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ADMISSIBLE PINNACLE ORDERINGS

IRENA RUSU AND BRIDGET EILEEN TENNER∗

Abstract. A pinnacle of a permutation is a value that is larger than its immediate neigh-
bors when written in one-line notation. In this paper, we build on previous work that
characterized admissible pinnacle sets of permutations. For these sets, there can be specific
orderings of the pinnacles that are not admissible, meaning that they are not realized by any
permutation. Here we characterize admissible orderings, using the relationship between a
pinnacle x and its rank in the pinnacle set to bound the number of times that the pinnacles
less than or equal to x can be interrupted by larger values.

1. Introduction

In previous work with Davis, Nelson, and Petersen, the second author defined and studied
pinnacle sets of permutations [2]. This was motivated by the related analyses of peak sets in
the literature, including work by Billey, Burdzy, and Sagan [1]. The work of [2] included a
variety of related enumerative results about these objects, and—most relevant to the present
work—a characterization of which sets can occur as pinnacle sets of permutations. Such sets
were called admissible pinnacle sets. Recent works by the first author [4] and by Diaz-Lopez,
Harris, Huang, Insko, and Nilsen [3] devise procedures for generating all permutations with
a given pinnacle set.

It was recently noted by the first author that an admissible pinnacle set may not actually
be admissible under all orderings [4]. For example, {3,5,7} is an admissible pinnacle set, as
demonstrated by the permutation 4523176 ∈ S7 and depicted in Figure 1, but there is no
permutation with these pinnacles for which they appear in the order (3, 7, 5). Question 3 of

Figure 1. The permutation 4523176 ∈ S7. Its pinnacle set is {3, 5, 7} and
the pinnacles appear in the order (5, 3, 7).

[4] was to characterize which orderings of the elements in an admissible pinnacle set can be
realized.

Here we answer that question, determining which orderings of an admissible pinnacle set
are, themselves, admissible. This is, as it turns out, not so much about permutations of
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the pinnacles as it is about subsets of the pinnacles that must be uninterrupted when they
appear in a permutation. We foreshadow that result with the following example.

Example 1.1. The set S = {3, 5, 8, 9, 13, 14} is an admissible pinnacle set. In any permu-
tation w with pinnacle set S, the pinnacles can appear in any order so long as

• the pinnacles {3, 5} appear consecutively, and
• the pinnacles {3, 5, 8, 9} appear consecutively.

Thus, there are 2!3!3! = 72 admissible orderings of the pinnacle set S: permutations of the
elements of each of the sets

{3, 5},
{

{3, 5}, 8, 9
}

, and
{

{

{3, 5}, 8, 9
}

, 13, 14
}

.

This is one tenth of the total orderings of the 6 elements of S.

In Section 2, below, we introduce the terminology, notation, and key background for the
work in this paper. Section 3 contains the main result and we conclude with directions for
further research in Section 4.

2. Background

In this paper we consider permutations of [n] as words w = w(1)w(2) · · ·w(n). Let Sn be
the set of all such permutations.

Definition 2.1. A peak of w is an index i ∈ [2, n− 1] such that w(i− 1) < w(i) > w(i+1),
and a valley is an index i such that w(i− 1) > w(i) < w(i+ 1). Focusing on values and not
positions, a pinnacle of w is a value w(i) at which i is a peak, and a vale of w is a value w(i)
at which i is a valley. The pinnacles of a permutation w are denoted Pin(w).

Example 2.2. Consider 13287564 ∈ S8. The peaks of this permutation are {2, 4, 7}, the
valleys are {3, 6}, the pinnacles are {3, 6, 8}, and the vales are {2, 5}. The pinnacles appear
in the order (3, 8, 6).

When one graphs a permutation by plotting and connecting the points {(i, w(i))}, as
in Figure 1, the resulting “landscape” gives geographic motivation to the words “peak,”
“valley,” “pinnacle,” and “vale.”

Not every set can be a pinnacle set. For example {2} is not a pinnacle set because there
are not two different positive integers, both less than 2, to serve as neighbors to 2 in a
permutation.

Definition 2.3. A set S is an admissible pinnacle set if there exists a permutation whose
pinnacle set is S.

The characterizing result of [2] was the following theorem.

Theorem 2.4 ([2, Theorem 1.5]). Let S be a set of integers with maxS = m. Then S is an
admissible pinnacle set if and only if both

1. S \ {m} is an admissible pinnacle set, and
2. m > 2|S|.

As discussed in that paper, an admissible pinnacle set with maximum element m can be
studied in Sm without losing any sense of generality. This is because non-pinnacles that are
larger than this m would have to appear in a decreasing prefix or increasing suffix, adding
no information or restriction about the pinnacles that may appear.
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Note that Theorem 2.4 says nothing about the order in which the pinnacles can (or must)
appear in a demonstrative permutation.

Definition 2.5. Let S be an admissible pinnacle set. An admissible ordering of S is an
ordering of the elements of S for which there exists a permutation whose pinnacle set is S
and whose pinnacles appear in the given order.

Example 2.6.

(a) The set S = {3, 5, 7} is an admissible pinnacle set. The admissible orderings of S are
(3, 5, 7), (5, 3, 7), (7, 3, 5), and (7, 5, 3). Demonstrative permutations for each of these
admissible orderings are, respectively, 1325476, 4513276, 6713254, and 6745132.

(b) Neither (3, 7, 5) nor (5, 7, 3) is an admissible ordering. In both cases the ordering is
impossible because there would be nowhere to place 6 in such a permutation.

One might read Example 2.6(b) to suggest a whiff of permutation patterns to be the issue
of admissible orderings. Something like, perhaps: a large pinnacle cannot be sandwiched
between smaller pinnacles. However, the actual result has a notably different flavor. Indeed,
the main result applied to the pinnacle set {3, 5, 7}—in fact, to any admissible pinnacle set
of the form {3, 5, x}—would say only that the pinnacles 3 and 5 must appear consecutively.

3. Main result

Throughout this section, let S be an admissible pinnacle set. To ease the discussion, we
set the following notation, always assuming that x is a positive integer:

non-pinnacles: S := [1,maxS] \ S,

small pinnacles: Sx := [1, x] ∩ S, and

small non-pinnacles: Sx := [1, x] ∩ S = [1, x] \ S = [1, x] \ Sx.

Certainly |Sx|+ |Sx| = x.
As suggested by Example 2.6, what might prevent an ordering of S to be admissible is

not an element of S itself, but rather the elements of S.

Definition 3.1. Let S be a set, and T ⊆ S. Fix an ordering A of the elements of S. Abuse
notation for a moment and consider A not as a sequence but as a word

A = a0t1a1t2 · · · ak−1tkak,

where each ti is a word consisting of elements of T , each ai is a word consisting of elements
of S \ T , and only a0 and ak may be empty. The set T is interrupted k − 1 times in A. If
k = 1, we say that T is uninterrupted in A.

We demonstrate this interruption with two examples.

Example 3.2.

(a) For any S and A, the set S itself is uninterrupted in A.
(b) Let S = {4, 6, 8, 10, 11}. The set {4, 6, 8} ⊂ S is interrupted 1 time in the ordering

(10, 6, 4, 11, 8), and 2 times in the ordering (6, 10, 4, 11, 8).

The language of interruption succinctly describes a phenomenon of admissible pinnacle
orderings.
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Lemma 3.3. For any x ∈ S, if
∣

∣Sx

∣

∣ =
∣

∣Sx

∣

∣− 1,

then Sx is uninterrupted in the admissible orderings of S.

Proof. Set h := |Sx|. These smallest h pinnacles must be interspersed with at least h + 1
elements of Sx. But |Sx| = h + 1, so there are only h + 1 elements of S available for this
purpose. Thus, in w, these 2h + 1 values must appear consecutively, in some order that
yields the required pinnacles. Thus the pinnacles in Sx are uninterrupted in the admissible
orderings of S. �

Lemma 3.3 suggests a rephrasing of Theorem 2.4 that will give key insight to the question
of admissible orderings. One appeal of this alternative characterization is that it is not
recursive.

Theorem 3.4. A set S of positive integers is an admissible pinnacle set if and only if
|Sx| < x/2 for all x ∈ S.

Proof. We prove Theorem 3.4 by induction on |S|. If S is an admissible 1-element pinnacle
set, then certainly x ∈ S is at least 3, and |Sx| = 1 < 3/2 ≤ x/2. Similarly, if S = {x}
and 1 < x/2, then x ≥ 3 and S is clearly admissible: the permutation 1x234 · · · (x− 1) has
pinnacle set {x}.

Now suppose that the result holds for all sets with at most n elements, and suppose
that |S| = n + 1. Let m = maxS. Suppose, first, that S is admissible. By Theorem 2.4,
|S| = |Sm| < m/2 and S \{m} must be admissible. Therefore |Sx| < x/2 for all x ∈ S \{m},
by the inductive hypothesis, completing the proof of this direction. On the other hand, if
|Sx| < x/2 for all x ∈ S, then |Sm| = |S| < m/2, and S \ {m} is admissible by the inductive
hypothesis. It follows from Theorem 2.4, then, that S is admissible. �

As observed above, the inequality “|Sx| < x/2” in Theorem 3.4 could be rephrased as

|Sx| < |Sx|.

One corollary of Theorem 3.4 is that admissibility is maintained in “down-sets.”

Corollary 3.5. If S is an admissible pinnacle set, then Sx is an admissible pinnacle set for
all x.

We are now able to state the main result, answering the question in [4]. That result will
be stated in terms of the statistic

kx := |Sx| − |Sx| − 1,

for x ∈ S.

Theorem 3.6. Let S be an admissible pinnacle set. An ordering A of S is admissible if and
only if, for each x ∈ S, the set Sx is interrupted at most kx times in A.

Proof. First suppose that A is admissible. The vales that are interspersed among the pinna-
cles y ∈ Sx must be less than x, and hence are elements of Sx. There are only |Sx|+ kx + 1
such values available. For Sx to be interrupted more than kx times would require at least
|Sx|+ kx +2 valleys/vales: one vale to the left of each element of Sx, one vale at the start of
each interruption, and one value to the right of the rightmost element in Sx. There are too
few vales available, so Sx must be interrupted at most kx times.
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Now suppose that we have an ordering A of S in which, for each x ∈ S, the set Sx

is interrupted at most kx times. We will show that A is admissible by constructing a
permutation w whose pinnacles appear in this order. The construction will use the smallest
|S| + 1 elements of S as vales, which is sufficient to show that A is admissible because the
remaining elements of S can be added as a decreasing prefix and/or increasing suffix.

Let S = {x1, . . . , xp} with x1 < x2 < · · · < xp. Use the two smallest elements in Sx1
,

which are necessarily 1 and 2, as vales incident to x1. Now assume, inductively, that all
pinnacles in Sxi

have their incident vales filled with the smallest elements in S. The set Sxi

is interrupted jxi
≤ kxi

times, so we have used |Sxi
| + jxi

+ 1 ≤ |Sxi
| elements of Sxi

to do
this.

We must now fill in the vales incident to the pinnacles in Sxi+1
\Sxi

that have not already

been determined. By hypothesis, Sxi+1
contains enough remaining elements to do this, and

we use the smallest among them for the task. �

We demonstrate the proof of Theorem 3.6 with examples, recalling Example 3.2(b).

Example 3.7.

(a) Consider S = {4, 6, 8, 10, 11} and A = (10, 6, 4, 11, 8). We now try to fill between the
elements of A, iteratively, to create a permutation with the desired pinnacles in the
desired order.

10 6 4 11 8
10 6 1 4 2 11 8
10 3 6 1 4 2 11 8
10 3 6 1 4 2 11 5 8 7

9 10 3 6 1 4 2 11 5 8 7

The fact that this A is an admissible ordering is confirmed by computing the kx
values (using the notation of Theorem 3.6) and comparing them to the interruptions
in A:

k4 = 1 k6 = 1 k8 = 1 k10 = 1 k11 = 0,

while S4 and S6 and S11 = S are each uninterrupted, and S8 and S10 are each
interrupted once.

(b) Now consider the same set S, and the ordering A′ = (6, 10, 4, 11, 8). Since S8 is
interrupted twice in A′, and k8 = 1, this A′ is not an admissible ordering. Indeed,
there would be no place for the value 9 while still creating the desired pinnacles and
in the desired order.

Note that the value kx = |Sx| − |Sx| − 1 in the statement of Theorem 3.6 can also be
computed via x− 2|Sx| − 1. Similarly, if S = {x1 < x2 < · · · < xp}, then

(1) kxi
= xi − 2i− 1.

4. Implications and follow-up questions

One can easily use the main result to confirm the observation of [4] and Example 1.1.

Example 4.1. Consider the admissible pinnacle set S = {3, 5, x} where x > 5 (in fact, to
be admissible, x > 6). Because |S5| − |S5| = 1, we must have that {3, 5} is uninterrupted in
the admissible orderings of S.
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Example 4.2. Consider the admissible pinnacle set S = {3, 5, 8, 9, 13, 14}. Compute kx for
each x ∈ S:

k3 = 2− 1− 1 = 0,

k5 = 3− 2− 1 = 0,

k8 = 5− 3− 1 = 1,

k9 = 5− 4− 1 = 0,

k13 = 8− 5− 1 = 2, and

k14 = 8− 6− 1 = 1.

Therefore, {3, 5} and {3, 5, 8, 9} must each be uninterrupted in the admissible orderings of
S. We also find that {3, 5, 8} can be interrupted at most once and {3, 5, 8, 9, 13} can be
interrupted at most twice. However, requiring {3, 5, 8, 9} to be uninterrupted will guarantee
that these requirements for S8 and S13 are met.

We can also use Theorem 3.6 to more fully explain Example 3.2.

Example 4.3. Let us describe all admissible orderings of the admissible pinnacle set S =
{4, 6, 8, 10, 11}. Based on the values kx computed in Example 3.7(a), we find that {4}, {4, 6},
{4, 6, 8}, and {4, 6, 8, 10} can each be interrupted at most once, while {4, 6, 8, 10, 11}must be
uninterrupted. Several of these requirements are guaranteed by any permutation with these
pinnacles, and the only nontrivial requirement is that {4, 6, 8} be interrupted at most once
in any admissible ordering of S. With this information, we can count admissible orderings
of S. Namely, there are 5! permutations of S, and we disallow those in which {4, 6, 8} occur
in alternating positions: 5!− 3!2! = 108.

The strictest requirements we find from Theorem 3.6 are when |Sx| = (x− 1)/2, in which
case Sx must be uninterrupted. Because S is a set of integers, we can draw the following
conclusion.

Corollary 4.4. The only sets Sx which require no interruption are when x ∈ S is odd.

An obvious open problem is to find a function for computing the number of admissible
orderings of a given pinnacle set.

In another direction, we can ask a question analogous to the one that led to the recent
work of [3, 4]. Namely, is there a class of operations that one may apply to any permutation
w with Pin(w) = S and pinnacles appearing in a fixed order A, to obtain any other w′ with
the same pinnacle set and ordering of the pinnacles, and no other permutations?

Similarly, is there a way to use properties of S (without having to look at all permutations
with pinnacle set S) to endow its orderings with a partial order such that A ≤ A′ in the
partial order, then the number of permutations with pinnacles appearing in the order A is
less than or equal to the number with pinnacles appearing in the order A′?

Given Theorem 3.6 and Corollary 4.4, it is natural to wonder about pinnacle sets with
“extreme” amounts of uninterruption. For example, what does “extreme” mean in this
context? What pinnacle sets have it? How many are there? What does this imply for the
permutations with those pinnacle sets? How many are there? Etc. One could ask similar
questions about pinnacle sets with “average” amounts of interruption.

We conclude by mentioning one version of extremism here; namely, those pinnacle sets in
which every ordering is admissible.
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Definition 4.5. An admissible pinnacle set S is maximally admissible if every ordering of
S is admissible.

A pinnacle set S that is maximally admissible has |S|! admissible pinnacle orderings, and
fewer otherwise.

Corollary 4.6. An admissible pinnacle set S = {x1 < x2 < · · · < xp} is maximally admis-
sible if and only if for each 1 < i < p the condition xi ≥ min{p+ i+ 1, 3i} holds.

Proof. For a fixed i, each interruption of Sxi
is due to an element of S \Sxi

, so the number of
interruptions of Sxi

is bounded from above by |S \Sxi
| = p− i. Every ordering is admissible

if and only if Sxi
may be interrupted at least min{|Sxi

| − 1, |S \ Sxi
|} = min{i − 1, p − i}

times, for each 1 < i < p. (The set S itself cannot be interrupted, nor can Sx1
.) According

to Theorem 3.6 and equation (1), that means min{i− 1, p− i} ≤ kxi
= xi − 2i− 1 and the

conclusion follows. �

Example 4.2 shows that in Theorem 3.6, some of the tests concerning the number of
interruptions of Sx may be unnecessary. We identify below a subset of tests avoiding a lot
of these redundancies.

Corollary 4.7. Let S = {x1 < x2 < · · · < xp} be an admissible pinnacle set. An ordering
A of S is admissible if and only if for each 1 < i < p such that:

(i) xi < min{p+ i+ 1, 3i}, and
(ii) xi−1 + 2 ≥ xi ≤ xi+1 − 2.

the set Sxi
is interrupted at most kxi

= |Sxi
| − |Sxi

| − 1 times in A.

Proof. The forward direction is directly implied by Theorem 3.6.
In order to prove the reverse direction, we will show that even for the pinnacles xj that

do not satisfy both conditions (i) and (ii), the set Sxj
is interrupted at most kxj

times. Note
that neither S nor Sx1

can be interrupted, and so any bound on the number of interruptions
permitted for these sets is trivially satisfied.

Suppose that xj ∈ S is a pinnacle that does not satisfy both conditions (i) and (ii), with
1 < j < p. If condition (i) is false for xj , then xj ≥ min{p+ j+1, 3j}. Corollary 4.6 implies
that kxj

is large enough to allow as many interruptions of Sxj
as possible, and the conclusion

follows.
We assume now that xj does not satisfy condition (ii). By equation (1), we have that

xl−1 + 2 ≥ xl if and only if kxl−1
≥ kxl

, for all 1 < l ≤ p. Thus

xj−1 + 2 ≥ xj ≤ xj+1 − 2 if and only if kxj−1
≥ kxj

≤ kxj+1

For each 1 < l < p, if h is the number of interruptions of Sxl
in A, then

(a) the number of interruptions of Sxl+1
in A is at most h+ 1, and

(b) the number of interruptions of Sxl−1
in A is at most h+ 1.

Then there are two possible cases.

Case 1: kxj−1
< kxj

.
Let h ≤ j − 1 be maximal such that xh satisfies conditions (i) and (ii),

or h = 1. Thus h = 1, or kxh−1
≥ kxh

< kxh+1
< · · · < kxj−1

< kxj
. By

hypothesis, the set Sxh
is interrupted at most kxh

times. Furthermore, by
affirmation (a) applied j−h times, we deduce that the number of interruptions
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of Sxj
is at most kxh

+ (j − h). The inequalities between kxh
and kxj

imply
that kxh

+ (j − h) ≤ kxj
, as needed.

Case 2: kxj
> kxj+1

.

Let h ≥ j + 1 be minimal such that xh satisfies conditions (i) and (ii), or
h = p. Thus h = p, or kxh+1

≥ kxh
< kxh−1

< · · · < kxj+1
< kxj

. By hypothesis,
the set Sxh

is interrupted at most kxh
times. Furthermore, by affirmation (b)

applied h − j times, we have that the number of interruptions of Sxj
is at

most kxh
+ (h − j). Again, the inequalities between kxh

and kxj
imply that

kxh
+ (h− j) ≤ kxj

, as needed.

By Theorem 3.6, we deduce that A is admissible.
�

To demonstrate Corollary 4.7, we return to Example 4.2.

Example 4.8. Consider the admissible pinnacle set S = {3, 5, 8, 9, 13, 14}. Following Corol-
lary 4.7, the only interruptions we need to check are for the pinnacles 5, 9 ∈ S. We have
k5 = 0, meaning that S5 must be uninterrupted, and k9 = 0, meaning that S9 must be
uninterrupted. This latter fact forces S8 to be interrupted at most once (necessarily by 9),
while S13 can never be interrupted more than once (because the only remaining pinnacle is
14). The sets S3 and S14 = S are necessarily uninterrupted. Thus we have recovered the
conclusions of Example 4.2.
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