The Polychromatic Number of Small Subsets of the Integers Modulo n

Emelie Curl, John Goldwasser, Joe Sampson, Michael Young

November 2, 2021

Abstract

If S is a subset of an abelian group G, the polychromatic number of S in G is the largest integer k so that there is a k-coloring of the elements of G such that every translate of S in G gets all k colors. We determine the polychromatic number of all sets of size 2 or 3 in the group of integers mod n .

Keywords polychromatic coloring, abelian group, group tiling, complement set
AMS subject classification 05D99, 20K01

1 Introduction

Throughout this paper G will denote an arbitrary abelian group. Given $S \subseteq G, a \in G$, $a+S=\{a+s \mid s \in S\}$. Any set of the form $a+S$ is called a translate of S. A k-coloring of the elements of G is S-polychromatic if every translate of S contains an element of each of the k colors. The polychromatic number of S in G, denoted $p_{G}(S)$, is the largest number of colors such that there exists an S-polychromatic coloring of G. The notation $p(S)$ is used when G is the set of integers, \mathbb{Z}, and $p_{n}(S)$ is used when $G=\mathbb{Z}_{n}$, the group of integers $\bmod n$. In this paper, $p_{n}(S)$ is determined for all $n \geq 3$ and $|S|=2$ or 3 . The techniques used may be useful in determining $p_{n}(S)$ for larger sets S and for other coloring problems.

The notions of polychromatic colorings and polychromatic number for sets in abelian groups can be extended. If G is any structure and H is a family of substructures then a k-coloring of G is H-polychromatic if every member of H gets all k colors, and the polychromatic number $p_{G}(H)$ of H in G is the largest k such that there is an H-polychromatic coloring with k colors. In this paper, G is \mathbb{Z}_{n} and H is the family of all translates of a subset S. Alon et.al. [1], Bialostocki [4], Offner [9, and Goldwasser et.al. [6] considered the case when G is an n-cube and H is the family of all sub- d-cubes for some fixed $d \leq n$. Axenovich et. al. [2] considered the case where G is the complete graph on n vertices and H is the family of all perfect matchings or Hamiltonian cycles or 2-factors.

If S and T are subsets of an abelian group G, we say T is a blocking set for S if $G \backslash T$ contains no translate of S. Blocking sets are of interest in extremal combinatorics, because if T is a minimum size blocking set for S then $G \backslash T$ is a maximum size subset of G with no
translate of S, so is the solution to a Turán-type problem. It is well known ([3, [10]) that T is a complement set for S if and only if $-T$ is a blocking set for S. Clearly each color class in an S-polychromatic coloring is a blocking set for S.

In [3], Axenovich et. al. considered the situation when G is the group of integers and H is the family of all translations of a set S of 4 integers. They showed that the polychromatic number of any set S of 4 integers in \mathbb{Z} is at least 3, by finding a particular value of n such that $3 \leq p_{n}(S)$. That implies that any set S of size 4 has a blocking set in \mathbb{Z} of density at most $1 / 3$, proving a conjecture of Newman about densities of complement sets.

Whereas in [3] it was shown that for each set S of integers of size 4, there exists an integer n such that $3 \leq p_{n}(S)$, such an inequality does not hold for all S and n. For example, if $S=\{0,1,3,6\}$ and $n=11$, then $p_{n}(S)=2$. It would be difficult to determine $p_{n}(S)$ for all values of n and all sets S of size 4, but in this paper these values are determined for all sets S of size 3 .

Example 1.1. Let $S=\{0, a, b\}$ be a subset of \mathbb{Z}_{n} where n is divisible by $3, a \equiv 1(\bmod 3)$, and $b \equiv 2(\bmod 3)$. Then $p_{n}(S)=3$ as the coloring $R B Y R B Y \ldots$ is obviously S-polychromatic.
Example 1.2. If $S=\{0,1,3\}$ and $n=7$ then $p_{n}(S)=1$.

Figure 1: Fano plane and an incidence matrix

Consider the above figure and note that the 7×7 circulant matrix is an incidence matrix for the Fano plane. It is well known (and it is easy to check) that in any 2 -coloring of the vertices of the Fano plane there is a monochromatic edge, which implies there is no S-polychromatic 2 -coloring, so $p_{7}(S)=1$.

The main result of this paper is that examples 1.1 and 1.2 are essentially the only examples of sets S of size three such that $p_{n}(S)$ is not equal to 2 .

2 Simplifying assumptions and the main theorem

The polychromatic number of a set S in \mathbb{Z}_{n} is unchanged under certain operations involving translation, multiplication, and scaling. If $|S|=3$ we can use those operations to convert a set S to a set S^{\prime} which has the same polychromatic number, and has one of two specific forms.

Lemma 2.1. If $1 \leq d, t, n \in \mathbb{Z}, S=\left\{a_{1}, a_{2}, \ldots a_{t}\right\} \subseteq \mathbb{Z}_{n}$, and $S^{\prime}=\left\{d a_{1}, d a_{2}, \ldots d a_{t}\right\}$, then $p_{d n}\left(S^{\prime}\right)=p_{n}(S)$.

Proof. Any S-polychormatic coloring of \mathbb{Z}_{n} can clearly be copied on the subgroup $\langle d\rangle$ of $\mathbb{Z}_{d n}$, and then duplicated on all the cosets of $\langle d\rangle$, to get an S^{\prime}-polychromatic coloring of $\mathbb{Z}_{d n}$. Going the other way, in any S^{\prime}-polychromatic coloring of $\mathbb{Z}_{d n}$, the restricted coloring on $\langle d\rangle$ can be copied on \mathbb{Z}_{n} to get an S-polychromatic coloring.

Hence we can simply divide out a common factor of n and the elements of S without changing the polychromatic number. Since we can also take any translation of S without changing the polychromatic number, from now on we will assume that every set S of size 3 in \mathbb{Z}_{n} has the form $S=\{0, a, b\}$ where $\operatorname{gcd}(a, b, n)=1$.

Lemma 2.2. Let $1 \leq d, t, n \in \mathbb{Z}$ such that $d<n$ and $\operatorname{gcd}(d, n)=1$. If $S^{\prime}=\left\{d a_{1}, d a_{2}, \ldots d a_{t}\right\}$ and $S=\left\{a_{1}, a_{2}, \ldots a_{t}\right\}$, then $p_{n}(S)=p_{n}\left(S^{\prime}\right)$.

Proof. If χ^{\prime} is S^{\prime}-polychromatic, the coloring χ defined by $\chi(y)=\chi^{\prime}(d y)$ is clearly S-polychromatic. This argument can be reversed since d is invertible in \mathbb{Z}_{n}.

Definition 2.3. If $S=\left\{a_{1}, a_{2}, \ldots, a_{t}\right\} \subseteq \mathbb{Z}_{n}$ and $S^{\prime}=\left\{d a_{1}+c, d a_{2}+c, \ldots, d a_{t}+c\right\}$, where $c, d \in \mathbb{Z}_{n}$ and $\operatorname{gcd}(d, n)=1$, then we say that S and S^{\prime} are equivalent sets in \mathbb{Z}_{n}.

Thus, Lemma 2.2 says that equivalent sets in \mathbb{Z}_{n} have the same polychromatic number.
Lemma 2.4. For all $b \in \mathbb{Z}_{n}$ with $3 \leq n$ there exists $b^{\prime} \in \mathbb{Z}_{n}$ so that $b^{\prime} \leq\left\lceil\frac{n}{2}\right\rceil$ and $p(\{0,1, b\})=$ $p\left(\left\{0,1, b^{\prime}\right\}\right)$.

Proof. Since, $n-1$ is always relatively prime to n for $3 \leq n, p_{n}(S)=p_{n}(-S)$ for all $S \subseteq \mathbb{Z}_{n}$ by Lemma 2.2. If $\left\lceil\frac{n}{2}\right\rceil<b$, then let $b^{\prime}=n-b+1 \leq \frac{n}{2}$. Therefore, $p(\{0,1, b\})=p(\{-1,0,-b\})=$ $p(\{0,1,-b+1\})=p(\{0,1, n-b+1\})$.

Proposition 2.5. Let $S=\{0, a, b\} \subseteq \mathbb{Z}_{n}$ where $\operatorname{gcd}(a, b, n)=1$. Then at least one of the following occurs.
i. S is equivalent to a set $S^{\prime}=\left\{0,1, b^{\prime}\right\}$ where $b^{\prime} \leq\left\lceil\frac{n}{2}\right\rceil$.
ii. $\operatorname{gcd}(a, n) \neq 1, \operatorname{gcd}(b, n) \neq 1, a \notin\langle b\rangle$ and $b \notin\langle a\rangle$.

Proof. If $\operatorname{gcd}(a, n)=1$ then a is invertible in \mathbb{Z}_{n}, so S is equivalent to a set $\{0,1, c\}$, for some $c\left(d=a^{-1}\right.$ in Definition 2.3), and then to S^{\prime} by Lemma 2.4. Similarly if $\operatorname{gcd}(b, n)=1$. Now suppose neither $\operatorname{gcd}(a, n)$ nor $\operatorname{gcd}(b, n)$ is equal to 1 . If b is a multiple of a then, since $\operatorname{gcd}(a, b, n)=1, \operatorname{gcd}(a, n)$ must equal 1 , a contradiction, so b is not a multiple of a. Similarly, a is not a multiple of b.

We remark that if Case $i i$ occurs and $\operatorname{gcd}(b-a, n)=1$, then Case i also occurs. However, in our proof we just need that at least one of them occurs. We will treat Case i in Section 5 and Case $i i$ in Section 6. The following theorem is the main result of this paper.

Theorem 2.6. Let $S=\{0, a, b\} \subseteq \mathbb{Z}_{n}$ and $\operatorname{gcd}(a, b, n)=1$, then

$$
p_{n}(S)= \begin{cases}3 & \text { if } 3 \mid n \text { and } a \text { and } b \text { are in different nonzero } \bmod 3 \text { congruence classes } \\ 1 & \text { if } n=7 \text { and }\{0, a, b\} \text { is equivalent to }\{0,1,3\} \\ 2 & \text { otherwise. }\end{cases}
$$

If we do not make the assumption that $\operatorname{gcd}(a, b, n)=1$, then we get the following theorem, which is clearly equivalent to Theorem 2.6:

Theorem 2.7. If $3 \leq n, a, b \in \mathbb{Z}_{n}$, and $a \neq b$, then

$$
p_{n}(\{0, a, b\})= \begin{cases}3 \quad \text { if } n \equiv 0 \bmod 3^{j+1}, a=3^{j} m_{a}, b=3^{j} m_{b} \\ \quad m_{a}, m_{b} \not \equiv 0 \bmod 3, \text { and } m_{a}+m_{b} \equiv 0 \bmod 3 \\ 1 \quad \text { if } n \equiv 0 \bmod 7,|\langle a\rangle|=7, \text { and } b=3 a \text { or } 5 a \\ 2 \quad \text { otherwise }\end{cases}
$$

3 Sets of size 2

For the following proposition we assume without loss of generality that 0 is in the chosen subset of \mathbb{Z}_{n}.

Proposition 3.1. If $S=\{0, b\} \subseteq \mathbb{Z}_{n}$ where $\operatorname{gcd}(b, n)=1$ then

$$
p_{n}(S)= \begin{cases}1 & \text { if }|\langle b\rangle| \text { is odd } \\ 2 & \text { if }|\langle b\rangle| \text { is even }\end{cases}
$$

Proof. Clearly there will be an S-polychromatic 2-coloring of the multiples of b if and only if $|\langle b\rangle|$ is even.

4 Sets that tile

Given a set $S \subseteq G$ where G is an abelian group, a set $T \subseteq G$ is a complement set for S if $S+T=G$. S tiles G by translation if T is a complement set for S and if $s_{1}, s_{2} \in S$, $t_{1}, t_{2} \in T$, and $s_{1}+t_{1}=s_{2}+t_{2}$ implies $s_{1}=s_{2}$ and $t_{1}=t_{2}$. The notation $S \oplus T$ is used when S tiles G by translation. Without loss of generality, $0 \in S, T$ for all of the following arguments.

Newman [8] proved necessary and sufficient conditions for a finite set S to tile \mathbb{Z} if $|S|$ is a power of a prime.

Theorem 4.1. [8] Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$ be distinct integers with $|S|=p^{\alpha}$ where p is prime and α is a positive integer. For $1 \leq i<j \leq k$ let $p^{e_{i j}}$ be the highest power of p that divides $s_{i}-s_{j}$. Then S tiles \mathbb{Z} if and only if $\left|\left\{e_{i j}: 1 \leq i<j \leq k\right\}\right| \leq \alpha$.

The characterization of sets S of size 3 such that $p_{n}(S)=3$ (Theorem 2.6 and Proposition 4.4) follows immediately from Newman's theorem (Theorem 4.1). When commenting on this theorem in [8] Newman says: "Surely the special case [when $|S|=3$] deserves to have a completely trivial proof - but we have not been able to find one."

If there is an S-polychromatic k-coloring of \mathbb{Z}_{n}, then clearly there is an S-polychromatic k-coloring of \mathbb{Z} with period n. If there is an S-polychromatic k-coloring of \mathbb{Z} for a finite set S, then there is an S-polychromatic k-coloring of \mathbb{Z}_{n} for some n. To see this, let d equal the largest difference between two elements in S. If χ is an S-polychromatic k-coloring of \mathbb{Z}, there are only $k^{(d+1)}$ possibilities for the coloring on $d+1$ consecutive integers, so two such strings must be identical. If n is the difference between the first integers in these two strings, then we can "wrap around" the coloring χ to get an S-polychromatic k-coloring of \mathbb{Z}_{n}.

Suppose $S=\{0, a, b\}$ and χ is an S-polychromatic 3 -coloring of \mathbb{Z}. By the above remark there exists an S-polychromatic 3 -coloring of \mathbb{Z}_{n} for some n. By Proposition 4.4, a and b are in different nonzero mod 3 congruence classes, which fulfills Newman's wish to have a simple proof of his theorem for the special case when $|S|=3$.

Later Coven and Meyerowitz [5] gave necessary and sufficient conditions for S to tile \mathbb{Z} when $|S|=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$, where p_{1} and p_{2} are primes. The following characterization of tiling by translation in an abelian group was obtained in [3].

Theorem 4.2. [3] Let G be an abelian group and S a finite subset of G. S tiles G by translation if and only if $p(S)=|S|$. Moreover, if χ is an S-polychromatic coloring of G with $|S|$ colors and T is a color class of χ, then $S \oplus T=G$.
Lemma 4.3. Suppose $S=\{0, a, b\}$ where $\operatorname{gcd}(a, b, n)=1, S \oplus T=\mathbb{Z}_{n}$ and $0 \in T$. If $x \in T$, then $x+\langle a+b\rangle \subseteq T$.

Proof. Note that because $S \oplus T=\mathbb{Z}_{n}$, every element of \mathbb{Z}_{n} belongs to exactly one of the sets $T, a+T, b+T$.

Suppose $x \in T$. If $x+a+b \in b+T$, then $x+a \in T$. However, $x+a \in a+T$. If $x+a+b \in a+T$, then $x+b \in T$. However, $x+b \in b+T$. Hence $x+a+b \in T$ and, repeating the argument, $x+\langle a+b\rangle \subseteq T$.

Proposition 4.4. Let $S=\{0, a, b\} \subseteq \mathbb{Z}_{n}$ where $\operatorname{gcd}(a, b, n)=1$. Then $p_{n}(S)=3$ if and only if $3 \mid n$ and a and b are in different nonzero $\bmod 3$ congruence classes.

Proof. If $3 \mid n$ and a and b are in different nonzero mod 3 congruence classes then clearly the alternating coloring $R B Y R B Y \ldots$ is polychromatic, so $p_{n}(S)=3$. Conversely, suppose $p_{n}(S)=3$. Hence, by Theorem 4.2, S tiles \mathbb{Z}_{n}.

Let $T \subseteq \mathbb{Z}_{n}$ such that $\mathbb{Z}_{n}=\{0, a, b\} \oplus T$ and $0 \in T \subseteq \mathbb{Z}_{n}$. Therefore, $n=3|T|$ which implies $n \equiv 0 \bmod 3$. By Lemma 4.3, for any $x \in T$, the coset $x+\langle a+b\rangle$ is a subset of T, so T is the disjoint untion of cosets of $\langle a+b\rangle$. Therefore, there is some integer q such that $q|\langle a+b\rangle|=|T|=\frac{n}{3}$. Also, $|\langle a+b\rangle|=\frac{n}{\operatorname{gcd}(a+b, n)}$. Thus, $q \frac{n}{g c d(a+b, n)}=\frac{n}{3}$, which implies $3 q=\operatorname{gcd}(a+b, n)$. Hence, $3 \mid(a+b)$. Since 3 cannot divide both a and b, it follows that a and b are in different nonzero mod 3 congruence classes.

5 Subsets of the form $\{0,1, b\}$

As shown in Proposition 2.5, every set S of size 3 is equivalent to a set S^{\prime} with two possible forms. In this section we will consider case i of Proposition 2.5, that S^{\prime} contains 0 and 1.

Lemma 5.1. If n is odd, $5 \leq n$, and $n \neq 7$, then there exists a $\{0,1,3\}$-polychromatic coloring of \mathbb{Z}_{n} with two colors.

Proof. It is easy to check that each integer greater than 3, except 7, is the sum of an even number of 2 s and 3 s . We color \mathbb{Z}_{n} by alternating colors of strings of 2 or 3 consecutive elements with the same color. Of course there must be an even number of strings. For example, $9=2+2+2+3$, so the coloring would be $R R B B R R B B B ; 11=2+3+3+3$, so the coloring would be $R R B B B R R R B B B$. Clearly any translate of S hits two consecutive strings, so gets both colors.

As will be seen in the proof of Theorem 5.3, it is easy to show that $p_{n}(\{0,1, b\}) \geq 2$ if b or n is even. The following lemma takes care of the more difficult case.

Lemma 5.2. Let $9 \leq n, b$ and n both be odd, and $S=\{0,1, b\} \subset \mathbb{Z}_{n}$. There exists an S-polychromatic coloring of \mathbb{Z}_{n} with two colors.

Proof. It can be assumed that $5 \leq b \leq\left\lceil\frac{n}{2}\right\rceil$, by Lemma 2.4 and 5.1, and $n=m(b-2)+r$, with $0 \leq r \leq b-3$. Since $2\left(\left\lceil\frac{n}{2}\right\rceil-2\right)+r \leq n-3+r \leq n, m$ is at least 2 .

Let $x \in \mathbb{Z}_{n}$ and $x \equiv y \bmod (b-2)$ such that $0 \leq y \leq b-3$. If $r=0$, then define $\chi_{0}: \mathbb{Z}_{n} \rightarrow\{R, B\}$ such that

$$
\chi_{0}(x)= \begin{cases}R & \text { if } y=0 \\ R & \text { if } y \text { is odd } \\ B & \text { if } y \text { is even and } y>0\end{cases}
$$

If $\chi_{0}(x)=\chi_{0}(x+1)$, then $x \equiv 0 \bmod b-2$ and $\chi_{0}(x+b)=B$. This means that $\chi_{0}(x) \neq$ $\chi_{0}(x+1)$ or $\chi_{0}(x) \neq \chi_{0}(x+b)$. Therefore, every translate of $S=\{x, x+1, x+b\}$ will contain two colors under χ_{0}.

Throughout the remainder of the proof each of the colorings that are constructed will use χ_{0} to assign colors to at least the first $(m-1)(b-2)$ elements of \mathbb{Z}_{n}.

If $r=1$, then define $\chi_{1}: \mathbb{Z}_{n} \rightarrow\{R, B\}$ such that

$$
\chi_{1}(x)= \begin{cases}\chi_{0}(x) & \text { if } x \leq n-b \\ R & \text { if } x \text { is even and } n-b<x<n-1 \\ B & \text { if } x \text { is odd and } n-b<x<n-1 \\ B & \text { if } x=n-1\end{cases}
$$

In χ_{1}, the two translates that are not colored completely by χ_{0} and don't have $\chi_{1}(x) \neq$ $\chi_{1}(x+1)$ are $\{n-b, n-b+1,0\}$ and $\{n-2, n-1, b-2\}$. In both cases, the nonconsecutive element of the translate is the other color.

If $r=2$, then define $\chi_{2}: \mathbb{Z}_{n} \rightarrow\{R, B\}$ such that

$$
\chi_{2}(x)= \begin{cases}\chi_{0}(x) & \text { if } x \leq n-b-1 \\ R & \text { if } x=n-b \\ B & \text { if } x=n-b+1 \\ R & \text { if } x \text { is odd and } n-b+1<x \\ B & \text { if } x \text { is even and } n-b+1<x\end{cases}
$$

In χ_{2}, the only translate that is not colored completely by χ_{0} and doesn't have $\chi_{2}(x) \neq$ $\chi_{2}(x+1)$ is $\{n-b+1, n-b+2,1\}$; however, $\chi_{2}(n-b+1) \neq \chi_{2}(1)$.

If $r=3$, then define $\chi_{3}: \mathbb{Z}_{n} \rightarrow\{R, B\}$ such that

$$
\chi_{3}(x)= \begin{cases}\chi_{0}(x) & \text { if } x \leq n-b-2 \\ R & \text { if } x=n-b-1 \\ R & \text { if } x \text { is even and } n-b-1<x<n-1 \\ B & \text { if } x \text { is odd and } n-b-1<x<n-1 \\ B & \text { if } x=n-1\end{cases}
$$

In χ_{3}, the two translates that are not colored completely by χ_{0} and don't have $\chi_{3}(x) \neq$ $\chi_{3}(x+1)$ are $\{n-b-1, n-b, n-1\}$ and $\{n-2, n-1, b-2\}$. In both cases, the nonconsecutive element of the translate is the other color.

Assume $4 \leq r$. An S-polychromatic coloring, $\chi_{4}: \mathbb{Z}_{n} \rightarrow\{R, B\}$, will be constructed. Define $\chi_{4}(x)=\chi_{0}(x)$ for $x \leq n-b-r+4, \chi_{4}(n-r+2)=B$ and $\chi_{4}(n-1)=B$. So each translate with $0 \leq x \leq n-b-r+3$ contains both colors. The two translates with $n-2 \leq x$ also contain both colors even though $\chi_{4}(n-2)$ has not been defined unless $r=4$. This means there is an option for assigning a color to $n-2$. Therefore, $\chi_{4}(x)$ can be defined, and will be defined, such that for $n-b+2 \leq x \leq n-2$ the assigned colors alternate while keeping $\chi_{4}(n-r+2)=B$. This means that each translate with $n-b+2 \leq x$ contains both colors.

If $r=4$, then $n-b=n-b-r+4$ has already been assigned the color B and the translate $\{n-b, n-b+1,0\}$ contains both colors. By defining $\chi_{4}(n-b+1)$ to be B, the translate $\{n-b+1, n-b+2,1\}$ contains both colors and χ_{4} is an S-polychromatic coloring.

For $r \neq 4$, consider the translates $\{n-b, n-b+1,0\}$ and $\{n-b+1, n-b+2,1\}$. If $\chi_{4}(n-b+2)=B$, then $n-b+1$ has an option since $\chi_{4}(1)=R$. If $\chi_{4}(n-b+2)=R$, then $\chi_{4}(n-b+1)$ must be defined as B and $n-b$ has an option since $\chi_{4}(0)=R$. Therefore, there will be an option for assigning a color to $n-b$ or $n-b+1$. This allows for $\chi_{4}(x)$ to be defined for $n-b-r+5 \leq x \leq n-b+1$ such that the colors alernate while keeping $\chi_{4}(n-b-r+4) \neq \chi_{4}(n-b-r+5)$. Thus, χ_{4} is an S-polychromatic coloring.

Theorem 5.3. Let $3 \leq n$ and $S=\{0,1, b\} \subseteq \mathbb{Z}_{n}$. If $n \neq 7$ or $b \neq 3$ or 5 , there is an S-polychromatic coloring of \mathbb{Z}_{n} with two colors.

Proof. If n is even then alternating colors $R B R B \ldots$ is clearly an S-polychromatic coloring. If n is odd and b is even then the coloring $R R B R B R B R \ldots$ which has one repeated color,
and otherwise alternates colors, is S-polychromatic. If n and b are both odd then an S-polychromatic 2 -coloring exists by Lemmas 5.1 and 5.2, except in the exceptional case when $n=7$.

6 Subsets not equivalent to $\{0,1, b\}$

Consider the $s \times t$ matrix

$$
M=\left[\begin{array}{cccc}
x_{00} & x_{01} & \ldots & x_{0(t-1)} \\
x_{10} & x_{11} & \ldots & x_{1(t-1)} \\
\vdots & \vdots & \ddots & \vdots \\
x_{(s-1) 0} & x_{(s-1) 1} & \ldots & x_{(s-1)(t-1)} .
\end{array}\right]
$$

An ell - tile of M is a subset of entries of M consisting of entries of a 2×2 submatrix without the lower right entry:

$x_{i j}$	$x_{i(j+1)}$
$x_{(i+1) j}$	

The indices are read $\bmod s$ and $\bmod t$, so ell-tiles are allowed to 'wrap around' ($i=s-1$ or $j=t-1$). An ell-tile $2-$ coloring of M is a coloring of the entries of M with two colors such that both colors appear in every ell-tile of M.

Lemma 6.1. If $2 \leq s, t$, then every $s \times t$ matrix has an ell - tile 2 -coloring.
Proof. If s is even, then define χ such that

$$
\chi\left(x_{i j}\right)= \begin{cases}R & \text { if } i \equiv 0 \bmod 2 \\ B & \text { if } i \equiv 1 \bmod 2\end{cases}
$$

Also, a similar coloring that alternates the colors of the columns works when t is even.
If s and t are both odd, then define χ such that

$$
\chi\left(x_{i j}\right)= \begin{cases}R & \text { if } i \equiv j \bmod 2 \text { and }(i, j) \neq(0, t-1),(s-1,0) \\ B & \text { otherwise } .\end{cases}
$$

If s and t are both odd, then a "checker-board" coloring would assign the same color, say R, to all four corner entries, and the ell-tile with entries $x_{s-1, t-1}, x_{0, t-1}$, and $x_{s-1,0}$ would be monochromatic. The coloring χ avoids this problem by changing the color of entries $x_{0, t-1}$ and $x_{s-1,0}$ from R to B, without creating any other monochromatic ell-tiles (just changing the color of one of them would suffice as well).

The goal now is to create matrices with elements from \mathbb{Z}_{n} such that all of the translates of S correspond to ell-tiles. The matrices then can be colored by using Lemma 6.1, which will create S-polychromatic colorings.

Lemma 6.2. Let $S=\{0, a, b\} \subseteq \mathbb{Z}_{n}$, where $\operatorname{gcd}(a, b, n)=1$ but $\operatorname{gcd}(a, n)$ and $\operatorname{gcd}(b, n)$ are both greater than 1. Then $p_{n}(S) \geq 2$.

Proof. If n is even then either a or b is odd, so the alternating coloring $R B R B R B \ldots$ is polychromatic, so we can assume n is odd. Let $s=\operatorname{gcd}(a, n), t=\operatorname{gcd}(b, n)$, and $M=\left[m_{i j}\right]$ be the $\frac{n}{s} \times \frac{n}{t}$ matrix with entries in \mathbb{Z}_{n} where $m_{i j}=a i+b j, 0 \leq i \leq \frac{n}{s}-1,0 \leq j \leq \frac{n}{t}-1$. Note that $|\langle a\rangle|=\frac{n}{s},|\langle b\rangle|=\frac{n}{t}$, and $\operatorname{gcd}(s, t)=1$.

If $m_{i j}=m_{i^{\prime} j^{\prime}}$ with $0 \leq i^{\prime} \leq i \leq t-1$ and $0 \leq j, j^{\prime} \leq \frac{n}{t}-1$, then $a\left(i-i^{\prime}\right)=b\left(j^{\prime}-j\right)$. Therefore, $t \mid a\left(i-i^{\prime}\right)$. This means $t \mid\left(i-i^{\prime}\right)$ since $\operatorname{gcd}(a, b)=1$, which implies $i=i^{\prime}$ because $0 \leq i-i^{\prime}<t$. Since $a\left(i-i^{\prime}\right)=b\left(j^{\prime}-j\right)$ it is also the case that $j=j^{\prime}$. Therefore, each element of \mathbb{Z}_{n} will be an entry somewhere in the first t rows of M. In fact, the first t rows of M are just the t cosets of $\langle b\rangle$ in \mathbb{Z}_{n}.

Now let M^{\prime} be the $\frac{n}{s t} \times \frac{n}{s t}$ block matrix created by partitioning M into $t \times s$ blocks. Let $A_{i, j}$ be the $i j$ th block of M^{\prime}. Note that $A_{i+1, j}=A_{i, j}+a t$ and $A_{i, j+1}=A_{i, j}+b s$ and $|\langle a t\rangle|=|\langle b s\rangle|=\frac{n}{s t}$, so the matrix $A_{i, j}+k(b s)$ appears as a block in the i th row of M^{\prime} for each integer k. Furthermore, $a=p s$ for some $p \in \mathbb{Z}$ and $b q \equiv t \bmod n$ for some $q \in \mathbb{Z}$ since $t=\operatorname{gcd}(b, n)$. Therefore, $A_{i+1, j}=A_{i, j}+(p q) b s$, so $A_{i+1, j}$ is equal to some block in the i th row of M^{\prime}.

This means that the $(i+1)$ st row of M^{\prime} is the i th row of M^{\prime} shifted by $p q$, for all i. So coloring each matrix in M^{\prime} with the same ell-tile 2-coloring from Lemma 6.1 will ensure that M is a well-defined ell-tile 2-coloring. It is well-defined since every element is colored and each time an element appears it recieves the same color. It is an ell-tile 2-coloring because it is periodic using an ell-tile 2-coloring that 'wraps around'. This yields an S-polychromatic coloring of \mathbb{Z}_{n} with two colors.

Here is an example of how to get the coloring of \mathbb{Z}_{105} when $a=18$ and $b=25$. The
matrix M is

0	25	50	75	100	20	45	70	95	15	40	65	90	10	35	60	85	5	30	55	80
18	43	68	93	13	38	63	88	8	33	58	83	3	28	53	78	103	23	48	73	98
36	61	86	6	31	56	81	1	26	51	76	101	21	46	71	96	16	41	66	91	11
54	79	104	24	49	74	99	19	44	69	94	14	39	64	89	9	34	59	84	4	29
72	97	17	42	67	92	12	37	62	87	7	32	57	82	2	27	52	77	102	22	47
90	10	35	60	85	5	30	55	80	0	25	50	75	100	20	45	70	95	15	40	65
3	28	53	78	103	23	48	73	98	18	43	68	93	13	38	63	88	8	33	58	83
21	46	71	96	16	41	66	91	11	36	61	86	6	31	56	81	1	26	51	76	101
39	64	89	9	34	59	84	4	29	54	79	104	24	49	74	99	19	44	69	94	14
57	82	2	27	52	77	102	22	47	72	97	17	42	67	92	12	37	62	87	7	32
75	100	20	45	70	95	15	40	65	90	10	35	60	85	5	30	55	80	0	25	50
93	13	38	63	88	8	33	58	83	3	28	53	78	103	23	48	73	98	18	43	68
6	31	56	81	1	26	51	76	101	21	46	71	96	16	41	66	91	11	36	61	86
24	49	74	99	19	44	69	94	14	39	64	89	9	34	59	84	4	29	54	79	104
42	67	92	12	37	62	87	7	32	57	82	2	27	52	77	102	22	47	72	97	17
60	85	5	30	55	80	0	25	50	75	100	20	45	70	95	15	40	65	90	10	35
78	103	23	48	73	98	18	43	68	93	13	38	63	88	8	33	58	83	3	28	53
96	16	41	66	91	11	36	61	86	6	31	56	81	1	26	51	76	101	21	46	71
9	34	59	84	4	29	54	79	104	24	49	74	99	19	44	69	94	14	39	64	89
27	52	77	102	22	47	72	97	17	42	67	92	12	37	62	87	7	32	57	82	2
45	70	95	15	40	65	90	10	35	60	85	5	30	55	80	0	25	50	75	100	20
63	88	8	33	58	83	3	28	53	78	103	23	48	73	98	18	43	68	93	13	38
81	1	26	51	76	101	21	46	71	96	16	41	66	91	11	36	61	86	6	31	56
99	19	44	69	94	14	39	64	89	9	34	59	84	4	29	54	79	104	24	49	74
12	37	62	87	7	32	57	82	2	27	52	77	102	22	47	72	97	17	42	67	92
30	55	80	0	25	50	75	100	20	45	70	95	15	40	65	90	10	35	60	85	5
48	73	98	18	43	68	93	13	38	63	88	8	33	58	83	3	28	53	78	103	23
66	91	11	36	61	86	6	31	56	81	1	26	51	76	101	21	46	71	96	16	41
84	4	29	54	79	104	24	49	74	99	19	44	69	94	14	39	64	89	9	34	59
102	22	47	72	97	17	42	67	92	12	37	62	87	7	32	57	82	2	27	52	77
15	40	65	90	10	35	60	85	5	30	55	80	0	25	50	75	100	20	45	70	95
33	58	83	3	28	53	78	103	23	48	73	98	18	43	68	93	13	38	63	88	8
51	76	101	21	46	71	96	16	41	66	91	11	36	61	86	6	31	56	81	1	26
69	94	14	39	64	89	9	34	59	84	4	29	54	79	104	24	49	74	99	19	44
87	7	32	57	82	2	27	52	77	102	22	47	72	97	17	42	67	92	12	37	62

Therefore,

$$
M^{\prime}=\left[\begin{array}{lllllll}
A_{0,0} & A_{0,1} & A_{0,2} & A_{0,3} & A_{0,4} & A_{0,5} & A_{0,6} \\
A_{0,4} & A_{0,5} & A_{0,6} & A_{0,0} & A_{0,1} & A_{0,2} & A_{0,3} \\
A_{0,1} & A_{0,2} & A_{0,3} & A_{0,4} & A_{0,5} & A_{0,6} & A_{0,0} \\
A_{0,5} & A_{0,6} & A_{0,0} & A_{0,1} & A_{0,2} & A_{0,3} & A_{0,4} \\
A_{0,2} & A_{0,3} & A_{0,4} & A_{0,5} & A_{0,6} & A_{0,0} & A_{0,1} \\
A_{0,6} & A_{0,0} & A_{0,1} & A_{0,2} & A_{0,3} & A_{0,4} & A_{0,5} \\
A_{0,3} & A_{0,4} & A_{0,5} & A_{0,6} & A_{0,0} & A_{0,1} & A_{0,2}
\end{array}\right] .
$$

Now Lemma 6.1 can be used to color each $A_{i, j}$ in the following way:

$$
\chi\left(A_{i, j}\right)=\left[\begin{array}{lll}
R & B & B \\
B & R & B \\
R & B & R \\
B & R & B \\
B & B & R
\end{array}\right] .
$$

Of course only the first row of M^{\prime} is needed to get the coloring of \mathbb{Z}_{n}.
Finally, we give a proof of Theorem 2.6.

Proof. By Proposition 2.5 we have either Case i, where S is equivalent to a set of the form $\{0,1, b\}$, or Case $i i$, where $\operatorname{gcd}(a, n)$ and $\operatorname{gcd}(b, n)$ are both greater than 1. Proposition 4.4 characterizes the sets S for which $p_{n}(S)=3$, and Theorem 5.3 shows show that $p_{n}(S)=2$ for all other sets S in Case i, except when $n=7$ and $b=3$. Then Lemma 6.2 takes care of Case $i i$.

Acknowledgments. The work of Michael Young is supported in part by the National Science Foundation through grant \#1719841.

References

[1] N. Alon, A. Krech, and T. Szabó, Turán's theorem in the hypercube. SIAM J. Discrete Math. 21, 66-72, 2007.
[2] M. Axenovich, J. Goldwasser, R. Hansen, B. Lidický, R.R. Martin, D. Offner, J. Talbot, and M. Young, Polychromatic Colorings of complete graphs with respect to 1-,2-factors. Journal of Graph Theory, 87 (4), 660-671, 2018.
[3] M. Axenovich, J. Goldwasser, B. Lidický, R.R. Martin, D. Offner, J. Talbot, and M. Young, Polychromatic Colorings on the Integers. Integers, 19 (A18), 2019.
[4] A. Bialostocki, Some Ramsey type results regarding the graph ofthen-cube. Ars Combin., 16 (A), 3948, 1983.
[5] E. M. Coven and A. Meyerowitz, Tiling the integers with translates of one finite set, J. Algebra 212, 161-174, 1999.
[6] J. Goldwasser, B. Lidický, R.Martin, D. Offner, J. Talbot, and M. Young, Polychromatic Colorings on the Hypercube. Journal of Combinatorics, 9 (4) 631-657, 2018.
[7] D. J. Newman, Complements of finite sets of integers, Michigan Math. J. 14, 481-486, 1967.
[8] D. J. Newman, Tesselation of integers, J. Number Theory 9, no. 1, 107-111, 1977.
[9] D. Offner, Polychromatic colorings of subcubes of the hypercube. SIAM J. Discrete Math 22 no. 2, 450-454, 2008.
[10] S. Stein, Tiling, packing, and covering by clusters. Rocky Mountain J. Math. 16, no. 2, 277-321, 1986.

