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Abstract

Let A = {A1, ..., Ap} and B = {B1, ..., Bq} be two families of subsets
of [n] such that for every i ∈ [p] and j ∈ [q], |Ai ∩ Bj | = c

d |Bj |, where
c
d ∈ [0, 1] is an irreducible fraction. We call such families c

d -cross intersecting
families. In this paper, we find a tight upper bound for the product |A||B|
and characterize the cases when this bound is achieved for c

d = 1
2 . Also, we

find a tight upper bound on |A||B| when B is k-uniform and characterize,
for all c

d , the cases when this bound is achieved.

1 Introduction

Let [n] denote {1, ..., n} and let 2[n] denote the power set of [n].We shall use
(
[n]
k

)
to denote the set of all k-sized subsets of [n]. Let F ⊆ 2[n]. The family F is an
intersecting family if every two sets in F intersect with each other. The famous
Erdős-Ko-Rado Theorem [1] states that |F| ≤

(
n−1
k−1

)
if F is a k-uniform intersecting

family, where 2k ≤ n. Several variants of the notion of intersecting families have
been extensively studied in the literature. Given a set L = {l1, . . . , ls} of non-
negative integers, a family F ⊆ 2[n] is L-intersecting if for all Fi, Fj ∈ F , Fi 6=
Fj, |Fi ∩ Fj| ∈ L. Ray-Chaudhuri and Wilson in [2] showed that if F is k-uniform
and L-intersecting, then |F| ≤

(
n
s

)
and the bound is tight. Frankl and Wilson

in [3] showed a tight upper bound of
(
n
s

)
+
(
n
s−1

)
+ · · · +

(
n
0

)
if the restriction on

the cardinalities of the sets of an L-intersecting family is relaxed. Further, if L
is a singleton set, then Fisher inequality [4] gives an upper bound of |F| ≤ n for
the cardinality of an L-intersecting family F . Recently, in [5], Balachandran et
al. introduced a fractional variant of the classical L-intersecting families. For a
survey on intersecting families, see [6].
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Two families A,B ⊆ 2[n] are cross-intersecting if |A ∩B| > 0, ∀ A ∈ A,B ∈ B.
Pyber in [7] showed that if n ≥ 2k, and A,B ⊆

(
[n]
k

)
is a cross-intersecting pair

of families, then |A||B| ≤
(
n−1
k−1

)2
. Frankl et al. in [8] showed that if A,B ⊂

(
[n]
k

)
such that |A∩B| ≥ t for all A ∈ A and B ∈ B, then for all n ≥ (t+ 1)(k− t+ 1),

|A||B| ≤
(
n−t
k−t

)2
, the cross-intersecting version of the Erdős-Ko-Rado Theorem. A

cross-intersecting pair of families A,B ⊆ 2[n] is said to be l-cross-intersecting if
∀A ∈ A, B ∈ B, |A ∩ B| = l, for some positive integer l. Ahlswede, Cai and
Zhang showed in [9], for all n ≥ 2l, a simple construction of an l-cross-intersecting
pair (A,B) of families of subsets of [n] with |A||B| =

(
2l
l

)
2n−2l = Θ( 2n√

l
). Later

Alon and Lubetzky in [10] showed that the Θ( 2n√
l
) bound is tight and characterized

the cases when the bound is achieved.
In this paper, we introduce a fractional variant of the l-cross-intersecting fam-

ilies. Let A = {A1, ..., Ap} and B = {B1, ..., Bq} be two families of subsets of
[n] such that for every i ∈ [p] and j ∈ [q], |Ai ∩ Bj| = c

d
|Bj|, where c

d
∈ [0, 1]

is an irreducible fraction. We call such an (A,B) pair a c
d
-cross-intersecting pair

of families. Given c, d, and n, let M c
d
(n) denote the maximum value of |A||B|

where (A,B) is a c
d
-cross intersecting pair of families of subsets of [n]. We have

the following results:

Theorem 1.1. M c
d
(n) = 2n

When c
d

= 0, A = 2[n], B = {∅} is a maximal pair. In fact, A = 2[k], B = P(S),
where P(S) is the power set of S = {k + 1, . . . , n}, are the only maximal pairs up
to a relabelling of the elements, 0 ≤ k ≤ n. When c

d
= 1, A = {[n]} and B = 2[n]

is a maximal pair. In fact, B = 2[k], A = {A : A = [k] ∪ T , where T ∈ P(S)},
where P(S) is the power set of S = {k + 1, . . . , n}, are the only maximal pairs up
to a relabelling of the elements, 0 ≤ k ≤ n. In Theorem 1.2, we characterize all
maximal pairs when c

d
= 1

2
.

Theorem 1.2. Let (A,B) be a 1
2
-cross intersecting pair of families of subsets of

[n] with |A||B| = 2n. Then (A,B) is one of the following bn
2
c+ 1 pairs of families

(Ak,Bk), 0 ≤ k ≤ bn
2
c, up to isomorphism.

A0 = 2[n] and B0 = {∅}

Ak = {A ∈ 2[n] : |A ∩ {2i− 1, 2i}| = 1 ∀i, 1 ≤ i ≤ k}

Bk = {B ∈ 2[n] : |B ∩ {2i− 1, 2i}| ∈ {0, 2} ∀i, 1 ≤ i ≤ k and ∀j > 2k, j /∈ B},

where 1 ≤ k ≤ bn
2
c.
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It would be interesting to show a characterization theorem for any c
d
∈ [0, 1].

We do have such a general characterization theorem (along with a new tight upper
bound) in Theorem 1.3 for the case when B is k-uniform. The proof is a direct
application of Theorem 1.1 in [10].

Theorem 1.3. Let (A,B) be a c
d
-cross intersecting pair of families of subsets of

[n]. Let B be k-uniform. Then, there exists some k0 > 0, such that for k > k0 we
have

|A||B| ≤
( 2ck

d
ck
d

)
2n−

2ck
d

and the bound is tight if and only if, either (a) or (b) hold:

(a) When c
d

= 1, A = {{1, . . . , κ}} × 2Y , B =
(
[κ]
k

)
where Y = {κ+ 1, . . . , n} and

κ ∈ {2k − 1, 2k} up to a relabelling of the elements of [n].

(b) When c
d
6= 1:

(i) If k is even, c = 1, d = 2, ck
d

= dk
2
e,

(ii) If k is odd, c = k+1
2

, d = k, ck
d

= dk
2
e,

and for both the cases((i) and (ii)), there exists some τ such that, k + τ ≤ n and
up to a relabelling of the elements of [n],

A = {∪T∈J T : J ⊂ {{1, k + 1}, . . . , {τ, k + τ}, {τ + 1}, . . . , {k}}, |J | = dk
2
e} × 2X

where X = {k + τ + 1, . . . , n} and

B = {L ∪ {τ + 1, . . . , k} : L ⊂ {1, . . . , τ, k + 1, . . . , k + τ}, |L ∩ {i, k + i}| = 1 for
all i ∈ [τ ]}.

2 Notations and definitions

Given any S ⊆ [n], we shall use χ(S) to denote the characteristic vector of S
which is a 0− 1 vector of size n having its ith entry equal to 1 if and only if i ∈ S.
The weight of a vector is the number of non-zero entries it has, and hence weight
of χ(S) is the same as |S|.

For any family A ⊆ 2[n], we shall (ab)use A to denote the collection of charac-
teristic vectors of the members of A as well. The meaning will be clearly stated if
not clear from the context.

Let V be a collection of vectors in Fn2 . Then, we define the following:
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1. span(V ): The collection of all the vectors that can be expressed as a linear
combination in F2 of the vectors of V . We know that span(V ) is a vector
space over F2.

2. basis(V ): We use basis(V ) to denote the basis of span(V ).

3. dim(V ): dim(V ) = |basis(V )|

Definition 1. V ⊆ Fn2 is a linear code if V = span(V ).

Definition 2. Given a linear code C ⊆ Fn2 , the dual code C⊥ is defined as,

C⊥ = {x ∈ Fn2 |〈x, c〉 = 0,∀c ∈ C}

where 〈x, y〉 is the standard inner product over F2.

The following is a well-known fact that is easy to verify.

Lemma 2.1. If C ⊆ Fn2 is a linear code, then C⊥ is also a linear code.

Definition 3. Self orthogonal and self dual codes: A code C is self orthogonal if
C ⊆ C⊥ and it is self dual if C = C⊥.

3 Bounding M c
d
(n)

Let (A,B) be a c
d
-cross-intersecting pair of families of subsets of [n], where c

d
∈ [0, 1]

is an irreducible fraction. We shall (ab)use A,B to denote the set of characteristic
vectors of the sets in A,B respectively. For any a ∈ A, b ∈ B, we observe that
〈a, b〉 ≡ |A ∩B| (mod 2), where a = χ(A), b = χ(B).

Partition the family B into two parts as,

B1 = {B ∈ B : |B| ≡ 0 (mod 2d)} (1)

B2 = {B ∈ B : |B| ≡ d (mod 2d)} (2)

As all the sets B ∈ B have their cardinality |B| divisible by d, {B1,B2} is a
valid partition of B. Therefore ∀a ∈ A , b ∈ B, using the c

d
intersection property,

we have:

〈a, b〉 =

{
1, if b ∈ B2 and c is odd
0, otherwise

4



Construction 1. Construct a set B′
1, by appending a 0 to the left of every vector in

B1, and a set B′
2 by appending a 1 to the left of every vector in B2. Let B′

= B′
1∪B

′
2.

Construct a set A′
by appending a 1 to the left of every vector in A.

We now have, the value of

〈a, b〉 = 0 ∀a ∈ A′
, b ∈ B′

So, (span(A′
), span(B′

)) is a pair of mutually orthogonal subspaces of Fn+1
2 over

F2. We thus have,

dim(span(A′
)) + dim(span(B′

)) ≤ n+ 1

So, it follows that

|span(A′
)| · |span(B′

)| = 2dim(span(A′
)) · 2dim((span(B′ ))

= 2dim(span(A′
))+dim(span(B′ ))

≤ 2n+1

(3)

Lemma 3.1. If the elements of a linear code C ⊆ Fn2 are arranged as rows of a
matrix MC with n columns, then for each column, one of the following holds,

(i) All the entries in that column are 0

(ii) Exactly half the entries in that column are 0, and the rest are 1.

Proof. As C is a linear code, if we pick any a ∈ C, and consider the set S =
{a+ x|x ∈ C} where a+ x is the vector addition in Fn2 , then by the definition of a
linear code S = C. Let MS be a matrix whose rows are the vectors of S, taken in
any order. MS and MC have the same set of rows (only their order may differ).

Let j ∈ [n]. Column j in MC and MS have the same number of 1’s( and 0’s).
Suppose (i) does not hold for column j in MC . Then, some row, say a, in MC has
its jth entry as 1. Let S, and thereby MS, be defined according to this vector a.
From the definition of S, it is clear that the number of 1’s in the jth column of
MS is equal to the number of 1’s in the jth column of MC . Since adding a to any
{0, 1} vector flips the jth coordinate of v, we conclude that (ii) holds for Mc.

Corollary 3.2. |span(A′
)| ≥ 2|A′|

Proof. The leftmost column of MA′ does not contain any 0. As span(A′
) is a

linear code and A′ ⊆ span(A′
), by condition (ii) of Lemma 3.1 above, span(A′

)
must have at least |A′| more elements having their leftmost entry as 0.
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Now we prove the main result of this section which is Theorem 1.1.

Statement of Theorem 1.1: M c
d
(n) = 2n

Proof. A = 2[n], B = {∅} is a trivial example of a c
d

cross-intersecting pair of
families having |A||B| = 2n. Thus, M c

d
(n) ≥ 2n. The proof of the upper bound

forM c
d
(n) follows from Inequality (3) and Corollary 3.2. Let (A,B) be a c

d
cross-

intersecting pair of families of subsets of [n]. Let A′
, B′

be constructed from A,
B, respectively, as explained in the beginning of this section. Note that |A′ | = |A|
and |B′| = |B| by construction.

2n+1 ≥ |span(A′
)| · |span(B′

)| [from (3)]

≥ 2 · |A′| · |span(B′
)| [from Corollary 3.2]

≥ 2 · |A′| · |B′ |
= 2 · |A| · |B| [by construction]

4 Characterization of maximal pairs when c
d =

1
2

Definition 4. Cross bisecting pair of families: A pair of families of subsets of [n]
is called a cross-bisecting pair if it is a 1

2
cross-intersecting pair. (A,B) is called

a maximal cross bisecting or simply a maximal pair, if it is a cross bisecting pair
and |A||B| = 2n.

For example, A = 2[n] and B = {∅} is a trivial maximal pair. In this section,
we characterize all maximal pairs. Let (A,B) be a cross bisecting pair and let
(A′

,B′
) be the associated pair constructed by appending bits as defined in the

previous section.

Definition 5. Let fA : A → A′
be a bijective mapping that maps every vector in

A to its corresponding vector in A′
, and let gA : A′ → A be its inverse. Likewise,

define functions fB and gB between B and B′
. For any set V ⊆ A, we shall

use, fA(V ) to denote {fA(A)| A ∈ V } and for any V ⊆ A′
, we use gA(V ) to

denote {gA(A)| A ∈ V }. Similarly, for any V ⊆ B, we use, fB(V ) to denote
{fB(B)| B ∈ V } and for any V ⊆ B′

, gB(V ) to denote {gB(B)| B ∈ V }

Observation 1. fB(B1) = B′
1 and fB(B2) = B′

2. Similarly, gB(B′
1) = B1 and

gB(B′
2) = B2

6



Suppose (A,B) is a maximal pair. Then from the proof of Theorem 1.1, we
must have :

|span(A′
)| = 2|A′| (4)

|span(B′
)| = |B′| (5)

dim(span(A′
)) + dim(span(B′

)) = n+ 1 (6)

Proposition 4.1. B = span(B). Further, fB is a linear map.

Proof. This follows from equation (5). Let x1, x2 ∈ B. We show that x3 = x1 +
x2 ∈ B. This would imply B is closed under addition in Fn2 over F2, and hence
B = span(B).

Let x
′
1 = fB(x1) and x

′
2 = fB(x2). From Equation (5), we have, w = x

′
1 + x

′
2 ∈

B′
. Since w and x3 agree on each of the rightmost n bits of x3, we have gB(w) = x3.

Since w ∈ B′
, from the definition of the function gB we have x3 = gB(w) ∈ B.

Further, observe that fB(x1) + fB(x2) = w = fB(x3) = fB(x1 + x2) and hence fB
is a linear map.

That B is a linear code from Proposition 4.1 implies closure of the family of
subsets B under symmetric difference. In fact, we have the following stronger
result.

Proposition 4.2. Let vectors b1, b2 ∈ B. Then, b1 + b2 ∈ B1 if and only if either
b1,b2 ∈ B1, or b1,b2 ∈ B2. Otherwise, b1 + b2 ∈ B2.

Proof. We prove the 2-way implication, and rest of the proposition follows from
Proposition 4.1. Let b

′
1 = fB(b1), b

′
2 = fB(b2).

• b1 + b2 ∈ B1 ⇒ b1 and b2 are both from B1, or both from B2
Since fB is a linear map, we have (b1 + b2 ∈ B1) ⇒ (fB(b1 + b2) = fB(b1) +
fB(b2) = b

′
1 + b

′
2 ∈ B

′
1). So, the leftmost bit of b

′
1 + b

′
2 is 0. This means that

the leftmost bit must be the same in b
′
1 and b

′
2, which directly implies that

either b
′
1,b

′
2 ∈ B

′
1, or b

′
1,b

′
2 ∈ B

′
2.

• Either b1,b2 ∈ B1, or b1,b2 ∈ B2 ⇒ b1 + b2 ∈ B1
Since b

′
1 and b

′
2 agree upon the leftmost bit, b

′
1 + b

′
2 has a 0 in its leftmost

bit. So, b
′
1 + b

′
2 ∈ B

′
1. From the Observation 1 above, we have b1 + b2 ∈ B1.

Proposition 4.3. B is a self-orthogonal code.
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Proof. We prove the proposition by showing that ∀b1, b2 ∈ B, 〈b1, b2〉 = 0. Let
B1, B2 be the sets corresponding to the vectors b1, b2, respectively. Since we are
operating in the field F2, it is enough to show that |B1 ∩B2| is even.

Let b3 = b1+b2. We observe that b3 is the characteristic vector of B3 = B1∆B2,
the symmetric difference of B1 and B2. We have,

|B3| = |B1∆B2| = |B1|+ |B2| − 2|B1 ∩B2| (7)

As c
d

= 1
2
, ∀B ∈ B1, we have |B| ≡ 0 (mod 4). By Proposition 4.1, B1∆B2 =

B3 ∈ B as B is a linear code. Taking equation (7) modulo 4, if B3 ∈ B1, then

|B1|+ |B2| − 2|B1 ∩B2| ≡ 0 (mod 4)

By Proposition 4.2, both B1 and B2 are either from B1 or from B2. In both cases,
|B1|+|B2| ≡ 0 (mod 4) Therefore, 2|B1∩B2| ≡ 0 (mod 4) or |B1∩B2| ≡ 0 (mod 2).
If B3 ∈ B2, then

|B1|+ |B2| − 2|B1 ∩B2| ≡ |B3| ≡ 2 (mod 4)

Again by Proposition 4.2, |B1|+ |B2| ≡ 2 (mod 4).
So, we have 2|B1 ∩B2| ≡ 0 (mod 4) or |B1∩B2| ≡ 0 (mod 2). Thus in both cases,
|B1 ∩B2| is even, so B is a self-othogonal code.

Lemma 4.4. Let (A,B) be a maximal pair, then |B| ≤ 2b
n
2
c

Proof. It is a known result (see [11]) that for a linear code C ⊆ Fn2 and its dual
code C⊥,

dim(C) + dim(C⊥) = n (8)

For any self-orthogonal code C, C ⊆ C⊥. So,

dim(C) ≤ dim(C⊥)

Applying equation (8) in this inequality, we get

n = dim(C) + dim(C⊥) ≥ 2dim(C)

Therefore, dim(C) ≤ n

2

Since B is a self-orthogonal code (Proposition 4.3), we get dim(B) ≤ n
2
. Hence,

|B| ≤ 2b
n
2
c

8



Proposition 4.5. If a set A bisects B1, B2 and B1∆B2, then A also bisects B1∩B2.

Proof.

|A ∩ (B1 M B2)| =
|B1 M B2|

2
[A bisects B1∆B2]

⇒ |A ∩ ((B1\B2) ∪ (B2\B1))| =
|B1|+ |B2| − 2|B1 ∩B2|

2

⇒ |A ∩ (B1\B2)|+ |A ∩ (B2\B1)| =
|B1|

2
+
|B2|

2
− |B1 ∩B2|

⇒ |A∩B1|−|A∩ (B1∩B2)|+ |A∩ (B2)|−|A∩ (B1∩B2)| =
|B1|

2
+
|B2|

2
−|B1∩B2|

⇒ |B1|
2

+
|B2|

2
− 2|A ∩ (B1 ∩B2)| =

|B1|
2

+
|B2|

2
− |B1 ∩B2|

[since A bisects both B1 and B2]

⇒ 2|A ∩ (B1 ∩B2)| = |B1 ∩B2|

⇒ |A ∩ (B1 ∩B2)| =
|B1 ∩B2|

2

Proposition 4.6. B is closed under intersection.

Proof. Let B1,B2 ∈ B. We show that B1∩B2 ∈ B. By Proposition 4.1, b1 +b2 ∈ B
i.e., B1∆B2 ∈ B. Let A be any arbitrary member of A. Now, A bisects B1, B2 and
B1∆B2 as (A,B) is a cross bisecting pair. By Proposition 4.5, A bisects B1 ∩B2.
Since (A,B) is a maximal pair, we conclude that B1 ∩B2 ∈ B.

Now, we prove the main result of this section,Theorem 1.2, the characterization
of maximal pairs.

Statement of Theorem 1.2: Let (A,B) be a 1
2
-cross intersecting pair of

families of subsets of [n] with |A||B| = 2n. Then (A,B) is one of the following
bn
2
c+ 1 pairs of families (Ak,Bk), 0 ≤ k ≤ bn

2
c, up to isomorphism.

A0 = 2[n] and B0 = {∅}

Ak = {A ∈ 2[n] : |A ∩ {2i− 1, 2i}| = 1 ∀i, 1 ≤ i ≤ k}

Bk = {B ∈ 2[n] : |B ∩ {2i− 1, 2i}| ∈ {0, 2} ∀i, 1 ≤ i ≤ k and ∀j > 2k, j /∈ B},

9



where 1 ≤ k ≤ bn
2
c.

By isomorphism, it is meant that for any maximal pair (A,B), ∃ a bijective
mapping f : [n] → [n] such that if every A ∈ A is replaced by Af = {f(i)|i ∈ A}
and every B ∈ B is replaced by Bf = {f(i)|i ∈ B} then the families (Af ,Bf ),
where Af = {Af |A ∈ A} and Bf = {Bf |B ∈ B}, is a maximal pair which is one
of (Ak,Bk) , 0 ≤ k ≤ bn

2
c.

Proof. Consider a maximal pair (A,B) where B 6= {∅}. We write the elements
of B as rows of a 0 − 1 matrix M0. Suppose n0 columns have only 0 entries in
all the rows(n0 may be 0). As the characterization is up to isomorphism, we may
assume that these are the rightmost n0 columns of the matrix M0. In each of the
remaining n − n0 columns, from Lemma 3.1, there are exactly |B|

2
1’s and |B|

2
0’s

as B is a linear code. (by Proposition 4.1)
Define

B1 =
⋂
1∈B,
B∈B

B

We write the |B|
2

rows containing 1 in the leftmost column of M0 as the top |B|
2

rows to obtain a new matrix M1 from M0. And B1 is one of these rows according
to Proposition 4.6. Moreover, as all intersections are of even cardinality (Proposi-
tion 4.3), |B1| is even.
Let |B1| = 2i1, i1 ≥ 1. So, there are 2i1− 1 elements in B1 other than the element
1. Due to isomorphism, we may assume them to be 2, 3, . . . , 2i1.
If 2i1 + 1 ≤ n− n0, then define the set B2 as:

B2 =
⋂

2i1+1∈B,
B∈B

B

Claim 4.7. 1 /∈ B2

Proof. Assume for the sake of contradiction, 1 ∈ B2. This implies that for all
the |B|

2
sets which contain the element 2i1 + 1 also contain the element 1. From

Lemma 3.1, (number of sets in B that contain the element 1) = (number of sets

in B that contain the element 2i1 + 1) = |B|
2

. Hence, for any B ∈ B, 1 ∈ B ⇐⇒
2i1 + 1 ∈ B. This implies that 2i1 + 1 ∈ B1, which is a contradiction. Hence,
1 /∈ B2 and therefore B2 does not belong to the top |B|

2
rows of M1.

Claim 4.8. B1 ∩B2 = ∅

Proof. Assume for the sake of contradiction, x ∈ B1∩B2. Then x is present in the
|B|
2

rows of the matrix M1 whose intersection yields B1. Since x ∈ B2 and B2 does

not belong to these |B|
2

rows of M1 (by Claim 4.7). Thus, we have the element x

present in at least |B|
2

+ 1 rows of M1, contradicting Lemma 3.1.

10



We take the rows corresponding to the sets containing the (2i1 + 1)th element

that are not among the first |B|
2

rows in M1 and arrange them below the top |B|
2

rows
to create a matrix called M2 from M1. Again from Proposition 4.3, |B2| is even, say
2i2. Due to isomorphism and Claim 4.8, we may assume that 2i1 + 1,. . . , 2i1 + 2i2
are these 2i2 elements.

If 2i1 + 2i2 + 1 ≤ n− n0, then define,

B3 =
⋂

2i1+2i2+1∈B,
B∈B

B

Claim 4.9. 1 /∈ B3 and 2i1 + 1 /∈ B3.

The proof is similar to that of Claim 4.7

Claim 4.10. B1 ∩B3 = ∅ and B2 ∩B3 = ∅.

The proof is again similar to that of Claim 4.8.
We take the rows corresponding to the sets containing the (2i1 + 2i2 + 1)th

element that are not among the first r rows (r > |B|
2

) in M2 which contain the
elements 1 or 2i1 + 1 and arrange them below the top r rows of M2 to create a
matrix called M3 from M2. From Proposition 4.3 and the definition of B3, we
have |B3| = 2i3, i3 ≥ 1. Due to isomorphism and Claim 4.10, we may assume that
2i1 + 2i2 + 1,. . . , 2i1 + 2i2 + 2i3 are these 2i3 elements.

We continue in this manner for k steps by constructing sets B1, . . . , Bk and
matrices M1, . . . ,Mk, where k ≥ 1, until we have 2i1 + · · ·+ 2ik = n−n0. Observe
that B1, . . . , Bk and P = {n− n0 + 1, . . . , n} is a partition of [n].

Figure 1: Partitioning the universe and thereby the columns of Mk

Claim 4.11. For any set B ∈ B, j ∈ [k], we have B ∩ Bj ∈ {∅, Bj}. Further,
B ∩ P = ∅.

Proof. From the definition of P , we have B∩P = ∅. Let j ∈ [k]. Since Bj is equal

to the intersection of some |B|
2

sets in B, we have Bj present as a subset of all these
|B|
2

sets. Applying Lemma 3.1, we can say that no element of Bj is present in any

set in B other than these |B|
2

sets. Hence, the claim.

11



From Claim 4.11, observe that S = {B1, . . . , Bk} forms a basis of the row space
of the matrix Mk. The advantage of such a “disjoint basis” is that the bisection
in one part is independent of another.

Figure 2: Basis for the code B

Claim 4.12. A set A ∈ A bisects every set in B if and only if it bisects every set
in the basis S of B.

Proof. The forward direction is straightforward as S ⊆ B. For the opposite di-
rection, let A ∈ A be a set that bisects every member of S. Since the sets
corresponding to the members in S are disjoint, any B ∈ B can be written as a
union of some of these sets.
Let B = B1 ∪ · · · ∪Bl, where {B1, . . . , Bl} ⊆ S. Then,

|A ∩B| = |A ∩ (
l⋃

j=1

Bj)| =
l∑

j=1

|A ∩Bj| =
l∑

j=1

|Bj |
2

=
|

l⋃
j=1

Bj |

2
= |B|

2

Since each set A ∈ A bisects the sets B1, . . . , Bk and P , from Claim 4.12, the
set A may contain any of the 2n0 subsets of P , and |A∩B1| = i1, . . . , |A∩Bk| = ik.
Since dim(B) = k, by Proposition 4.1, we have |B| = 2k.

|A||B| =
(

2n0 ·
k∏
j=1

(
2ij
ij

))
· 2k (9)

Recall that
k∑
j=1

2ij = n−n0. Right hand side of Equation (9), is equal to 2n if and

only if ij = 1, ∀j ∈ [k].
Thus, if B 6= {∅}, then (Ak,Bk), k ≥ 1, defined in the statement of the theorem

are the only maximal pairs. This completes the proof of Theorem 1.2.
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5 Tight upper bound on M c
d
(n) when B is k-uniform

and characterization of the cases when the bound

is achieved

Let (A,B) be a c
d

cross-intersecting pair of families of subsets of [n], where c
d
∈ [0, 1]

is an irreducible fraction. In this section, we deal with the scenario when B is k-
uniform, where 0 < k ≤ n. Since B is k-uniform, for any A ∈ A and any B ∈ B,
|A ∩ B| = ck

d
= l. Since c is relatively prime with d, and |A ∩ B| is an integer,

we have k divisible by d. Therefore, we have a uniformly cross intersecting pair of
families.

Alon and Lubetzky in [10] found a tight upper bound for the case of uniformly
cross intersecting families and fully characterized the cases when the bound is
achieved in the following theorem:

Theorem 5.1. [Theorem 1.1 in [10]] There exists some l0 > 0 such that, for all
l ≥ l0, every l-cross intersecting pair A,B ⊂ 2[n] satisfies:

|A||B| ≤
(
2l
l

)
2n−2l

Furthermore, if |A||B| =
(
2l
l

)
2n−2l, then there exists some choice of parameters

κ, τ, n
′
:

κ ∈ {2l − 1, 2l}, τ ∈ {0, · · · , κ}
κ+ τ ≤ n

′ ≤ n

such that upto a relabelling of the elements of [n] and swapping A,B, the following
holds:

A = {
⋃
T∈J

T : J ⊂ {{1, κ+ 1}, · · · , {τ, κ+ τ}, {τ + 1}, · · · , {κ}}, |J | = l} × 2X ,

B = {L ∪ {τ + 1, · · · , κ} : L ⊂ {1, · · · , τ, κ+ 1, · · · , κ+ τ}, |L ∩ {i, κ+ i}| = 1 for
all i ∈ [τ ]} × 2Y

where X = {κ+ τ + 1, · · · , n′} and Y = {n′
+ 1, · · · , n}.

Let (A,B) be a c
d

cross-intersecting family where B is k-uniform. From The-

orem 5.1, there exists a k0 > 0 such that if ck
d

= l > k0, then |A||B| ≤
(
2l
l

)
2n−2l.

Consider the case when B corresponds to B of Theorem 5.1. If |A||B| =
(
2l
l

)
2n−2l,

then n′ = n, Y = ∅, and k = κ in the statement of Theorem 5.1. Since l = ck
d

and
k ∈ {2ck

d
− 1, 2ck

d
}, we have the following two cases:

Case 1: k = 2ck
d
−1. Then, (k+1)d = 2ck. Since gcd(c, d) = 1 and gcd(k, k+1) =

1, we have k|d|2k. Thus, d = k or d = 2k. We claim that d = 2k is an invalid case.
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This is because, when d = 2k, we have c = k+ 1. Since gcd(c, d) = 1, k cannot be
odd. And if k is even, then l = ck

d
= k+1

2
is not an integer. So, the only valid case

is d = k, c = k+1
2

= l and k is an odd integer.
Case 2: k = 2ck

d
. Then, c

d
= 1

2
, that is (A,B) is a cross bisecting pair. Since

l = ck
d

= k
2

is an integer, k must be even in this case.
If B corresponds to A of Theorem 5.1, we have X = ∅, τ = 0, B is k(= l)-uniform,
l = ck

d
. Thus, we have c

d
= 1, A = {{1, . . . , κ}} × 2Y where Y = {κ + 1, . . . , n}

and B =
(
[κ]
k

)
, κ ∈ {2k − 1, 2k} up to a relabelling of the elements.

This leads us to the main result of this section.

Statement of Theorem 1.3: Let (A,B) be a c
d
-cross intersecting pair of families

of subsets of [n]. Let B be k-uniform. Then, there exists some k0 > 0, such that
for k > k0 we have

|A||B| ≤
( 2ck

d
ck
d

)
2n−

2ck
d

and the bound is tight if and only if, either (a) or (b) hold:

(a) When c
d

= 1, A = {{1, . . . , κ}} × 2Y , B =
(
[κ]
k

)
where Y = {κ+ 1, . . . , n} and

κ ∈ {2k − 1, 2k} up to a relabelling of the elements of [n].

(b) When c
d
6= 1:

(i) If k is even, c = 1, d = 2, ck
d

= dk
2
e,

(ii) If k is odd, c = k+1
2

, d = k, ck
d

= dk
2
e,

and for both the cases((i) and (ii)), there exists some τ such that, k + τ ≤ n and
up to a relabelling of the elements of [n],

A = {∪T∈J T : J ⊂ {{1, k + 1}, . . . , {τ, k + τ}, {τ + 1}, . . . , {k}}, |J | = dk
2
e} × 2X

where X = {k + τ + 1, . . . , n} and

B = {L ∪ {τ + 1, . . . , k} : L ⊂ {1, . . . , τ, k + 1, . . . , k + τ}, |L ∩ {i, k + i}| = 1 for
all i ∈ [τ ]}.

6 Discussion

What are those pairs of c
d
-cross intersecting families (A,B) which achieve |A||B| =

2n (equal to the upper bound for M c
d
(n) proved in Theorem 1.1)? In the intro-

duction we characterize such families when c
d

= 0 and c
d

= 1. In Theorem 1.2, we
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characterize such families when c
d

= 1
2
. From Theorem 1.3, we see that when B is

k-uniform, |A||B| is maximized when c
d

is 1 or nearly 1
2
(1
2

or 1
2

+ 1
2k

). For c
d
∈ (0, 1),

besides the case A = 2[n], B = {∅}, is |A||B| = 2n achieved only when c
d

is close
to 1

2
?
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