Fractional cross intersecting families

Rogers Mathew ${ }^{1}$, Ritabrata Ray 2, and Shashank Srivastava ${ }^{3}$
${ }^{1}$ Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India, rogersmathew@gmail.com
${ }^{2}$ Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India, rayritabrata96@gmail.com
${ }^{3}$ Toyota Technological Institute at Chicago, Chicago 60615, USA, shashanksri47@gmail.com

Abstract

Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{p}\right\}$ and $\mathcal{B}=\left\{B_{1}, \ldots, B_{q}\right\}$ be two families of subsets of $[n]$ such that for every $i \in[p]$ and $j \in[q],\left|A_{i} \cap B_{j}\right|=\frac{c}{d}\left|B_{j}\right|$, where $\frac{c}{d} \in[0,1]$ is an irreducible fraction. We call such families $\frac{c}{d}$-cross intersecting families. In this paper, we find a tight upper bound for the product $|\mathcal{A}||\mathcal{B}|$ and characterize the cases when this bound is achieved for $\frac{c}{d}=\frac{1}{2}$. Also, we find a tight upper bound on $|\mathcal{A}||\mathcal{B}|$ when \mathcal{B} is k-uniform and characterize, for all $\frac{c}{d}$, the cases when this bound is achieved.

1 Introduction

Let $[n]$ denote $\{1, \ldots, n\}$ and let $2^{[n]}$ denote the power set of $[n]$. We shall use $\binom{[n]}{k}$ to denote the set of all k-sized subsets of $[n]$. Let $\mathcal{F} \subseteq 2^{[n]}$. The family \mathcal{F} is an intersecting family if every two sets in \mathcal{F} intersect with each other. The famous Erdős-Ko-Rado Theorem [1] states that $|\mathcal{F}| \leq\binom{ n-1}{k-1}$ if \mathcal{F} is a k-uniform intersecting family, where $2 k \leq n$. Several variants of the notion of intersecting families have been extensively studied in the literature. Given a set $L=\left\{l_{1}, \ldots, l_{s}\right\}$ of nonnegative integers, a family $\mathcal{F} \subseteq 2^{[n]}$ is L-intersecting if for all $F_{i}, F_{j} \in \mathcal{F}, F_{i} \neq$ $F_{j},\left|F_{i} \cap F_{j}\right| \in L$. Ray-Chaudhuri and Wilson in [2] showed that if \mathcal{F} is k-uniform and L-intersecting, then $|\mathcal{F}| \leq\binom{ n}{s}$ and the bound is tight. Frankl and Wilson in [3] showed a tight upper bound of $\binom{n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{0}$ if the restriction on the cardinalities of the sets of an L-intersecting family is relaxed. Further, if L is a singleton set, then Fisher inequality [4] gives an upper bound of $|\mathcal{F}| \leq n$ for the cardinality of an L-intersecting family \mathcal{F}. Recently, in [5], Balachandran et al. introduced a fractional variant of the classical L-intersecting families. For a survey on intersecting families, see [6].

Two families $\mathcal{A}, \mathcal{B} \subseteq 2^{[n]}$ are cross-intersecting if $|A \cap B|>0, \forall A \in \mathcal{A}, B \in \mathcal{B}$. Pyber in [7] showed that if $n \geq 2 k$, and $\mathcal{A}, \mathcal{B} \subseteq\binom{[n]}{k}$ is a cross-intersecting pair of families, then $|\mathcal{A}||\mathcal{B}| \leq\binom{ n-1}{k-1}^{2}$. Frankl et al. in [8] showed that if $\mathcal{A}, \mathcal{B} \subset\binom{[n]}{k}$ such that $|A \cap B| \geq t$ for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$, then for all $n \geq(t+1)(k-t+1)$, $|\mathcal{A}||\mathcal{B}| \leq\binom{ n-t}{k-t}^{2}$, the cross-intersecting version of the Erdős-Ko-Rado Theorem. A cross-intersecting pair of families $\mathcal{A}, \mathcal{B} \subseteq 2^{[n]}$ is said to be l-cross-intersecting if $\forall A \in \mathcal{A}, B \in \mathcal{B},|A \cap B|=l$, for some positive integer l. Ahlswede, Cai and Zhang showed in 9], for all $n \geq 2 l$, a simple construction of an l-cross-intersecting pair $(\mathcal{A}, \mathcal{B})$ of families of subsets of $[n]$ with $|\mathcal{A}||\mathcal{B}|=\binom{2 l}{l} 2^{n-2 l}=\Theta\left(\frac{2^{n}}{\sqrt{l}}\right)$. Later Alon and Lubetzky in [10] showed that the $\Theta\left(\frac{2^{n}}{\sqrt{l}}\right)$ bound is tight and characterized the cases when the bound is achieved.

In this paper, we introduce a fractional variant of the l-cross-intersecting families. Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{p}\right\}$ and $\mathcal{B}=\left\{B_{1}, \ldots, B_{q}\right\}$ be two families of subsets of $[n]$ such that for every $i \in[p]$ and $j \in[q],\left|A_{i} \cap B_{j}\right|=\frac{c}{d}\left|B_{j}\right|$, where $\frac{c}{d} \in[0,1]$ is an irreducible fraction. We call such an $(\mathcal{A}, \mathcal{B})$ pair a $\frac{c}{d}$-cross-intersecting pair of families. Given c, d, and n, let $\mathcal{M}_{\frac{c}{d}}(n)$ denote the maximum value of $|\mathcal{A}||\mathcal{B}|$ where $(\mathcal{A}, \mathcal{B})$ is a $\frac{c}{d}$-cross intersecting pair of families of subsets of $[n]$. We have the following results:

Theorem 1.1. $\mathcal{M}_{\frac{c}{d}}(n)=2^{n}$
When $\frac{c}{d}=0, \mathcal{A}=2^{[n]}, \mathcal{B}=\{\emptyset\}$ is a maximal pair. In fact, $\mathcal{A}=2^{[k]}, \mathcal{B}=\mathcal{P}(S)$, where $\mathcal{P}(S)$ is the power set of $S=\{k+1, \ldots, n\}$, are the only maximal pairs up to a relabelling of the elements, $0 \leq k \leq n$. When $\frac{c}{d}=1, \mathcal{A}=\{[n]\}$ and $\mathcal{B}=2^{[n]}$ is a maximal pair. In fact, $\mathcal{B}=2^{[k]}, \mathcal{A}=\{A: A=[k] \cup T$, where $T \in \mathcal{P}(S)\}$, where $\mathcal{P}(S)$ is the power set of $S=\{k+1, \ldots, n\}$, are the only maximal pairs up to a relabelling of the elements, $0 \leq k \leq n$. In Theorem 1.2, we characterize all maximal pairs when $\frac{c}{d}=\frac{1}{2}$.
Theorem 1.2. Let $(\mathcal{A}, \mathcal{B})$ be a $\frac{1}{2}$-cross intersecting pair of families of subsets of $[n]$ with $|\mathcal{A}||\mathcal{B}|=2^{n}$. Then $(\mathcal{A}, \mathcal{B})$ is one of the following $\left\lfloor\frac{n}{2}\right\rfloor+1$ pairs of families $\left(\mathcal{A}_{k}, \mathcal{B}_{k}\right), 0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, up to isomorphism.

$$
\begin{gathered}
\mathcal{A}_{0}=2^{[n]} \text { and } \mathcal{B}_{0}=\{\emptyset\} \\
\mathcal{A}_{k}=\left\{A \in 2^{[n]}:|A \cap\{2 i-1,2 i\}|=1 \quad \forall i, 1 \leq i \leq k\right\} \\
\mathcal{B}_{k}=\left\{B \in 2^{[n]}:|B \cap\{2 i-1,2 i\}| \in\{0,2\} \quad \forall i, 1 \leq i \leq k \text { and } \forall j>2 k, j \notin B\right\},
\end{gathered}
$$

where $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$.

It would be interesting to show a characterization theorem for any $\frac{c}{d} \in[0,1]$. We do have such a general characterization theorem (along with a new tight upper bound) in Theorem 1.3 for the case when \mathcal{B} is k-uniform. The proof is a direct application of Theorem 1.1 in [10].

Theorem 1.3. Let $(\mathcal{A}, \mathcal{B})$ be a $\frac{c}{d}$-cross intersecting pair of families of subsets of $[n]$. Let \mathcal{B} be k-uniform. Then, there exists some $k_{0}>0$, such that for $k>k_{0}$ we have

$$
|\mathcal{A}||\mathcal{B}| \leq\left(\frac{\frac{2 c k}{d}}{\frac{c k}{d}}\right)^{n-\frac{2 c k}{d}}
$$

and the bound is tight if and only if, either (a) or (b) hold:
(a) When $\frac{c}{d}=1, \mathcal{A}=\{\{1, \ldots, \kappa\}\} \times 2^{Y}, \mathcal{B}=\binom{[\kappa]}{k}$ where $Y=\{\kappa+1, \ldots, n\}$ and $\kappa \in\{2 k-1,2 k\}$ up to a relabelling of the elements of $[n]$.
(b) When $\frac{c}{d} \neq 1$:
(i) If k is even, $c=1, d=2, \frac{c k}{d}=\left\lceil\frac{k}{2}\right\rceil$,
(ii) If k is odd, $c=\frac{k+1}{2}, d=k, \frac{c k}{d}=\left\lceil\frac{k}{2}\right\rceil$,
and for both the cases((i) and (ii)), there exists some τ such that, $k+\tau \leq n$ and up to a relabelling of the elements of $[n]$,
$\mathcal{A}=\left\{\cup_{T \in J} T: J \subset\{\{1, k+1\}, \ldots,\{\tau, k+\tau\},\{\tau+1\}, \ldots,\{k\}\},|J|=\left\lceil\frac{k}{2}\right\rceil\right\} \times 2^{X}$
where $X=\{k+\tau+1, \ldots, n\}$ and
$\mathcal{B}=\{L \cup\{\tau+1, \ldots, k\}: L \subset\{1, \ldots, \tau, k+1, \ldots, k+\tau\},|L \cap\{i, k+i\}|=1$ for all $i \in[\tau]\}$.

2 Notations and definitions

Given any $S \subseteq[n]$, we shall use $\chi(S)$ to denote the characteristic vector of S which is a $0-1$ vector of size n having its $i^{\text {th }}$ entry equal to 1 if and only if $i \in S$. The weight of a vector is the number of non-zero entries it has, and hence weight of $\chi(S)$ is the same as $|S|$.

For any family $\mathcal{A} \subseteq 2^{[n]}$, we shall (ab)use \mathcal{A} to denote the collection of characteristic vectors of the members of \mathcal{A} as well. The meaning will be clearly stated if not clear from the context.

Let V be a collection of vectors in \mathbb{F}_{2}^{n}. Then, we define the following:

1. $\operatorname{span}(V)$: The collection of all the vectors that can be expressed as a linear combination in \mathbb{F}_{2} of the vectors of V. We know that $\operatorname{span}(V)$ is a vector space over \mathbb{F}_{2}.
2. $\operatorname{basis}(V)$: We use $\operatorname{basis}(V)$ to denote the basis of $\operatorname{span}(V)$.
3. $\operatorname{dim}(V): \operatorname{dim}(V)=|\operatorname{basis}(V)|$

Definition 1. $V \subseteq \mathbb{F}_{2}^{n}$ is a linear code if $V=\operatorname{span}(V)$.
Definition 2. Given a linear code $C \subseteq \mathbb{F}_{2}^{n}$, the dual code C^{\perp} is defined as,

$$
C^{\perp}=\left\{x \in \mathbb{F}_{2}^{n} \mid\langle x, c\rangle=0, \forall c \in C\right\}
$$

where $\langle x, y\rangle$ is the standard inner product over \mathbb{F}_{2}.
The following is a well-known fact that is easy to verify.
Lemma 2.1. If $C \subseteq \mathbb{F}_{2}^{n}$ is a linear code, then C^{\perp} is also a linear code.
Definition 3. Self orthogonal and self dual codes: A code C is self orthogonal if $C \subseteq C^{\perp}$ and it is self dual if $C=C^{\perp}$.

3 Bounding $\mathcal{M}_{\frac{c}{d}}(n)$

Let $(\mathcal{A}, \mathcal{B})$ be a $\frac{c}{d}$-cross-intersecting pair of families of subsets of $[n]$, where $\frac{c}{d} \in[0,1]$ is an irreducible fraction. We shall (ab)use \mathcal{A}, \mathcal{B} to denote the set of characteristic vectors of the sets in \mathcal{A}, \mathcal{B} respectively. For any $a \in \mathcal{A}, b \in \mathcal{B}$, we observe that $\langle a, b\rangle \equiv|A \cap B|(\bmod 2)$, where $a=\chi(A), b=\chi(B)$.

Partition the family \mathcal{B} into two parts as,

$$
\begin{align*}
& \mathcal{B}_{1}=\{B \in \mathcal{B}:|B| \equiv 0(\bmod 2 d)\} \tag{1}\\
& \mathcal{B}_{2}=\{B \in \mathcal{B}:|B| \equiv d(\bmod 2 d)\} \tag{2}
\end{align*}
$$

As all the sets $B \in \mathcal{B}$ have their cardinality $|B|$ divisible by $d,\left\{\mathcal{B}_{1}, \mathcal{B}_{2}\right\}$ is a valid partition of \mathcal{B}. Therefore $\forall a \in \mathcal{A}, b \in \mathcal{B}$, using the $\frac{c}{d}$ intersection property, we have:

$$
\langle a, b\rangle=\left\{\begin{array}{l}
1, \text { if } b \in \mathcal{B}_{2} \text { and } c \text { is odd } \\
0, \text { otherwise }
\end{array}\right.
$$

Construction 1. Construct a set \mathcal{B}_{1}^{\prime}, by appending a 0 to the left of every vector in \mathcal{B}_{1}, and a set \mathcal{B}_{2}^{\prime} by appending a 1 to the left of every vector in \mathcal{B}_{2}. Let $\mathcal{B}^{\prime}=\mathcal{B}_{1}^{\prime} \cup \mathcal{B}_{2}^{\prime}$. Construct a set \mathcal{A}^{\prime} by appending a 1 to the left of every vector in \mathcal{A}.

We now have, the value of

$$
\langle a, b\rangle=0 \quad \forall a \in \mathcal{A}^{\prime}, b \in \mathcal{B}^{\prime}
$$

So, $\left(\operatorname{span}\left(\mathcal{A}^{\prime}\right), \operatorname{span}\left(\mathcal{B}^{\prime}\right)\right)$ is a pair of mutually orthogonal subspaces of \mathbb{F}_{2}^{n+1} over \mathbb{F}_{2}. We thus have,

$$
\operatorname{dim}\left(\operatorname{span}\left(\mathcal{A}^{\prime}\right)\right)+\operatorname{dim}\left(\operatorname{span}\left(\mathcal{B}^{\prime}\right)\right) \leq n+1
$$

So, it follows that

$$
\begin{align*}
\left|\operatorname{span}\left(\mathcal{A}^{\prime}\right)\right| \cdot\left|\operatorname{span}\left(\mathcal{B}^{\prime}\right)\right| & =2^{\operatorname{dim}\left(\operatorname{span}\left(\mathcal{A}^{\prime}\right)\right)} \cdot 2^{\operatorname{dim}\left(\left(\operatorname{span}\left(\mathcal{B}^{\prime}\right)\right)\right.} \\
& =2^{\operatorname{dim}\left(\operatorname{span}\left(\mathcal{A}^{\prime}\right)\right)+\operatorname{dim}\left(\operatorname{span}\left(\mathcal{B}^{\prime}\right)\right)} \tag{3}\\
& \leq 2^{n+1}
\end{align*}
$$

Lemma 3.1. If the elements of a linear code $C \subseteq \mathbb{F}_{2}^{n}$ are arranged as rows of a matrix M_{C} with n columns, then for each column, one of the following holds,
(i) All the entries in that column are 0
(ii) Exactly half the entries in that column are 0, and the rest are 1.

Proof. As C is a linear code, if we pick any $a \in C$, and consider the set $S=$ $\{a+x \mid x \in C\}$ where $a+x$ is the vector addition in \mathbb{F}_{2}^{n}, then by the definition of a linear code $S=C$. Let M_{S} be a matrix whose rows are the vectors of S, taken in any order. M_{S} and M_{C} have the same set of rows (only their order may differ).

Let $j \in[n]$. Column j in M_{C} and M_{S} have the same number of 1 's(and 0 's). Suppose (i) does not hold for column j in M_{C}. Then, some row, say a, in M_{C} has its $j^{\text {th }}$ entry as 1 . Let S, and thereby M_{S}, be defined according to this vector a. From the definition of S, it is clear that the number of 1's in the $j^{\text {th }}$ column of M_{S} is equal to the number of 1's in the $j^{\text {th }}$ column of M_{C}. Since adding a to any $\{0,1\}$ vector flips the $j^{\text {th }}$ coordinate of v, we conclude that (ii) holds for M_{c}.

Corollary 3.2. $\left|\operatorname{span}\left(\mathcal{A}^{\prime}\right)\right| \geq 2\left|\mathcal{A}^{\prime}\right|$
Proof. The leftmost column of $\mathcal{M}_{\mathcal{A}^{\prime}}$ does not contain any 0 . As $\operatorname{span}\left(\mathcal{A}^{\prime}\right)$ is a linear code and $\mathcal{A}^{\prime} \subseteq \operatorname{span}\left(\mathcal{A}^{\prime}\right)$, by condition (ii) of Lemma 3.1 above, $\operatorname{span}\left(\mathcal{A}^{\prime}\right)$ must have at least $\left|\mathcal{A}^{\prime}\right|$ more elements having their leftmost entry as 0 .

Now we prove the main result of this section which is Theorem 1.1.
Statement of Theorem 1.1: $\mathcal{M}_{\frac{c}{d}}(n)=2^{n}$
Proof. $\mathcal{A}=2^{[n]}, \mathcal{B}=\{\emptyset\}$ is a trivial example of a $\frac{c}{d}$ cross-intersecting pair of families having $|\mathcal{A}||\mathcal{B}|=2^{n}$. Thus, $\mathcal{M}_{\frac{c}{d}}(n) \geq 2^{n}$. The proof of the upper bound for $\mathcal{M}_{\frac{c}{d}}(n)$ follows from Inequality (3) and Corollary 3.2 . Let $(\mathcal{A}, \mathcal{B})$ be a $\frac{c}{d}$ crossintersecting pair of families of subsets of $[n]$. Let $\mathcal{A}, \mathcal{B}^{\prime}$ be constructed from \mathcal{A}, \mathcal{B}, respectively, as explained in the beginning of this section. Note that $\left|\mathcal{A}^{\prime}\right|=|\mathcal{A}|$ and $\left|\mathcal{B}^{\prime}\right|=|\mathcal{B}|$ by construction.

$$
\begin{aligned}
2^{n+1} & \geq\left|\operatorname{span}\left(\mathcal{A}^{\prime}\right)\right| \cdot\left|\operatorname{span}\left(\mathcal{B}^{\prime}\right)\right| & & {[\text { from (3)] }} \\
& \geq 2 \cdot\left|\mathcal{A}^{\prime}\right| \cdot\left|\operatorname{span}\left(\mathcal{B}^{\prime}\right)\right| & & {[\text { from Corollary } 3.2} \\
& \geq 2 \cdot\left|\mathcal{A}^{\prime}\right| \cdot\left|\mathcal{B}^{\prime}\right| & & \\
& =2 \cdot|\mathcal{A}| \cdot|\mathcal{B}| & & {[\text { by construction }] }
\end{aligned}
$$

4 Characterization of maximal pairs when $\frac{c}{d}=\frac{1}{2}$

Definition 4. Cross bisecting pair of families: A pair of families of subsets of $[n]$ is called a cross-bisecting pair if it is a $\frac{1}{2}$ cross-intersecting pair. $(\mathcal{A}, \mathcal{B})$ is called a maximal cross bisecting or simply a maximal pair, if it is a cross bisecting pair and $|\mathcal{A}||\mathcal{B}|=2^{n}$.

For example, $\mathcal{A}=2^{[n]}$ and $\mathcal{B}=\{\emptyset\}$ is a trivial maximal pair. In this section, we characterize all maximal pairs. Let $(\mathcal{A}, \mathcal{B})$ be a cross bisecting pair and let $\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right)$ be the associated pair constructed by appending bits as defined in the previous section.

Definition 5. Let $f_{\mathcal{A}}: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ be a bijective mapping that maps every vector in \mathcal{A} to its corresponding vector in \mathcal{A}^{\prime}, and let $g_{\mathcal{A}}: \mathcal{A}^{\prime} \rightarrow \mathcal{A}$ be its inverse. Likewise, define functions $f_{\mathcal{B}}$ and $g_{\mathcal{B}}$ between \mathcal{B} and \mathcal{B}^{\prime}. For any set $V \subseteq \mathcal{A}$, we shall use, $f_{\mathcal{A}}(V)$ to denote $\left\{f_{\mathcal{A}}(A) \mid A \in V\right\}$ and for any $V \subseteq \mathcal{A}^{\prime}$, we use $g_{\mathcal{A}}(V)$ to denote $\left\{g_{\mathcal{A}}(A) \mid A \in V\right\}$. Similarly, for any $V \subseteq \mathcal{B}$, we use, $f_{\mathcal{B}}(V)$ to denote $\left\{f_{\mathcal{B}}(B) \mid B \in V\right\}$ and for any $V \subseteq \mathcal{B}^{\prime}, g_{\mathcal{B}}(V)$ to denote $\left\{g_{\mathcal{B}}(B) \mid B \in V\right\}$

Observation 1. $f_{\mathcal{B}}\left(\mathcal{B}_{1}\right)=\mathcal{B}_{1}^{\prime}$ and $f_{\mathcal{B}}\left(\mathcal{B}_{2}\right)=\mathcal{B}_{2}^{\prime}$. Similarly, $g_{\mathcal{B}}\left(\mathcal{B}_{1}^{\prime}\right)=\mathcal{B}_{1}$ and $g_{\mathcal{B}}\left(\mathcal{B}_{2}^{\prime}\right)=\mathcal{B}_{2}$

Suppose $(\mathcal{A}, \mathcal{B})$ is a maximal pair. Then from the proof of Theorem 1.1, we must have :

$$
\begin{align*}
\left|\operatorname{span}\left(\mathcal{A}^{\prime}\right)\right| & =2\left|\mathcal{A}^{\prime}\right| \tag{4}\\
\left|\operatorname{span}\left(\mathcal{B}^{\prime}\right)\right| & =\left|\mathcal{B}^{\prime}\right| \tag{5}\\
\operatorname{dim}\left(\operatorname{span}\left(\mathcal{A}^{\prime}\right)\right)+\operatorname{dim}\left(\operatorname{span}\left(\mathcal{B}^{\prime}\right)\right) & =n+1 \tag{6}
\end{align*}
$$

Proposition 4.1. $\mathcal{B}=\operatorname{span}(\mathcal{B})$. Further, $f_{\mathcal{B}}$ is a linear map.
Proof. This follows from equation (5). Let $x_{1}, x_{2} \in \mathcal{B}$. We show that $x_{3}=x_{1}+$ $x_{2} \in \mathcal{B}$. This would imply \mathcal{B} is closed under addition in \mathbb{F}_{2}^{n} over \mathbb{F}_{2}, and hence $\mathcal{B}=\operatorname{span}(\mathcal{B})$.

Let $x_{1}^{\prime}=f_{\mathcal{B}}\left(x_{1}\right)$ and $x_{2}^{\prime}=f_{\mathcal{B}}\left(x_{2}\right)$. From Equation (5), we have, $w=x_{1}^{\prime}+x_{2}^{\prime} \in$ \mathcal{B}^{\prime}. Since w and x_{3} agree on each of the rightmost n bits of x_{3}, we have $g_{\mathcal{B}}(w)=x_{3}$. Since $w \in \mathcal{B}^{\prime}$, from the definition of the function $g_{\mathcal{B}}$ we have $x_{3}=g_{\mathcal{B}}(w) \in \mathcal{B}$. Further, observe that $f_{\mathcal{B}}\left(x_{1}\right)+f_{\mathcal{B}}\left(x_{2}\right)=w=f_{\mathcal{B}}\left(x_{3}\right)=f_{\mathcal{B}}\left(x_{1}+x_{2}\right)$ and hence $f_{\mathcal{B}}$ is a linear map.

That \mathcal{B} is a linear code from Proposition 4.1 implies closure of the family of subsets \mathcal{B} under symmetric difference. In fact, we have the following stronger result.

Proposition 4.2. Let vectors $b_{1}, b_{2} \in \mathcal{B}$. Then, $b_{1}+b_{2} \in \mathcal{B}_{1}$ if and only if either $b_{1}, b_{2} \in \mathcal{B}_{1}$, or $b_{1}, b_{2} \in \mathcal{B}_{2}$. Otherwise, $b_{1}+b_{2} \in \mathcal{B}_{2}$.

Proof. We prove the 2-way implication, and rest of the proposition follows from Proposition 4.1. Let $b_{1}^{\prime}=f_{\mathcal{B}}\left(b_{1}\right), b_{2}^{\prime}=f_{\mathcal{B}}\left(b_{2}\right)$.

- $b_{1}+b_{2} \in \mathcal{B}_{1} \Rightarrow b_{1}$ and b_{2} are both from \mathcal{B}_{1}, or both from \mathcal{B}_{2}

Since $f_{\mathcal{B}}$ is a linear map, we have $\left(b_{1}+b_{2} \in \mathcal{B}_{1}\right) \Rightarrow\left(f_{\mathcal{B}}\left(b_{1}+b_{2}\right)=f_{\mathcal{B}}\left(b_{1}\right)+\right.$ $\left.f_{\mathcal{B}}\left(b_{2}\right)=b_{1}^{\prime}+b_{2}^{\prime} \in \mathcal{B}_{1}^{\prime}\right)$. So, the leftmost bit of $b_{1}^{\prime}+b_{2}^{\prime}$ is 0 . This means that the leftmost bit must be the same in b_{1}^{\prime} and b_{2}^{\prime}, which directly implies that either $b_{1}^{\prime}, b_{2}^{\prime} \in \mathcal{B}_{1}^{\prime}$, or $b_{1}^{\prime}, b_{2}^{\prime} \in \mathcal{B}_{2}^{\prime}$.

- Either $b_{1}, b_{2} \in \mathcal{B}_{1}$, or $b_{1}, b_{2} \in \mathcal{B}_{2} \Rightarrow b_{1}+b_{2} \in \mathcal{B}_{1}$

Since b_{1}^{\prime} and b_{2}^{\prime} agree upon the leftmost bit, $b_{1}^{\prime}+b_{2}^{\prime}$ has a 0 in its leftmost bit. So, $b_{1}^{\prime}+b_{2}^{\prime} \in \mathcal{B}_{1}^{\prime}$. From the Observation 1 above, we have $b_{1}+b_{2} \in \mathcal{B}_{1}$.

Proposition 4.3. \mathcal{B} is a self-orthogonal code.

Proof. We prove the proposition by showing that $\forall b_{1}, b_{2} \in \mathcal{B},\left\langle b_{1}, b_{2}\right\rangle=0$. Let B_{1}, B_{2} be the sets corresponding to the vectors b_{1}, b_{2}, respectively. Since we are operating in the field \mathbb{F}_{2}, it is enough to show that $\left|B_{1} \cap B_{2}\right|$ is even.

Let $b_{3}=b_{1}+b_{2}$. We observe that b_{3} is the characteristic vector of $B_{3}=B_{1} \Delta B_{2}$, the symmetric difference of B_{1} and B_{2}. We have,

$$
\begin{equation*}
\left|B_{3}\right|=\left|B_{1} \Delta B_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right|-2\left|B_{1} \cap B_{2}\right| \tag{7}
\end{equation*}
$$

As $\frac{c}{d}=\frac{1}{2}, \forall B \in \mathcal{B}_{1}$, we have $|B| \equiv 0(\bmod 4)$. By Proposition 4.1, $B_{1} \Delta B_{2}=$ $B_{3} \in \mathcal{B}$ as \mathcal{B} is a linear code. Taking equation (7) modulo 4 , if $B_{3} \in \mathcal{B}_{1}$, then

$$
\left|B_{1}\right|+\left|B_{2}\right|-2\left|B_{1} \cap B_{2}\right| \equiv 0(\bmod 4)
$$

By Proposition 4.2, both B_{1} and B_{2} are either from \mathcal{B}_{1} or from \mathcal{B}_{2}. In both cases, $\left|B_{1}\right|+\left|B_{2}\right| \equiv 0(\bmod 4)$ Therefore, $2\left|B_{1} \cap B_{2}\right| \equiv 0(\bmod 4)$ or $\left|B_{1} \cap B_{2}\right| \equiv 0(\bmod 2)$. If $B_{3} \in \mathcal{B}_{2}$, then

$$
\left|B_{1}\right|+\left|B_{2}\right|-2\left|B_{1} \cap B_{2}\right| \equiv\left|B_{3}\right| \equiv 2(\bmod 4)
$$

Again by Proposition 4.2, $\left|B_{1}\right|+\left|B_{2}\right| \equiv 2(\bmod 4)$.
So, we have $2\left|B_{1} \cap B_{2}\right| \equiv 0(\bmod 4)$ or $\left|B_{1} \cap B_{2}\right| \equiv 0(\bmod 2)$. Thus in both cases, $\left|B_{1} \cap B_{2}\right|$ is even, so \mathcal{B} is a self-othogonal code.

Lemma 4.4. Let $(\mathcal{A}, \mathcal{B})$ be a maximal pair, then $|\mathcal{B}| \leq 2^{\left\lfloor\frac{n}{2}\right\rfloor}$
Proof. It is a known result (see [11]) that for a linear code $C \subseteq \mathbb{F}_{2}^{n}$ and its dual code C^{\perp},

$$
\begin{equation*}
\operatorname{dim}(C)+\operatorname{dim}\left(C^{\perp}\right)=n \tag{8}
\end{equation*}
$$

For any self-orthogonal code $C, C \subseteq C^{\perp}$. So,

$$
\operatorname{dim}(C) \leq \operatorname{dim}\left(C^{\perp}\right)
$$

Applying equation (8) in this inequality, we get

$$
\begin{gathered}
n=\operatorname{dim}(C)+\operatorname{dim}\left(C^{\perp}\right) \geq 2 \operatorname{dim}(C) \\
\text { Therefore, } \operatorname{dim}(C) \leq \frac{n}{2}
\end{gathered}
$$

Since \mathcal{B} is a self-orthogonal code (Proposition 4.3), we get $\operatorname{dim}(\mathcal{B}) \leq \frac{n}{2}$. Hence,

$$
|\mathcal{B}| \leq 2^{2^{\left.\frac{n}{2}\right\rfloor}}
$$

Proposition 4.5. If a set A bisects B_{1}, B_{2} and $B_{1} \Delta B_{2}$, then A also bisects $B_{1} \cap B_{2}$.
Proof.

$$
\begin{aligned}
&\left|A \cap\left(B_{1} \triangle B_{2}\right)\right|=\frac{\left|B_{1} \Delta B_{2}\right|}{2}\left[\mathrm{~A} \text { bisects } B_{1} \Delta B_{2}\right] \\
& \Rightarrow\left|A \cap\left(\left(B_{1} \backslash B_{2}\right) \cup\left(B_{2} \backslash B_{1}\right)\right)\right|=\frac{\left|B_{1}\right|+\left|B_{2}\right|-2\left|B_{1} \cap B_{2}\right|}{2} \\
& \Rightarrow\left|A \cap\left(B_{1} \backslash B_{2}\right)\right|+\left|A \cap\left(B_{2} \backslash B_{1}\right)\right|=\frac{\left|B_{1}\right|}{2}+\frac{\left|B_{2}\right|}{2}-\left|B_{1} \cap B_{2}\right| \\
& \Rightarrow\left|A \cap B_{1}\right|-\left|A \cap\left(B_{1} \cap B_{2}\right)\right|+\left|A \cap\left(B_{2}\right)\right|-\left|A \cap\left(B_{1} \cap B_{2}\right)\right|=\frac{\left|B_{1}\right|}{2}+\frac{\left|B_{2}\right|}{2}-\left|B_{1} \cap B_{2}\right| \\
& \Rightarrow \frac{\left|B_{1}\right|}{2}+\frac{\left|B_{2}\right|}{2}-2\left|A \cap\left(B_{1} \cap B_{2}\right)\right|=\frac{\left|B_{1}\right|}{2}+\frac{\left|B_{2}\right|}{2}-\left|B_{1} \cap B_{2}\right| \\
& \Rightarrow 2\left|A \cap\left(B_{1} \cap B_{2}\right)\right|=\left|B_{1} \cap B_{2}\right| \\
& \Rightarrow\left|A \cap\left(B_{1} \cap B_{2}\right)\right|=\frac{\left|B_{1} \cap B_{2}\right|}{2}
\end{aligned}
$$

Proposition 4.6. \mathcal{B} is closed under intersection.
Proof. Let $B_{1}, B_{2} \in \mathcal{B}$. We show that $B_{1} \cap B_{2} \in \mathcal{B}$. By Proposition 4.1, $b_{1}+b_{2} \in \mathcal{B}$ i.e., $B_{1} \Delta B_{2} \in \mathcal{B}$. Let A be any arbitrary member of \mathcal{A}. Now, A bisects B_{1}, B_{2} and $B_{1} \Delta B_{2}$ as $(\mathcal{A}, \mathcal{B})$ is a cross bisecting pair. By Proposition 4.5, A bisects $B_{1} \cap B_{2}$. Since $(\mathcal{A}, \mathcal{B})$ is a maximal pair, we conclude that $B_{1} \cap B_{2} \in \mathcal{B}$.

Now, we prove the main result of this section, Theorem 1.2, the characterization of maximal pairs.

Statement of Theorem 1.2; Let $(\mathcal{A}, \mathcal{B})$ be a $\frac{1}{2}$-cross intersecting pair of families of subsets of $[n]$ with $|\mathcal{A}||\mathcal{B}|=2^{n}$. Then $(\mathcal{A}, \mathcal{B})$ is one of the following $\left\lfloor\frac{n}{2}\right\rfloor+1$ pairs of families $\left(\mathcal{A}_{k}, \mathcal{B}_{k}\right), 0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, up to isomorphism.

$$
\begin{gathered}
\mathcal{A}_{0}=2^{[n]} \text { and } \mathcal{B}_{0}=\{\emptyset\} \\
\mathcal{A}_{k}=\left\{A \in 2^{[n]}:|A \cap\{2 i-1,2 i\}|=1 \quad \forall i, 1 \leq i \leq k\right\} \\
\mathcal{B}_{k}=\left\{B \in 2^{[n]}:|B \cap\{2 i-1,2 i\}| \in\{0,2\} \quad \forall i, 1 \leq i \leq k \text { and } \forall j>2 k, j \notin B\right\},
\end{gathered}
$$

where $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$.
By isomorphism, it is meant that for any maximal pair $(\mathcal{A}, \mathcal{B}), \exists$ a bijective mapping $f:[n] \rightarrow[n]$ such that if every $A \in \mathcal{A}$ is replaced by $A_{f}=\{f(i) \mid i \in A\}$ and every $B \in \mathcal{B}$ is replaced by $B_{f}=\{f(i) \mid i \in B\}$ then the families $\left(\mathcal{A}_{f}, \mathcal{B}_{f}\right)$, where $\mathcal{A}_{f}=\left\{A_{f} \mid A \in \mathcal{A}\right\}$ and $\mathcal{B}_{f}=\left\{B_{f} \mid B \in \mathcal{B}\right\}$, is a maximal pair which is one of $\left(\mathcal{A}_{k}, \mathcal{B}_{k}\right), 0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$.

Proof. Consider a maximal pair $(\mathcal{A}, \mathcal{B})$ where $\mathcal{B} \neq\{\emptyset\}$. We write the elements of \mathcal{B} as rows of a $0-1$ matrix M_{0}. Suppose n_{0} columns have only 0 entries in all the rows ($n 0$ may be 0). As the characterization is up to isomorphism, we may assume that these are the rightmost n_{0} columns of the matrix M_{0}. In each of the remaining $n-n_{0}$ columns, from Lemma 3.1, there are exactly $\frac{|\mathcal{B}|}{2} 1$'s and $\frac{|\mathcal{B}|}{2} 0$'s as \mathcal{B} is a linear code. (by Proposition 4.1)
Define

$$
B_{1}=\bigcap_{\substack{1 \in \in, \dot{B} \\ B \in \mathcal{B}}} B
$$

We write the $\frac{|\mathcal{B}|}{2}$ rows containing 1 in the leftmost column of M_{0} as the top $\frac{|\mathcal{B}|}{2}$ rows to obtain a new matrix M_{1} from M_{0}. And B_{1} is one of these rows according to Proposition 4.6. Moreover, as all intersections are of even cardinality (Proposition $4.3\left|,\left|B_{1}\right|\right.$ is even.
Let $\left|B_{1}\right|=2 i_{1}, i_{1} \geq 1$. So, there are $2 i_{1}-1$ elements in B_{1} other than the element

1. Due to isomorphism, we may assume them to be $2,3, \ldots, 2 i_{1}$.

If $2 i_{1}+1 \leq n-n_{0}$, then define the set B_{2} as:

$$
B_{2}=\bigcap_{\substack{2 i_{1}+1 \in B, B \in \mathcal{B}}} B
$$

Claim 4.7. $1 \notin B_{2}$
Proof. Assume for the sake of contradiction, $1 \in B_{2}$. This implies that for all the $\frac{|\mathcal{B}|}{2}$ sets which contain the element $2 i_{1}+1$ also contain the element 1 . From Lemma 3.1, (number of sets in \mathcal{B} that contain the element 1) (number of sets in \mathcal{B} that contain the element $\left.2 i_{1}+1\right)=\frac{|\mathcal{B}|}{2}$. Hence, for any $B \in \mathcal{B}, 1 \in B \Longleftrightarrow$ $2 i_{1}+1 \in B$. This implies that $2 i_{1}+1 \in B_{1}$, which is a contradiction. Hence, $1 \notin B_{2}$ and therefore B_{2} does not belong to the top $\frac{|\mathcal{B}|}{2}$ rows of M_{1}.
Claim 4.8. $B_{1} \cap B_{2}=\emptyset$
Proof. Assume for the sake of contradiction, $x \in B_{1} \cap B_{2}$. Then x is present in the $\frac{|\mathcal{B}|}{2}$ rows of the matrix M_{1} whose intersection yields B_{1}. Since $x \in B_{2}$ and B_{2} does not belong to these $\frac{|\mathcal{B}|}{2}$ rows of M_{1} (by Claim 4.7). Thus, we have the element x present in at least $\frac{|\mathcal{B}|}{2}+1$ rows of M_{1}, contradicting Lemma 3.1.

We take the rows corresponding to the sets containing the $\left(2 i_{1}+1\right)^{\text {th }}$ element that are not among the first $\frac{|\mathcal{B}|}{2}$ rows in M_{1} and arrange them below the top $\frac{|\mathcal{B}|}{2}$ rows to create a matrix called M_{2} from M_{1}. Again from Proposition $4.3,\left|B_{2}\right|$ is even, say $2 i_{2}$. Due to isomorphism and Claim 4.8, we may assume that $2 i_{1}+1, \ldots, 2 i_{1}+2 i_{2}$ are these $2 i_{2}$ elements.

If $2 i_{1}+2 i_{2}+1 \leq n-n_{0}$, then define,

$$
B_{3}=\bigcap_{\substack{2 i_{1}+2 i_{2}+1 \in B, B \in \mathcal{B}}} B
$$

Claim 4.9. $1 \notin B_{3}$ and $2 i_{1}+1 \notin B_{3}$.
The proof is similar to that of Claim 4.7
Claim 4.10. $B_{1} \cap B_{3}=\emptyset$ and $B_{2} \cap B_{3}=\emptyset$.
The proof is again similar to that of Claim 4.8.
We take the rows corresponding to the sets containing the $\left(2 i_{1}+2 i_{2}+1\right)^{\text {th }}$ element that are not among the first r rows $\left(r>\frac{|\mathcal{B}|}{2}\right)$ in M_{2} which contain the elements 1 or $2 i_{1}+1$ and arrange them below the top r rows of M_{2} to create a matrix called M_{3} from M_{2}. From Proposition 4.3 and the definition of B_{3}, we have $\left|B_{3}\right|=2 i_{3}, i_{3} \geq 1$. Due to isomorphism and Claim 4.10, we may assume that $2 i_{1}+2 i_{2}+1, \ldots, 2 i_{1}+2 i_{2}+2 i_{3}$ are these $2 i_{3}$ elements.

We continue in this manner for k steps by constructing sets B_{1}, \ldots, B_{k} and matrices M_{1}, \ldots, M_{k}, where $k \geq 1$, until we have $2 i_{1}+\cdots+2 i_{k}=n-n_{0}$. Observe that B_{1}, \ldots, B_{k} and $P=\left\{n-n_{0}+1, \ldots, n\right\}$ is a partition of $[n]$.

Figure 1: Partitioning the universe and thereby the columns of M_{k}
Claim 4.11. For any set $B \in \mathcal{B}, j \in[k]$, we have $B \cap B_{j} \in\left\{\emptyset, B_{j}\right\}$. Further, $B \cap P=\emptyset$.

Proof. From the definition of P, we have $B \cap P=\emptyset$. Let $j \in[k]$. Since B_{j} is equal to the intersection of some $\frac{|\mathcal{B}|}{2}$ sets in \mathcal{B}, we have B_{j} present as a subset of all these $\frac{|\mathcal{B}|}{2}$ sets. Applying Lemma 3.1, we can say that no element of B_{j} is present in any set in \mathcal{B} other than these $\frac{|\mathcal{B}|}{2}$ sets. Hence, the claim.

From Claim 4.11, observe that $S=\left\{B_{1}, \ldots, B_{k}\right\}$ forms a basis of the row space of the matrix M_{k}. The advantage of such a "disjoint basis" is that the bisection in one part is independent of another.

Figure 2: Basis for the code \mathcal{B}
Claim 4.12. A set $A \in \mathcal{A}$ bisects every set in \mathcal{B} if and only if it bisects every set in the basis S of \mathcal{B}.

Proof. The forward direction is straightforward as $S \subseteq \mathcal{B}$. For the opposite direction, let $A \in \mathcal{A}$ be a set that bisects every member of S. Since the sets corresponding to the members in S are disjoint, any $B \in \mathcal{B}$ can be written as a union of some of these sets.
Let $B=B_{1} \cup \cdots \cup B_{l}$, where $\left\{B_{1}, \ldots, B_{l}\right\} \subseteq S$. Then,

$$
|A \cap B|=\left|A \cap\left(\bigcup_{j=1}^{l} B_{j}\right)\right|=\sum_{j=1}^{l}\left|A \cap B_{j}\right|=\sum_{j=1}^{l} \frac{\left|B_{j}\right|}{2}=\frac{\left|\bigcup_{j=1}^{l} B_{j}\right|}{2}=\frac{|B|}{2}
$$

Since each set $A \in \mathcal{A}$ bisects the sets B_{1}, \ldots, B_{k} and P, from Claim 4.12, the set A may contain any of the $2^{n_{0}}$ subsets of P, and $\left|A \cap B_{1}\right|=i_{1}, \ldots,\left|A \cap B_{k}\right|=i_{k}$. Since $\operatorname{dim}(\mathcal{B})=k$, by Proposition 4.1, we have $|\mathcal{B}|=2^{k}$.

$$
\begin{equation*}
|\mathcal{A}||\mathcal{B}|=\left(2^{n_{0}} \cdot \prod_{j=1}^{k}\binom{2 i_{j}}{i_{j}}\right) \cdot 2^{k} \tag{9}
\end{equation*}
$$

Recall that $\sum_{j=1}^{k} 2 i_{j}=n-n_{0}$. Right hand side of Equation (9), is equal to 2^{n} if and only if $i_{j}=1, \forall j \in[k]$.

Thus, if $\mathcal{B} \neq\{\emptyset\}$, then $\left(\mathcal{A}_{k}, \mathcal{B}_{k}\right), k \geq 1$, defined in the statement of the theorem are the only maximal pairs. This completes the proof of Theorem 1.2 .

5 Tight upper bound on $M_{\frac{c}{d}}(n)$ when \mathcal{B} is k-uniform and characterization of the cases when the bound is achieved

Let $(\mathcal{A}, \mathcal{B})$ be a $\frac{c}{d}$ cross-intersecting pair of families of subsets of $[n]$, where $\frac{c}{d} \in[0,1]$ is an irreducible fraction. In this section, we deal with the scenario when \mathcal{B} is k uniform, where $0<k \leq n$. Since \mathcal{B} is k-uniform, for any $A \in \mathcal{A}$ and any $B \in \mathcal{B}$, $|A \cap B|=\frac{c k}{d}=l$. Since c is relatively prime with d, and $|A \cap B|$ is an integer, we have k divisible by d. Therefore, we have a uniformly cross intersecting pair of families.

Alon and Lubetzky in [10] found a tight upper bound for the case of uniformly cross intersecting families and fully characterized the cases when the bound is achieved in the following theorem:

Theorem 5.1. [Theorem 1.1 in [10]] There exists some $l_{0}>0$ such that, for all $l \geq l_{0}$, every l-cross intersecting pair $\mathcal{A}, \mathcal{B} \subset 2^{[n]}$ satisfies:

$$
|\mathcal{A}||\mathcal{B}| \leq\binom{ 2 l}{l} 2^{n-2 l}
$$

Furthermore, if $|\mathcal{A}||\mathcal{B}|=\binom{2 l}{l} 2^{n-2 l}$, then there exists some choice of parameters κ, τ, n^{\prime} :

$$
\begin{gathered}
\kappa \in\{2 l-1,2 l\}, \tau \in\{0, \cdots, \kappa\} \\
\kappa+\tau \leq n^{\prime} \leq n
\end{gathered}
$$

such that upto a relabelling of the elements of $[n]$ and swapping \mathcal{A}, \mathcal{B}, the following holds:

$$
\begin{gathered}
\mathcal{A}=\left\{\bigcup_{T \in J} T: J \subset\{\{1, \kappa+1\}, \cdots,\{\tau, \kappa+\tau\},\{\tau+1\}, \cdots,\{\kappa\}\},|J|=l\right\} \times 2^{X}, \\
\mathcal{B}=\{L \cup\{\tau+1, \cdots, \kappa\}: L \subset\{1, \cdots, \tau, \kappa+1, \cdots, \kappa+\tau\},|L \cap\{i, \kappa+i\}|=1 \text { for } \\
\text { all } i \in[\tau]\} \times 2^{Y}
\end{gathered}
$$

where $X=\left\{\kappa+\tau+1, \cdots, n^{\prime}\right\}$ and $Y=\left\{n^{\prime}+1, \cdots, n\right\}$.
Let $(\mathcal{A}, \mathcal{B})$ be a $\frac{c}{d}$ cross-intersecting family where \mathcal{B} is k-uniform. From Theorem 5.1. there exists a $k_{0}>0$ such that if $\frac{c k}{d}=l>k_{0}$, then $|\mathcal{A}||\mathcal{B}| \leq\left(\begin{array}{l}\binom{2 l}{l} 2^{n-2 l} \text {. }\end{array}\right.$ Consider the case when \mathcal{B} corresponds to \mathcal{B} of Theorem 5.1. If $|\mathcal{A} \| \mathcal{B}|=\binom{2 l}{l} 2^{n-2 l}$, then $n^{\prime}=n, Y=\emptyset$, and $k=\kappa$ in the statement of Theorem 5.1. Since $l=\frac{c k}{d}$ and $k \in\left\{\frac{2 c k}{d}-1, \frac{2 c k}{d}\right\}$, we have the following two cases:

Case 1: $k=\frac{2 c k}{d}-1$. Then, $(k+1) d=2 c k$. Since $\operatorname{gcd}(c, d)=1$ and $\operatorname{gcd}(k, k+1)=$ 1 , we have $k|d| 2 k$. Thus, $d=k$ or $d=2 k$. We claim that $d=2 k$ is an invalid case.

This is because, when $d=2 k$, we have $c=k+1$. Since $\operatorname{gcd}(c, d)=1, k$ cannot be odd. And if k is even, then $l=\frac{c k}{d}=\frac{k+1}{2}$ is not an integer. So, the only valid case is $d=k, c=\frac{k+1}{2}=l$ and k is an odd integer.
Case 2: $k=\frac{2 c k}{d}$. Then, $\frac{c}{d}=\frac{1}{2}$, that is $(\mathcal{A}, \mathcal{B})$ is a cross bisecting pair. Since $l=\frac{c k}{d}=\frac{k}{2}$ is an integer, k must be even in this case.
If \mathcal{B} corresponds to \mathcal{A} of Theorem 5.1, we have $X=\emptyset, \tau=0, \mathcal{B}$ is $k(=l)$-uniform, $l=\frac{c k}{d}$. Thus, we have $\frac{c}{d}=1, \mathcal{A}=\{\{1, \ldots, \kappa\}\} \times 2^{Y}$ where $Y=\{\kappa+1, \ldots, n\}$ and $\mathcal{B}=\binom{[\kappa]}{k}, \kappa \in\{2 k-1,2 k\}$ up to a relabelling of the elements.

This leads us to the main result of this section.
Statement of Theorem 1.3: Let $(\mathcal{A}, \mathcal{B})$ be a $\frac{c}{d}$-cross intersecting pair of families of subsets of $[n]$. Let \mathcal{B} be k-uniform. Then, there exists some $k_{0}>0$, such that for $k>k_{0}$ we have

$$
|\mathcal{A}||\mathcal{B}| \leq\left(\frac{\frac{2 c k}{c}}{\frac{c k}{d}}\right) 2^{n-\frac{2 c k}{d}}
$$

and the bound is tight if and only if, either (a) or (b) hold:
(a) When $\frac{c}{d}=1, \mathcal{A}=\{\{1, \ldots, \kappa\}\} \times 2^{Y}, \mathcal{B}=\binom{[k]}{k}$ where $Y=\{\kappa+1, \ldots, n\}$ and $\kappa \in\{2 k-1,2 k\}$ up to a relabelling of the elements of $[n]$.
(b) When $\frac{c}{d} \neq 1$:
(i) If k is even, $c=1, d=2, \frac{c k}{d}=\left\lceil\frac{k}{2}\right\rceil$,
(ii) If k is odd, $c=\frac{k+1}{2}, d=k, \frac{c k}{d}=\left\lceil\frac{k}{2}\right\rceil$,
and for both the cases((i) and (ii)), there exists some τ such that, $k+\tau \leq n$ and up to a relabelling of the elements of $[n]$,
$\mathcal{A}=\left\{\cup_{T \in J} T: J \subset\{\{1, k+1\}, \ldots,\{\tau, k+\tau\},\{\tau+1\}, \ldots,\{k\}\},|J|=\left\lceil\frac{k}{2}\right\rceil\right\} \times 2^{X}$
where $X=\{k+\tau+1, \ldots, n\}$ and

$$
\begin{gathered}
\mathcal{B}=\{L \cup\{\tau+1, \ldots, k\}: L \subset\{1, \ldots, \tau, k+1, \ldots, k+\tau\},|L \cap\{i, k+i\}|=1 \text { for } \\
\text { all } i \in[\tau]\} .
\end{gathered}
$$

6 Discussion

What are those pairs of $\frac{c}{d}$-cross intersecting families $(\mathcal{A}, \mathcal{B})$ which achieve $|\mathcal{A}||\mathcal{B}|=$ 2^{n} (equal to the upper bound for $\mathcal{M}_{\frac{c}{d}}(n)$ proved in Theorem 1.1)? In the introduction we characterize such families when $\frac{c}{d}=0$ and $\frac{c}{d}=1$. In Theorem 1.2, we
characterize such families when $\frac{c}{d}=\frac{1}{2}$. From Theorem 1.3 , we see that when \mathcal{B} is k-uniform, $|\mathcal{A}||\mathcal{B}|$ is maximized when $\frac{c}{d}$ is 1 or nearly $\frac{1}{2}\left(\frac{1}{2}\right.$ or $\left.\frac{1}{2}+\frac{1}{2 k}\right)$. For $\frac{c}{d} \in(0,1)$, besides the case $\mathcal{A}=2^{[n]}, \mathcal{B}=\{\emptyset\}$, is $|\mathcal{A}||\mathcal{B}|=2^{n}$ achieved only when $\frac{c}{d}$ is close to $\frac{1}{2}$?

7 References

[1] P. Erdős, C. Ko, and R. Rado, "Intersection theorems for systems of finite sets," The Quarterly Journal of Mathematics, vol. 12, pp. 313-320, 011961.
[2] D. K. Ray-Chaudhuri and R. M. Wilson, "On t-designs," Osaka J. Math., vol. 12, no. 3, pp. 737-744, 1975.
[3] P. Frankl and R. M. Wilson, "Intersection theorems with geometric consequences," Combinatorica, vol. 1, pp. 357-368, 121981.
[4] R. Bose et al., "A note on Fisher's inequality for balanced incomplete block designs," The Annals of Mathematical Statistics, vol. 20, no. 4, pp. 619-620, 1949.
[5] N. Balachandran, R. Mathew, and T. K. Mishra, "Fractional L-intersecting families," CoRR, vol. abs/1803.03954, 2018.
[6] J. Liu and W. Yang, "Set systems with restricted k-wise L-intersections modulo a prime number," European Journal of Combinatorics, vol. 36, pp. 707719, 022014.
[7] L. Pyber, "A new generalization of the Erdős-Ko-Rado theorem," Journal of Combinatorial Theory, Series A, vol. 43, no. 1, pp. 85-90, 1986.
[8] P. Frankl, S. J. Lee, M. Siggers, and N. Tokushige, "An Erdős-Ko-Rado theorem for cross t-intersecting families," Journal of Combinatorial Theory, Series A, vol. 128, pp. $207-249,2014$.
[9] R. Ahlswede, N. Cai, and Z. Zhang, "A general 4-words inequality with consequences for 2-way communication complexity," Advances in Applied Mathematics, vol. 10, no. 1, pp. $75-94,1989$.
[10] N. Alon and E. Lubetzky, "Uniformly cross intersecting families," Combinatorica, vol. 29, pp. 389-431, Jul 2009.
[11] J. H. van Lint, Linear Codes, pp. 33-46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.

