r corresponding parts
of order at least t− 1 must have no red or blue edges. Then

|G| =

m
∑

i=1

|Hi|

≤ 5[grk−2(K3 : S+
t )− 1]

< n,

a contradiction, completing the proof of this case and the proof of Theorem 6.

4 Path with a triangle end

Let Pt denote the path of order t. Then for t ≥ 3, let P+
t denote the graph

consisting of the path Pt with the addition of an edge between one end and the
vertex at distance 2 along the path from that end, forming a triangle. Note that
P+
3 = K3 and P+

4 = S+
4 .

Before beginning the study of the Gallai-Ramsey number, we first establish
the 2-color Ramsey number for P+

t .

Theorem 7. For t ≥ 4,

R(P+
t , P+

t ) = 2t− 1.

Note that if t = 3, then P+
3 = K3 so R(P+

3 , P+
3 ) = 6.

Proof. The lower bound follows from the graph constructed by taking two copies
of Kt−1 each colored entirely with red and adding all edges in blue in between.
Each red component is too small to contain a monochromatic copy of P+

t and
the blue subgraph is bipartite so cannot contain a copy of P+

t . The order of
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this constructed graph is 2t − 2, meaning that the Ramsey number is at least
2t− 1.

If t = 4, then P+
4 = S+

4 so R(P+
4 , P+

4 ) = 7 by Theorem 6, so suppose t ≥ 5.
For the upper bound in general, let G be a 2-coloring of K2t−1, say using red
and blue.

First suppose t is odd, so by Theorem 3, there is a monochromatic copy of
Ct in G, say with C being a red copy of Ct. If we let C = v1v2 · · · vtv1, then
to avoid creating a red copy of P+

t , all edges of the form vivi+2 must be blue,
where indices are taken modulo t. Since t is odd, these edges form a blue copy
of Ct. Let v be an arbitrary vertex in G\C. Without loss of generality, suppose
vv2 is red. Then to avoid creating a red copy of P+

t , the edges vv1 and vv3 must
be blue. Then vv1v3 forms a blue triangle and, along with the rest of the blue
cycle, this structure contains the desired blue copy of P+

t .
Next suppose t is even and additionally we first suppose t ≥ 10. Then by

Theorem 3, there is a monochromatic copy of Ct+2 in G, say with C being a red
copy of Ct+2. We again let C = v1v2 · · · vt+2v1 and note that, as in the previous
case, every edge of the form vivi+2 must be blue where indices are taken modulo
t+ 2. Since t is even, these blue edges induce two copies of C(t+2)/2.

If no vertex in G \ V (C) has red edges to C, then it is easy to construct
a blue copy of P+

t so let v ∈ G \ V (C) with v having a red edge to C, say to
v2. Then both edges vv1 and vv3 must be blue to avoid a red copy of P+

t . Let
Ceven (and Codd) be the two blue cycles on the even (respectively odd) indexed
vertices. Since these edges form a blue triangle with the edge v1v3, this restricts
the blue edges that can go between the two blue cycles. In fact, all edges from
{vt+1, v5} to Ceven must be red. To avoid a red P+

t , the edges vv5 and vvt+1

must also be blue so, as above, v1 and v3 must also have all red edges to Ceven.
In order to avoid a red copy of P+

t , these red edges imply that all edges between
pairs of even indexed vertices must be blue, inducing a blue complete graph of
order t+2

2 . To avoid a blue copy of P+
t , all edges between Ceven and Codd must

be red, in turn meaning that all edges between pairs of odd indexed vertices
must be blue. Let A and B be the two blue cliques. Each vertex in G \ V (C)
can have red edges to only one of A or B, say A. This means that each such
vertex must have all blue edges to the opposite clique B, which in turn means
that it must have all red edges to A. Putting all of this together, we see that the
red subgraph is a complete bipartite graph. With |G| = 2t− 1, one part must
have order at least t and induce a blue complete graph, containing the desired
copy of P+

t .
If t = 6, then |G| = 11. By Theorem 3, there is a monochromatic copy of

C6, say C in red with vertices v1, v2, . . . , v6 in this order. As above, every edge
of the form vivi+2 must be blue where indices are taken modulo t. These blue
edges induce two blue triangles. To avoid creating a blue copy of P+

6 , all edges
between these two triangles must be red. To avoid creating a red copy of P+

6 , no
vertex in G \ C can have at least one red edge to both blue triangles, meaning
that every vertex has all blue edges to at least one of the two triangles. Since
there are 5 vertices in G \C, at least three of them must have all blue edges to
a single blue triangle, say vertices x, y, z have all blue edges to the blue triangle
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v2v4v6. Then the graph induced on {x, y, z, v2, v4, v6} contains a blue copy of
P+
6 , for a contradiction.

If t = 8, then |G| = 15. By Theorem 3, there is a monochromatic copy
of C8, say C in red with vertices v1, v2, . . . , v8 in this order. As above, every
edge of the form vivi+2 must be blue where indices are taken modulo t. These
blue edges induce two blue copies of C4 with vertices v1v3v5v7 and v2v4v6v8
respectively.

First, suppose there is a red edge within each of these copies of C4, say
without loss of generality, that v1v5 and v2v6 are red. Then to avoid creating a
red copy of P+

8 , the edges v1v4, v2v7, v3v6, and v5v8 must be blue. These edges
together with the two copies of C4 form a blue cube P2×P2×P2. If any face of
this cube contains a blue edge, say for example the edge v1v6, then there would
be a blue copy of P+

8 with path vertices v1v3v6v4v2v8v7v7 and extra edge v1v6.
Thus, every face of this cube contains only red edges. Let v be an arbitrary
vertex in G\C. If v has a blue edge to any vertex of C, without loss of generality
say v1, then to avoid creating a blue copy of P+

8 , all edges from v to {v3, v4, v7}
must be red. This makes a red copy of P+

8 with path vertices vv3v7v8v1v2v6v5
and extra edge v3v7. Thus, every vertex in G \ C must have only red edges to
C but this again creates the same red P+

8 , a contradiction.

Finally, we may assume there is no red edge within one of the copies of C4,
say without loss of generality, that A = {v1, v3, v5, v7} induces a blue copy of
K4. Any blue edge from A to B = {v2, v4, v6, v8} would create a blue copy of
P+
8 so all such edges must be red. This, in turn, means that B also induces a

blue copy of K4. In order to avoid a red copy of P+
8 , no vertex of G\C can have

red edges to both A and B, so each vertex in G \C must have all blue edges to
at least one of A or B. Since there are 7 vertices in G\C, there must be at least
4 of them with all blue edges to the same set, say A. The blue graph induced on
these vertices along with A easily contains a blue copy of P+

8 , a contradiction
completing the proof.

In fact, the same proof yields a slightly more general result.

Corollary 8. For t ≥ s ≥ 4,

R(P+
s , P+

t ) = 2t− 1.

We now begin the discussion of the Gallai-Ramsey number for P+
t by stating

the lower bound. Indeed, the same construction as used in the proof of Lemma 2
also contains no monochromatic copy of P+

t so this result is an immediate
corollary.

Lemma 3. For t ≥ 4 and k ≥ 1,

grk(K3 : P+
t ) ≥

{

2(t− 1) · 5
k−2

2 + 1 if k is even,

(t− 1) · 5
k−1

2 + 1 if k is odd.

10



Theorem 9. For t ≥ 4 and k ≥ 1,

grk(K3 : P+
t ) =

{

2(t− 1) · 5
k−2

2 + 1 if k is even,

(t− 1) · 5
k−1

2 + 1 if k is odd.

Proof. The case k = 1 is trivial. From Theorem 7, we have R(P+
t , P+

t ) = 2t−1,
and hence the result is true for k = 2. We therefore suppose k ≥ 3 and let G
be a coloring of Kn where

n = nk =

{

2(t− 1) · 5
k−2

2 + 1 if k is even,

(t− 1) · 5
k−1

2 + 1 if k is odd.

Let T be a maximal set of vertices T = T1 ∪ T2 ∪ · · · ∪ Tk where each subset
Ti has all incident edges to G \ T in color i and |G \ T | ≥

⌈

t
2

⌉

constructed

iteratively by adding at most 2
⌊

t
2

⌋

vertices to T at a time, with at most
⌊

t
2

⌋

vertices being added to each of two sets Ti at a time. We first claim that each
|Ti| is small.

Claim 3. For each i with 1 ≤ i ≤ k, we have |Ti| ≤
⌊

t
2

⌋

− 1 and furthermore,
Ti = ∅ for some i.

Note that this implies that |T | ≤ (k − 1)
(⌊

t
2

⌋

− 1
)

. The proof of Claim 3 is
similar to the corresponding proof in [13].

Proof. By the iterative definition of T , we may assume that this is the first step
in the iterative construction where the set T violates either of these assumptions.
That is, assume that |Ti| ≤ 2

⌊

t
2

⌋

− 1 for all i and either

• at most two sets Ti and Tj have |Ti|, |Tj | >
⌊

t
2

⌋

− 1, or

• no set is empty and at most one set Ti has |Ti| >
⌊

t
2

⌋

− 1.

In either case, we certainly have |T | ≤ (k + 1)
⌊

t
2

⌋

.

We first show that Ti = ∅ for some i so suppose the latter item above. If
k ≥ 4, then

|G \ T | ≥ n− (k + 1)

⌊

t

2

⌋

≥

(

t− 1

2
− 1

)

k + 3

(

t− 1

2

)

.

By Theorem 4, there is a monochromatic even cycle of length at least t − 1
contained within G \ T . Since Ti 6= ∅ for all i, this cycle can easily be extended
to a monochromatic copy of P+

t , for a contradiction.

Next we show that |Ti| ≤
⌊

t
2

⌋

− 1 for all i. Thus, suppose there are at

most two sets, Ti and Tj , with
⌊

t
2

⌋

≤ |Ti| ≤ t and possibly
⌊

t
2

⌋

≤ |Tj | ≤ t
(noting that one of these sets, say Tj, may not be large). Any edge of color
i (or possibly j) within G \ T would produce a monochromatic copy of P+

t so

11



G \ T contains no edge of color i (or possibly j). Then by Lemma 1, we have
|G \ (Ti ∪ Tj)| ≤ nk−1 − 1 so

n = |Ti|+ |G \ (Ti ∪ Tj)|

≤ 2t+ nk−1 − 1

< nk,

a contradiction.

Let G′ = G\T . Since G′ is a Gallai coloring, it follows from Theorem 1 that
there is a Gallai partition of V (G′). Suppose that the two colors appearing in the
Gallai partition are red and blue. Let m be the number of parts in this partition
and choose such a partition where m is minimized. Let H1, H2, . . . , Hm be the
parts of this partition, say with |H1| ≥ |H2| ≥ · · · ≥ |Hm|. When the context is
clear, we also abuse notation and let Hi denote the vertex of the reduced graph
corresponding to the part Hi.

If 2 ≤ m ≤ 3, then by the minimality of m, we may assume m = 2. Let H1

and H2 be the corresponding parts. Suppose all edges from H1 to H2 are red.
If |H1| ≥ ⌈t/2⌉ and |H2| ≥ ⌈t/2⌉, then to avoid creating a red copy of P+

t , there
is no red edge in each Hi with i = 1, 2 and the corresponding subset of T is also
empty, say T1 = ∅. This means that, by Lemma 1, we have

|G| = |T |+ |H1|+ |H2|

≤ |H1 ∪ T2|+ |H2 ∪ T3 ∪ T4 ∪ · · · ∪ Tk|

≤ 2(nk−1 − 1)

< n,

a contradiction. If |H1| ≤ ⌈t/2⌉ − 1 and |H2| ≤ ⌈t/2⌉ − 1, then

|G| = |T |+ |H1|+ |H2|

≤
k + 1

2
t

< nk,

a contradiction. We may therefore assume that |H1| ≥ ⌈t/2⌉ and |H2| ≤ ⌈t/2⌉−
1. Adding |H2| to T contradicts the maximality of T and completes the proof
when 2 ≤ m ≤ 3.

From now on, we assume m ≥ 4. Let r be the number of parts of the Gallai
partition with order at least ⌈t/2⌉ and call these parts “large” while other parts
are called “small”. Then |Hr| ≥ ⌈t/2⌉ and |Hr+1| ≤ ⌈t/2⌉ − 1. To avoid a
monochromatic copy of P+

t , there can be no monochromatic triangle among
these r large parts, leading to the following immediate fact.

Fact 1. r ≤ 5.

The remainder of the proof is broken into cases based on the value of r.

Case 1. r = 5.

12



In this case, t = 5 since otherwise any monochromatic triangle in the reduced
graph restricted to H1, H2, . . . , H6 would yield a monochromatic copy of P+

t . To
avoid the same construction, the reduced graph on the parts H1, H2, H3, H4, H5

must be the unique 2-coloring of K5 with no monochromatic triangle with two
complementary monochromatic cycles with in red and blue respectively. To
avoid creating a monochromatic copy of P+

t , for each i with 1 ≤ i ≤ 5, the part
Hi contains neither red edges nor blue edges. Then, by Lemma 1,

|G| = |T |+
5

∑

i=1

|Hi| ≤ 5[nk−2 − 1] < nk,

a contradiction.

Case 2. r = 4.

To avoid monochromatic triangle in K4, without loss of generality, the four
largest parts must form one of two structures:

• Type 1: There is a red cycle H1H3H4H2H1 and a blue 2-matching on the
edges H1H4, and H2H3 in the reduced graph, or

• Type 2: There is a red path H3H2H1H4 and a blue path H1H3H4H2 in
the reduced graph.

If r = m = 4, then using Lemma 1,

|G| = |T |+
4

∑

i=1

|Hi| ≤ 4[nk−2 − 1] < nk,

a contradiction. So suppose m > r = 4. This proof focuses on the re-
duced graph. For Type 1, the subgraph of the reduced graph restricted to
{H1, H2, H3, H4} is not a subgraph of the unique 2-colored copy of K5 contain-
ing no rainbow triangle. This means that the subgraph of the reduced graph
restricted to {H1, H2, . . . , H5} contains a monochromatic triangle, leading to a
monochromatic copy of P+

t in G, a contradiction.
For Type 2, outside of {H1, H2, H3, H4}, there are small partsH5, H6, . . . , Hm.

We may therefore assume that for all Hi with 5 ≤ i ≤ m, we have that the edges
H3Hi and H4Hi are blue. To avoid a blue triangle, the edges H1Hi and H2Hi

are red. By minimality of t, we have t = 5 since all parts Hi for i ≥ 5 have the
same color on edges to Hj for j ≤ 4. To avoid creating a monochromatic copy
of P+

t , none of these large parts contains any red or blue edges. Then using
Lemma 1,

|G| = |T |+
4

∑

i=1

|Hi| ≤ 4[grk−2(K3;P
+
t )− 1] + ⌈t/2⌉ − 1 < n,

a contradiction.
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Case 3. r = 3.

The triangle in the reduced graph cannot be monochromatic so without loss
of generality, suppose H1H2, H1H3 are red, and H2H3 is blue. To avoid a red
or blue triangle, any remaining parts are partitioned into the following sets.

• Let A be the set of parts outside H1, H2, H3 such that each has blue edges
to H1, H3 and red edges to H2,

• Let B be the set of parts outside H1, H2, H3 such that each has red edges
to H2, H3 and blue edges to H1, and

• Let C be the set of parts outside H1, H2, H3 such that each has blue edges
to H1, H2 and red edges to H3.

Note that |G| = |T |+ |A|+ |B|+ |C|+ |H1|+ |H2|+ |H3|. If A contains a blue
edge, then using a long blue path between H2 and H3 along with a triangle
formed using the blue edge in A, there would be a blue copy of P+

t . This and
similar easy arguments lead to the following fact.

Fact 2.

• A contains no red or blue edges,

• B contains no red edges,

• C contains no red or blue edges,

• H1 contains no red edges,

• H2 contains no red or blue edges, and

• H3 contains no red or blue edges.

Furthermore, we have the following claim.

Claim 4. If B 6= ∅, then A = ∅ and C = ∅.

Proof. Assume, to the contrary, that B 6= ∅ and either A 6= ∅ or C 6= ∅, without
loss of generality, say A 6= ∅. there is an red edge between A and B, then there
is a red triangle among A,B,H2. This red triangle together with the red edges
between H1 and H2 forms a red copy of P+

t , a contradiction. If there is a blue
edge between A and B, then there is a blue triangle among A,B,H1. This blue
triangle together a with blue path of the form H1CH2 and the edges between
H2 and H3 forms a blue copy of P+

t , a contradiction.

From Claim 4, if B 6= ∅, then A = ∅ and C = ∅. We can then regard H1 ∪B
and H2∪H3 as two parts of a Gallai partition of G and the edges between these
parts are all red, which contradicts the minimality of t.

We may therefore assume that B = ∅. Then we have the following claim.

Claim 5. There is only one part in A, and there is only one part in C.

14



Proof. The edges between any pair of parts must be either red or blue but
neither A nor C contain any red or blue edges by Fact 2.

Then by Lemma 1,

|G| = |T |+ |A|+ |B|+ |C|+ |H1|+ |H2|+ |H3|

≤ 3[nk−2 − 1] + 2(⌈t/2⌉ − 1)

< nk,

a contradiction.

Case 4. r = 2.

Suppose all edges fromH1 toH2 are red. To avoid creating a monochromatic
copy of P+

t , there is no part outside H1 and H2 with red edges to all of H1∪H2.
Therefore, any remaining parts are partitioned into the following sets.

• Let A be the set of parts outside H1, H2 with blue edges to H2 and red
edges to H1,

• Let B be the set of parts outside H1, H2 with blue edges to H1 ∪H2,

• Let C be the set of parts outside H1, H2 with blue edges to H1 and red
edges to H2.

Note that |G| = |A|+ |B|+ |C|+ |H1|+ |H2|. Then we have the following fact.
Furthermore, we have the following claims.

Claim 6. |A| ≤ ⌈t/2⌉ − 1 and |C| ≤ ⌈t/2⌉ − 1.

Proof. Assume, to the contrary, that |A| ≥ ⌈t/2⌉. Then there are two parts in
A, say A′, A′′. If the edges from A′ to A′′ are red, then there is a red triangle
among A′, A′′, H1, together with the edges between H1 and H2, there is a red
P+
t , a contradiction. If the edges from A′ to A′′ are blue, then there is a blue

triangle among A′, A′′, H2, there is a blue P+
t since |A| ≥ ⌈t/2⌉, a contradiction.

Similarly, there is only one part in C.

Claim 7. |A|+ |B| ≤ t− 1 and |B|+ |C| ≤ t− 1.

Proof. Assume, to the contrary, that |A|+ |B| ≥ t. Then there are at least three
parts in A∪B. Since both A and B have blue edges to H2, there can be no blue
edges within A ∪ B. This means there are only red edges appearing between
the parts of the Gallai partition within A ∪B. With at least t verices, there is
a red copy of P+

t within A ∪B for a contradiction.

From Claims 6 and 7, we have |A| ≤ ⌈t/2⌉−1, |C| ≤ ⌈t/2⌉−1, |A|+|B| ≤ t−1,
and |B|+ |C| ≤ t− 1. By Lemma 1, we have |Hi| ≤ grk−1(K3;P

+
t )− 1 with i =

1, 2, and |H1|+|C| ≤ grk−1(K3;P
+
t )−1 and |H1|+|A|+|B| ≤ grk−1(K3;P

+
t )−1.

Again using Lemma 1, we get

|G| = |T |+ |A|+ |B|+ |C|+ |H1|+ |H2| ≤ 2(nk−1 − 1) < nk,

a contradiction.
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Case 5. r = 1.

Let A be the set of parts with blue edges to H1, and B be the set of parts
with red edges to H1.

If |A| ≥
⌊

t
2

⌋

and |B| ≥
⌊

t
2

⌋

, then it follows from Claim 7 that |A| ≤ t + 2
and |B| ≤ t+ 2. Since A and B are each large, it follows that there are neither
red edges nor blue edges in H1, and hence |H1| ≤ nk−2 − 1. Then by Lemma 1,

|G| = |T |+ |H1|+ |A|+ |B| ≤ nk−2 − 1 + (2t+ 4) < nk,

a contradiction.
If |A| ≥

⌊

t
2

⌋

and |B| ≤
⌊

t
2

⌋

−1, then it follows from Claim 4 that |A| ≤ t+2.
Since A is big, it follows that there are no red edges in H1, and hence |H1| ≤
nk−1 − 1. By Lemma 1,

|G| = |T |+ |H1|+ |A|+ |B| ≤ nk−1 − 1 + (t+ 2) + (

⌊

t

2

⌋

− 1) < nk,

a contradiction.
Finally if |A|, |B| ≤

⌊

t
2

⌋

− 1, both sets can be added to T , contradicting the
maximality of T .

Case 6. r = 0.

In this case, we have |Hi| ≤ ⌈t/2⌉− 1 for all i with 1 ≤ i ≤ m. We need only
consider the case k = 3 since the parts are too small to contain a monochromatic
copy of P+

t in a color other than red or blue. Then n = 5t− 4 so |G′| ≥ 4t− 2.
Note that this means there are at least 9 parts in the Gallai partition of G′, so
in particular, there must be either a red or blue triangle in the reduced graph.

Suppose first that there is both a red triangle and blue triangle in G′. Select
one such triangle in each color and remove their vertices. By deleting at most six
vertices, we still have at least 4t− 8 vertices in G′. Recall that by minimality of
m, the edges of G restricted to either red or blue induce a connected subgraph.
From Theorem 4, if t − 2 is even, then grk(K3;Ct−2) ≤ 3t − 9 and if t − 3 is
even, then grk(K3;Ct−3) ≤ 3t− 9. This means G′ contains an even cycle Ct−2

or Ct−3. This cycle together with the deleted triangle form a red P+
t or blue

P+
t (since each color induces a connected subgraph), a contradiction.
Thus, suppose that there is a red triangle but no blue triangles in G′. Choose

an arbitrary set Hi and let GR be the set of vertices with red edges to Hi and
GB be the set of vertices with blue edges to Hi. Note that GB contains no blue
edge so if |GB| ≥ t, then since all parts have order at most ⌈t/2⌉ − 1, there are
at least 3 parts in GB and all red edges in between these parts, creating a red
copy of P+

t . Thus, |GB | ≤ t− 1.
Since Hi was chosen arbitrarily, this is true about every such part. Let D be

the assumed red triangle. This means that every vertex in G′ \D, say v ∈ Hi,
has red degree at least

nk − |T | − 3− |Hi| − (t− 1) ≥
|G′ \D|

2
.
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By Dirac’s Theorem [2], there exists a red Hamiltonian cycle within G′ \ D.
This cycle along with the red triangle D (since the red subgraph is connected),
produces a red copy of P+

t , a contradiction to complete the proof.
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