Skip to main content
Log in

Anti-Ramsey Problems in Complete Bipartite Graphs for t Edge-Disjoint Rainbow Spanning Trees

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let \(r(K_{p,q},t)\) be the maximum number of colors in an edge-coloring of the complete bipartite graph \(K_{p,q}\) not having t edge-disjoint rainbow spanning trees. We prove that \(r(K_{p,p},1)=p^2-2p+2\) for \(p\ge 4\) and \(r(K_{p,q},1)=pq-2q+1\) for \(p>q\ge 4\). Let \(t\ge 2\). We also show that \(r(K_{p,p},t)=p^2-2p+t+1\) for \(p \ge 2t+\sqrt{3t-3}+4\) and \(r(K_{p,q},t)=pq-2q+t\) for \(p > q \ge 2t+\sqrt{3t-2}+4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alon, N.: On a conjecture of Erdős, Simonovits, and Sós concerning anti-Ramsey theorems. J. Graph Theory 7(1), 91–94 (1983)

    Article  MathSciNet  Google Scholar 

  2. Axenovich, M., Jiang, T., Kündgen, A.: Bipartite anti-Ramsey numbers of cycles. J. Graph Theory 47(1), 9–28 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bialostocki, A., Voxman, W.: On the anti-Ramsey numbers for spanning trees. Bull. Inst. Combin. Appl. 32, 23–26 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Chen, H., Li, X., Tu, J.: Complete solution for the rainbow numbers of matchings. Discrete Math. 309, 3370–3380 (2009)

    Article  MathSciNet  Google Scholar 

  5. Erdős, P., Simonovits, M., Sós, V.: Anti-Ramsey theorems. In: Infinite and finite sets (Colloq. Keszthely 1973), Colloq. Math. Soc. János Bolyai 10, 633–643 (1975)

    Google Scholar 

  6. Fujita, S., Magnant, C., Ozeki, K.: Rainbow generalizations of Ramsey theory: a survey. Graphs Combin. 26, 1–30 (2010)

    Article  MathSciNet  Google Scholar 

  7. R. Haas and M. Young, The anti-Ramsey number of perfect matching. Discrete Math 312 (2012), 933C937

  8. Jahanbekam, S., West, D.B.: Anti-Ramsey problems for \(t\) edge-disjoint rainbow spanning subgraphs: cycles, matchings, or trees. J. Graph Theory 82(1), 75–89 (2016)

    Article  MathSciNet  Google Scholar 

  9. Jahanbekam, S., West, D.B.: New lower bounds on matching numbers of general and bipartite graphs. Congressus Numer 218, 57–59 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Y. Jia, M. Lu and Y. Zhang, Anti-Ramsey problems in complete bipartite graphs for \(t\) edge-disjoint rainbow spanning subgraphs: Cycles and Matchings, report 2018

  11. T. Jiang, D. B. West, On the Erdős-Simonovits-Sós conjecture about the anti-Ramsey number of a cycle, Combin. Probab. Comput. 12(5-6):585-598 (2003) (Special issue on Ramsey theory)

  12. Z. Jin, X. Li, Anti-Ramsey numbers for graphs with independent cycles, Electron. J. Combin. 16 (2009), #R85

  13. Jin, Z., Li, L.: Edge-colorings of complete bipartite graphs without large rainbow trees. Ars Comb. 111, 75–84 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Li, X., Tu, J., Jin, Z.: Bipartite rainbow numbers of matchings. Discrete Math. 309, 2575–2578 (2009)

    Article  MathSciNet  Google Scholar 

  15. Li, X., X, Z.: The rainbow number of matchings in regular bipartite graphs. Appl. Math. Lett 22, 1525–1528 (2009)

    Article  MathSciNet  Google Scholar 

  16. Montellano-Ballesteros, J.J., Neumann-Lara, V.: An anti-Ramsey theorem. Combinatorica 22(3), 445–449 (2002)

    Article  MathSciNet  Google Scholar 

  17. Montellano-Ballesteros, J.J., Neumann-Lara, V.: An anti-Ramsey theorem on cycles. Graphs Combin. 21(3), 343–354 (2005)

    Article  MathSciNet  Google Scholar 

  18. Nash-Williams, CStJA: Edge disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 36, 445–450 (1961)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Mei Lu is supported by the National Natural Science Foundation of China (Grant 11771247 and 11971158). Yi Zhang is supported by Fundamental Research Funds for the Central Universities of China (Grant 2020XD-A01-1), the National Natural Science Foundation of China (Grant 11901048 and 12071002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Label the vertices in \(V(G)-V(H)\) as \(x_1,\ldots , x_{\ell _1}\in X{\setminus } V(H)\) and \(y_1,\ldots , y_{\ell _2}\in Y{\setminus } V(H)\) such that (1) \(|N_G(x_1)\cap V(H)|\ge \cdots \ge |N_G(x_{\ell _1-\ell _2+1})\cap V(H)| \ge \max \{ |N_G(x_{i})\cap V(H)|: \ell _1-\ell _2+2 \le i \le \ell _1\}\) (For vertex \(x_i\), if i is greater than \(\ell _1\), we ignore the corresponding item); (2) \(y_i=\text{ arg }\max \{| N_G(y)\cap (V(H)\cup \{x_1,\ldots ,x_{\ell _1-\ell _2+i}\})|:y\in Y{\setminus } (V(H) \cup \{y_1,\ldots ,y_{i-1}\})\}\) for \(1\le i\le \ell _2\) (We ignore (2), if \(\ell _2=0\)); (3) \(x_{\ell _1-\ell _2+i}=\text{ arg }\max \{|N_G(x)\cap (V(H)\cup \{y_1,\ldots ,y_{i-1}\})|:x\in X{\setminus } (V(H) \cup \{x_1,\ldots ,x_{\ell _1-\ell _2+i-1}\})\}\) for \(2\le i\le \ell _2\) (We ignore (3), if \(\ell _2 \le 1\)). That is we firstly choose \(x_i \ (1 \le i \le \ell _1-\ell _2+1)\) in \(X{\setminus } V(H)\) based on (1); then choose \(y_i \ (1 \le i \le \ell _2)\) and \(x_{\ell _1-\ell _2+i} \ (2 \le i \le \ell _2)\) alternately such that (2) and (3) hold.

Let \(d_i^*=|N_G(x_i)\cap V(H)|\) for \(1\le i\le \ell _1-\ell _2+1\), \(d_{\ell _1-\ell _2+i}^*=|N_G(x_{\ell _1-\ell _2+i})\cap (V(H)\cup \{y_1,\ldots ,y_{i-1}\})|\) for \(2\le i\le \ell _2\) and \(D_j^*=|N_G(y_j)\cap (V(H)\cup \{x_1,\ldots ,x_{\ell _1-\ell _2+j}\})|\) for \(1 \le j \le \ell _2\). Then we have \(d_1^*\ge \cdots \ge d_{\ell _1-\ell _2+1}^*\) and \(D_j^*\le (2t-1)+\ell _1-\ell _2+j \) for \(1 \le j \le \ell _2\). We first have the following claims.

Claim \(1'\). If \(\ell _1\ge 3\), then \(d_i^* \ge t+1\) for \(1 \le i \le \ell _1-2\).

Proof of Claim \(1'\). We first consider the case when \(\ell _2 \le 1\). To the contrary, suppose that \(d_{\ell _1-2}^* \le t\). Then

$$\begin{aligned} |E(G)| \le (p-\ell _1)q + (\ell _1-3)(2t-1)+3t+\ell _1\ell _2 \le (-q+2t)\ell _1 + pq-3t+3. \end{aligned}$$

Since \(\ell _1 \ge 3\) and \(q \ge 2t+\sqrt{3t-2}+4\), we have \( |E(G)| \le pq-3q+3t+3 \), a contradiction with the fact \(|E(G)| = pq-2q+t+1\).

We thus assume that \(\ell _2 \ge 2\) in the rest of the proof. First, if \(\ell _1>\ell _2\), we show that \( d_{\ell _1-\ell _2}^*\ge t+1\). Suppose that \( d_{\ell _1-\ell _2}^*\le t\). Then

$$\begin{aligned} |E(G)|&\le (p-\ell _1)(q-\ell _2)+(\ell _1-\ell _2-1)(2t-1)+t\\&+\sum _{j=1}^{\ell _2}(t+j-1)+\sum _{j=1}^{\ell _2}(2t-1+\ell _1-\ell _2+j)\\&= (p-\ell _1)(q-\ell _2)+(\ell _1-\ell _2)(2t-1)+\ell _2(3t+\ell _1-1)-t+1. \end{aligned}$$

Recall that \(|E(G)|=pq-2q+t+1\). So we should have

$$\begin{aligned}&f(\ell _1,\ell _2):=(p-\ell _1)(q-\ell _2)+(\ell _1-\ell _2)(2t-1)+\ell _2(3t+\ell _1-1)\\&-t+1-(pq-2q+t+1)\ge 0. \end{aligned}$$

Consider the partial derivative of \(f(\ell _1,\ell _2)\) with respect to \(\ell _1\) and \(\ell _2\). We have

$$\begin{aligned} \frac{\partial f(\ell _1,\ell _2)}{\partial \ell _1}= & {} 2\ell _2+2t-q-1,\\ ~~ \frac{\partial f(\ell _1,\ell _2)}{\partial \ell _2}= & {} 2\ell _1+t-p. \end{aligned}$$

Since \(2 \le \ell _2 < \ell _1 \le p-2t\) and \( \ell _2 \le q-2t < p-2t\), we have

$$\begin{aligned} f(\ell _1,\ell _2) \le \max \{f(p-2t,2),f(p-2t,q-2t),f(\ell _2+1,\ell _2) \} . \end{aligned}$$

Simple computation shows that

$$\begin{aligned} f(p-2t,2)&=(-q+2t+1)p+2tq-4t^2+2q-6t\\&\le (-q+2t+1)(q+1)+2tq-4t^2+2q-6t = -(q-2t-1)^2+2< 0,\\ f(p-2t,q-2t)&= -p-qt+2q+2t^2 \le -(q+1)-qt+2q+2t^2=(1-t)q+2t^2-1\\&\le (1-t)\Big (2t+\sqrt{3t-2}+3 \Big )+2t^2-1=(1-t)\sqrt{3t-2}+3-2t<0 \end{aligned}$$

and

$$\begin{aligned} f(\ell _2+1,\ell _2)= 2\ell _2^2+(-p-q+3t+1)\ell _2+q-1. \end{aligned}$$

Since \(2 \le \ell _2 \le q-2t\), we have \( f(\ell _2+1,\ell _2) \le \max \{ f(3,2), f(q-2t+1,q-2t)\}\). However \(f(3,2) =-2p-q+6t+9 <0\) and

$$\begin{aligned} f(q-2t+1,q-2t)&= (-q+2t)p+q^2-3qt+2t^2+2q-2t-1 \\&\le (-q+2t)(q+1)+q^2-3qt+2t^2+2q-2t-1=(-t+1)q+2t^2-1 \\&\le (-t+1)(2t+4)+2t^2-1=-2t+3 <0. \end{aligned}$$

Thus \(f(\ell _1,\ell _2) < 0\), a contradiction.

Now we will show that \(d_i^* \ge t+1\) for \(\ell _1-\ell _2+1 \le i \le \ell _1-2\). In this case, \(\ell _2\ge 3\). To the contrary, we assume that \(d_{\ell _1-\ell _2+i_0}^* \le t\) for some \(1 \le i_0 \le \ell _2-2\). The choice of \(x_{i_0}\) yields \(d_{\ell _1-\ell _2+i_0+j}^* \le t+j\) for \(0 \le j \le \ell _2-i_0\). Then we have

$$\begin{aligned} |E(G)|&\le (p-\ell _1)(q-\ell _2)+(\ell _1-\ell _2)(2t-1)\\&+\sum _{j=0}^{i_0-2}(2t-1+j)+\sum _{j=0}^{\ell _2-i_0}(t+j)+\sum _{j=1}^{\ell _2}(2t-1+\ell _1-\ell _2+j)\\&= (p-\ell _1)(q-\ell _2)+(\ell _1-\ell _2)(2t-1)+\ell _2(3t-i_0+\ell _1)+i_0^2+(i_0-1)t-3i_0+2. \end{aligned}$$

Let \(g(i_0)=(p-\ell _1)(q-\ell _2)+(\ell _1-\ell _2)(2t-1) +\ell _2(3t-i_0+\ell _1)+i_0^2+(i_0-1)t-3i_0+2\). Then \(g'(i_0)=-\ell _2+2i_0+t-3\) and \(g''(i_0)=2\). Thus \(g(i_0)\le \max \{g(1),g(\ell _2-2)\}\). Denote

$$\begin{aligned} f_1(\ell _1,\ell _2)=g(1)=(p-\ell _1)(q-\ell _2)+(\ell _1-\ell _2)(2t-1)+\ell _2(3t-1+\ell _1) \end{aligned}$$

and

$$\begin{aligned} f_2(\ell _1,\ell _2)=g(\ell _2-2)= & {} (p-\ell _1)(q-\ell _2)\\&+(\ell _1-\ell _2)(2t-1)+\ell _2(4t-5+\ell _1)-3t+12. \end{aligned}$$

Recall that \(|E(G)|=pq-2q+t+1\). Therefore we should have \(F_i(\ell _1,\ell _2)=f_i(\ell _1,\ell _2)-(pq-2q+t+1)\ge 0\) for \(i=1,2\). Consider the partial derivative of \(F_i(\ell _1,\ell _2)\) with respect to \(\ell _1\) and \(\ell _2\) for \(i=1,2\). We have

$$\begin{aligned} \frac{\partial F_i(\ell _1,\ell _2)}{\partial \ell _1} = 2\ell _2+2t-q-1, \frac{\partial F_i(\ell _1,\ell _2)}{\partial \ell _2} = 2\ell _1+t-p+s, \end{aligned}$$

where \(s=0\) if \(i=1\) and \(s=t-4\) if \(i=2\). Since \(3 \le \ell _2 \le \ell _1 \le p-2t\) and \(\ell _2 \le q-2t < p-2t\), for \(i=1,2\), we have

$$\begin{aligned} F_i(\ell _1,\ell _2) \le \max \{F_i(p-2t,3),F_i(p-2t,q-2t),F_i(\ell _2,\ell _2)\} . \end{aligned}$$

Simple computation shows that

$$\begin{aligned} F_1(p-2t,3)&=F_2(p-2t,3) \\&= (-q+2t+2)p+2qt-4t^2+2q-8t-1 \\&\le (-q+2t+2)(q+1)+2qt-4t^2+2q-8t-1\\&= -\Big (q-2t-\frac{3}{2}\Big )^2+\frac{13}{4}<0,\\ F_1(p-2t,q-2t)&= -p-qt+2q+2t^2+t-1 \le -(q+1)-qt+2q+2t^2+t-1\\&=(1-t)q+2t^2+t-2 \le (1-t)(2t+\sqrt{3t-2}+3)+2t^2+t-2\\&=(1-t)\sqrt{3t-2}+1<0,\\ F_2(p-2t,q-2t)&= -p-2q+6t+11 <0,\\ F_1(\ell _2,\ell _2)&= 2\ell _2^2+(-p-q+3t-1)\ell _2+2q-t-1 \end{aligned}$$

and

$$\begin{aligned} F_2(\ell _2,\ell _2) = 2\ell _2^2+(-p-q+4t-5)\ell _2+2q-4t+11. \end{aligned}$$

Since \(3 \le \ell _2 \le q-2t\), we have \(F_i(\ell _2,\ell _2) \le \max \{F_i(3,3),F_i(q-2t,q-2t)\}\). However, \( F_i(3,3)= -3p-q+8t+14 <0\) for \(i=1,2\),

$$\begin{aligned}&F_1(q-2t,q-2t) \\&= (-q+2t)p+q^2-3qt+2t^2+q+t-1 \\&\le (-q+2t)(q+1)+q^2-3qt+2t^2+q+t-1 \\&=-qt+2t^2+3t-1 \le -t(2t+3)+2t^2+3t-1=-1<0,\\ F_2(q-2t,q-2t)&= (-q+2t)p+q^2-2qt-3q+6t+11 \\&\le (-q+2t)(q+1)+q^2-2qt-3q+6t+11=-4q+8t+11<0 \end{aligned}$$

Thus \(F_i(\ell _1,\ell _2) < 0\) for \(i=1,2\), a contradiction. \(\square \)

Claim \(2'\). If \(\ell _2\ge 3\), then \(D_i^* \ge t+1\) for \(1 \le i \le \ell _2-2\).

Proof of Claim \(2'\). To the contrary, we assume that \(D_{i_0}^* \le t\) for some \(1 \le i_0 \le \ell _2-2\). Note that \(D_{i_0+j}^* \le D_{i_0}^*+j\) for \(0 \le j \le \ell _2-i_0\) and \(d_{\ell _1-\ell _2+j}^* \le (2t-1)+j-1\) for \(1 \le j \le \ell _2\). Hence we have

$$\begin{aligned} |E(G)|&\le (p-\ell _1)(q-\ell _2)+(\ell _1-\ell _2)(2t-1)+\sum _{j=0}^{\ell _2-i_0}(t+j)\\&\quad +\sum _{j=1}^{i_0-1}(2t-1+\ell _1-\ell _2+j)+\sum _{j=1}^{\ell _2}(2t-1+j-1)\\&=(p-\ell _1)(q-\ell _2)+(2\ell _1-1)(t-1)+\ell _2(t+1)+i_0(t-2+\ell _1-2\ell _2)+\ell _2^2+i_0^2. \end{aligned}$$

Let \(g(i_0)=(p-\ell _1)(p-\ell _2)+(2\ell _1-1)(t-1)+\ell _2(t+1)+i_0(t-2+\ell _1-2\ell _2) +\ell _2^2+i_0^2\). By the same argument as above, we have \(g(i_0)\le \max \{g(1),g(\ell _2-2)\}\). Denote

$$\begin{aligned} f_1(\ell _1,\ell _2)=g(1)=(p-\ell _1)(q-\ell _2)+\ell _1(2t-1)+\ell _2(t-1+\ell _2) \end{aligned}$$

and

$$\begin{aligned} f_2(\ell _1,\ell _2)=g(\ell _2-2)=(p-\ell _1)(q-\ell _2)+2\ell _1(t-2)+\ell _2(2t-1+\ell _1)-3t+9. \end{aligned}$$

Recall that \(|E(G)|=pq-2q+t+1\). Therefore we should have \(F_i(\ell _1,\ell _2)=f_i(\ell _1,\ell _2)-(pq-2q+t+1)\ge 0\) for \(i=1,2\).

For \(F_1(\ell _1,\ell _2)\), it is easy to obtain that

$$\begin{aligned} \frac{\partial ^2 F_1(\ell _1,\ell _2)}{\partial \ell _2^2}=2. \end{aligned}$$

Moreover, \(3 \le \ell _2 \le \ell _1 \le p-2t\) and \(\ell _2\le q-2t\), it follows that \(F_1(\ell _1, \ell _2) \le \max \{ F_1(\ell _1, 3), F_1(\ell _1, \min \{\ell _1, q-2t \})\}\). Simple computation shows that

$$\begin{aligned} F_1(\ell _1, 3)&= (-q+2t+2)\ell _1-3p+2q+2t+5\\&\le 3(-q+2t+2)-3p+2q+2t+5\\&=-3p-q+8t+11 <0; \end{aligned}$$

if \(\ell _1 \ge q-2t\), then

$$\begin{aligned} F_1(\ell _1, q-2t)&= -\ell _1-pq+2pt+q^2-3qt+2t^2+q+t-1\\&\le -(q-2t)-pq+2pt+q^2-3qt+2t^2+q+t-1 =(-q+2t)p+q^2-3qt+2t^2+3t-1\\&\le (-q+2t)(q+1)+q^2-3qt+2t^2+3t-1 = -q(t+1)+2t^2+5t-1 \\&\le -(2t+\sqrt{3t-2}+3)(t+1)+2t^2+5t-1=-(t+1)\sqrt{3t-2}-4<0; \end{aligned}$$

if \(\ell _1 < q-2t\), then

$$\begin{aligned} F_1(\ell _1, \ell _1)&= 2\ell _1^2+(-p-q+3t-2)\ell _1+2q-t-1, \end{aligned}$$

since \(3 \le \ell _1 < q-2t\), we have \(F_1(\ell _1, \ell _1) \le \max \{F_1(3, 3), F_1(q-2t, q-2t)\}\). However \(F_1(3, 3) =-3p-q+8t+11 < 0\) and

$$\begin{aligned} F_1(q-2t, q-2t)&=(-q+2t)p+q^2-3qt+2t^2+3t-1 \\&\le (-q+2t)(q+1)+q^2-3qt+2t^2+3t-1 = (-t-1)q+2t^2+5t-1 \\&\le (-t-1)(2t+3)+2t^2+5t-1 = -4 < 0. \end{aligned}$$

Thus \(F_1(\ell _1, \ell _2) <0\), a contradiction.

For \(F_2(\ell _1,\ell _2)\), it is easy to obtain that

$$\begin{aligned} \frac{\partial F_2(\ell _1,\ell _2)}{\partial \ell _1}= & {} 2\ell _2-q+2t-4,\\ \frac{\partial F_2(\ell _1,\ell _2)}{\partial \ell _2}= & {} 2\ell _1-p+2t-1 . \end{aligned}$$

Moreover, \(3 \le \ell _2 \le \ell _1 \le p-2t\) and \(\ell _2\le q-2t\), it follows that \(F_2(\ell _1, \ell _2) \le \max \{ F_2(p-2t, 3), F_2(p-2t, q-2t), F_2(\ell _2, \ell _2)\}\). Simple computation shows that

$$\begin{aligned} F_2(p-2t, 3)&= (-q+2t-1)p+2qt-4t^2+2q-2t+5\\&\le (-q+2t-1)(q+1)+2qt-4t^2+2q-2t+5\\&=-(q-2t)^2+4<0.\\ F_2(p-2t, q-2t)&= -4p+q+6t+8 <0 \end{aligned}$$

and

$$\begin{aligned} F_2(\ell _2, \ell _2)&= 2\ell _2^2+(-p-q+4t-5)\ell _2+2q-4t+8. \end{aligned}$$

Since \(3 \le \ell _2 \le q-2t\), we have \(F_2(\ell _2, \ell _2) \le \max \{F_2(3, 3), F_2(q-2t, q-2t) \}\). However, \(F_2(3, 3)=-3p-q+8t+11 < 0\) and

$$\begin{aligned} F_2(q-2t, q-2t)&= (-q+2t)p+q^2-2qt-3q+6t+8 \\&\le (-q+2t)(q+1)+q^2-2qt-3q+6t+8=-4q+8t+8 <0. \end{aligned}$$

Thus \(F_2(\ell _1, \ell _2) <0\), a contradiction. \(\Box \)

Denote \(A=\{x_{\ell _1-1}, x_{\ell _1}\}\) and \(B=\{ y_{\ell _2-1}, y_{\ell _2}\}\). In the next, if the subscript of the vertex x or y is not a positive integer, we mean that such vertex does not exist. For example, \(B=\emptyset \) if \(\ell _2=0\). Let \(G'=G-(A\cup B)\). Since H is 2t-edge-connected, Lemma 5 implies that H contains t edge-disjoint rainbow spanning trees. By Claims 3 and 4, we can iteratively add \(x_1,\ldots ,x_{\ell _1-\ell _2}\),\(x_{\ell _1-\ell _2+1},y_1,x_{\ell _1-\ell _2+2}, y_2,\ldots ,x_{\ell _1-2}, y_{\ell _2-2}\) to H to obtain t edge-disjoint rainbow spanning trees of \(G'\); call them \(T_1, \ldots , T_{t}\). If \(d^*(x) \ge t\) for any \(x\in A\) and \(D^*(y) \ge t\) for any \(y\in B\), we can further augment \(T_1, \ldots , T_{t}\), by adding t edges incident to \(x_{\ell _1-1}\), then incident to \(y_{\ell _2-1}\), \(x_{\ell _1}\) and \(y_{\ell _2}\) iteratively to obtain t edge-disjoint rainbow spanning trees of \(K_{p,q}\). So we assume that at least one of \(d_{\ell _1-1}^*, d_{\ell _1}^*,D_{\ell _2-1}^*,D_{\ell _2}^* \) is less than t in the following proof. Let \(m=\#\{s\le t|s\in \{d_{\ell _1-1}^*, d_{\ell _1}^*,D_{\ell _2-1}^*,D_{\ell _2}^*\}\}\). Then \(m\ge 1\).

Claim \(3'\). \(m\le 2\).

Proof of Claim \(3'\). Suppose \(m\ge 3\). The degree sum of those three corresponding vertices in G is less than and equal to \(t+2+2(t+1)=3t+4\). Furthermore, there are at most two edges contributing 2 to the degree sum of these three vertices in \(K_{p,q}\). Therefore, we have \(|E(K_{p,q})|-|E(G)| \ge 2q+p-(3t+4)-2=2q+p-3t-6\). However, \(|E(K_{p,q})|-|E(G)| = 2q-t-1\), a contradiction. \(\square \)

Claim \(4'\). If \(m=2\) and \(\ell _2\ge 2\), then \(\max \{d_{\ell _1-1}^* ,D_{\ell _2-1}^*\} \ge t+1\), \(\max \{d_{\ell _1-1}^* ,D_{\ell _2}^*\} \ge t+1\) and \(\max \{d_{\ell _1}^* ,D_{\ell _2-1}^*\} \ge t+1\). If \(m=2\) and \(\ell _2=1\), then \(\max \{d_{\ell _1-1}^* ,D_{1}^*\} \ge t+1\).

Proof of Claim \(4'\). We only consider the case when \(m=2\) and \(\ell _2\ge 2\). The other case when \(m=2\) and \(\ell _2=1\) is similar.

Clearly, \(d_{\ell _1}^* \le d_{\ell _1-1}^*+1\), \(D_{\ell _2}^* \le D_{\ell _2-1}^*+1\). Since \(m=2\) and at least one of \(d_{\ell _1-1}^*, d_{\ell _1}^*,D_{\ell _2-1}^*,D_{\ell _2}^* \) is less than t, we thus obtain \(\max \{d_{\ell _1-1}^* ,D_{\ell _2-1}^*\} \ge t+1\).

Suppose \(\max \{d_{\ell _1-1}^* ,D_{\ell _2}^*\} \le t\). Then \(d_{\ell _1}^* \ge t+1\) and \(D_{\ell _2-1}^*\ge t+1\) as \(m=2\). Note that at least one of \(d_{\ell _1-1}^*\) and \(D_{\ell _2}^*\) is less than t. We have \(d_{\ell _1-1}^* =t\), \(d_{\ell _1}^* =t+1\) and \(D_{\ell _2}^* \le t-1\). It follows that \(d_{G}(x_{\ell _1-1}) \le d_{\ell _1-1}^*+2=t+2\), \(d_{G}(x_{\ell _1}) \le d_{\ell _1}^*+1=t+2\) and \(d_{G}(y_{\ell _2}) = D_{\ell _2}^* \le t-1\). Therefore \(d_{K_{p,q}}(x_{i}) - d_G(x_{i}) \ge q-t-2\) for \(i =\ell _1-1, \ell _1\) and \(d_{K_{p,q}}(y_{\ell _2}) - d_G(y_{\ell _2}) \ge p-t+1\), which implies that \(|E(K_{p,q})|-|E(G)| \ge 2(q-t-2)+(p-t+1)-2=2q+p-3t-5\). However \(|E(K_{p,q})|-|E(G)|=pq- (pq-2q+t+1) =2q-t-1 < 2q+p-3t-5\), a contradiction.

Suppose \(\max \{d_{\ell _1}^* ,D_{\ell _2-1}^*\} \le t\). Then \(D_{\ell _2}^* \ge t+1\) and \(d_{\ell _1-1}^* \ge t+1\). Note that at least one of \(d_{\ell _1}^*\) and \(D_{\ell _2-1}^*\) is less than t, we have \(D_{\ell _2-1}^* =t\), \(D_{\ell _2}^* =t+1\) and \(d_{\ell _1}^* \le t-1\). It follows that \(d_{G}(y_{\ell _2-1}) \le D_{\ell _2-1}^*+1=t+1\), \(d_{G}(y_{\ell _1}) = D_{\ell _1}^*=t+1\) and \(d_{G}(x_{\ell _1}) \le d_{\ell _1}^*+1 \le t\). Therefore \(d_{K_{p,q}}(y_{i}) - d_G(y_{i}) \ge p-t-1\) for \(i =\ell _2-1, \ell _2\) and \(d_{K_{p,q}}(x_{\ell _1}) - d_G(x_{\ell _1}) \ge q-t\), which implies that \(|E(K_{p,q})|-|E(G)| \ge 2(p-t-1)+(q-t)-2=2p+q-3t-4\). However \(|E(K_{p,q})|-|E(G)|=2q-t-1 < 2p+q-3t-4\), a contradiction. \(\square \)

Claim \(5'\). There are t edge-disjoint rainbow pairs \(E_k=\{x_{\ell _1-1}y_{k1},x_{\ell _1}y_{k2}\}\) (\(E_k'=\{x_{k1}y_{\ell _2-1},x_{k2}y_{\ell _2}\})\) for \(1 \le k \le t\) in \(K_{p,q}\) if \(\ell _1\ge 2\) (\(\ell _2\ge 2)\).

Proof of Claim \(5'\). We only consider the case when \(\ell _1 \ge 2\), the other case when \(\ell _2 \ge 2\) is similar. We construct an auxiliary bipartite graph \(Q=(Z,W;E(Q))\), where \(Z=\{e_1,\ldots ,e_{q}\}\) and \(W=\{f_1,\ldots ,f_{q}\}\) are the sets of edges in \(K_{p,q}\) incident to \(x_{\ell _1-1}\) and \(x_{\ell _1}\), respectively, and \(e_if_j \in E(Q)\) if and only if \(e_i\) and \(f_j\) have different colors. We say \(e_i\in Z\) (resp. \(f_j\in W\)) has color a in Q if the edge \(e_i\) (resp. \(f_j\)) incident to \(x_{\ell _1-1}\) (resp. \(x_{\ell _1}\)) has color a in \(K_{p,q}\). Now we need to show that \(\alpha '(Q) \ge t\).

If \(\delta (Q) \ge t/2\), Lemma 6 implies that \(\alpha '(Q) \ge t\) as \(q > t\). Suppose that \(\delta (Q) \le (t-1)/2\). Without loss of generality, we can let \(e \in Z\) be a vertex with minimum degree in Q, and let a be its color. By the definition of Q, W contains \(q-d_Q(e) \ge q-(t-1)/2 > t\) vertices with color a. Let k be the number of vertices in Z with color a. If \(q-k \ge t\), then \(\alpha '(Q) \ge t\) by matching t vertices with color a in W into Z. Hence we suppose \(k> q-t > t\). Now each part contains at least t vertices with color a. Since \(|E(G)|=q(p-2)+t+1\), \(d_G(x_{\ell _1-1})+d_G(x_{\ell _1})\ge t+1\) which implies that there are at least t edges incident to \(x_{\ell _1-1}\) or \(x_{\ell _1}\) in \(K_{p,q}\) with distinct colors other than color a. No matter how those vertices are distributed to Z and W, we can obtain \(\alpha '(Q) \ge t\). \(\square \)

Claim \(6'\). There are t edge-disjoint rainbow pairs \(E_k=\{x_{\ell _1}y_{k_1},y_{\ell _2}x_{k_2}\}\) for \(1 \le k \le t\) in \(K_{p,q}\).

Proof of Claim \(6'\). We construct an auxiliary bipartite graph \(Q=(Z,W;E(Q))\), where \(Z=\{z_1,\ldots ,z_{q}\}\) is the set of edges in \(K_{p,q}\) incident to \(x_{\ell _1}\), and \(W=\{w_1,\ldots ,w_{p-1}\}\) is the set of edges in \(K_{p,q}\) incident to \(y_{\ell _2}\) except the edge \(x_{\ell _1}y_{\ell _2}\), and \(z_iw_j \in E(Q)\) if and only if \(z_i\) and \(w_j\) have different colors. We say \(z_i\in Z\) (resp. \(w_j\in W\)) has color a in Q if the edge \(z_i\) (resp. \(w_j\)) incident to \(x_{\ell _1}\) (resp. \(y_{\ell _2}\)) has color a in \(K_{p,q}\).

If \(\delta (Q) \ge t/2\), Lemma 6 implies that \(\alpha '(Q) \ge t\) as \(q > t\). Suppose that \(\delta (Q) \le (t-1)/2\). Let \(z \in Z\) be a vertex with minimum degree in Q, and let a be its color. The other case when the vertex with minimum degree in Q belongs to W is similar. By the definition of Q, W contains \(p-1-d_Q(z) \ge p-1-(t-1)/2 > t\) vertices with color a. Let k be the number of vertices in Z with color a. If \(q-k \ge t\), then \(\alpha '(Q) \ge t\) by matching t vertices with color a in W into Z. Hence \(k> q-t > t\). Now each part contains at least t vertices with color a. Since \(|E(G)|=pq-2q+t+1\ge (p-1)(q-1)+t+1\), there are at least t edges with distinct colors other than a incident to \(x_{\ell _1}\) or \(y_{\ell _2}\) in \(K_{p,q}\). Now t such vertices in Q can be matched to t vertices with color a to obtain \(\alpha '(Q) \ge t\), no matter how those vertices are distributed to Z and W. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Lu, M. & Zhang, Y. Anti-Ramsey Problems in Complete Bipartite Graphs for t Edge-Disjoint Rainbow Spanning Trees. Graphs and Combinatorics 37, 409–433 (2021). https://doi.org/10.1007/s00373-020-02250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-020-02250-0

Keywords

Mathematics Subject Classification

Navigation