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Abstract

Given a connected graph G = (V (G), E(G)), the length of a shortest path
from a vertex u to a vertex v is denoted by d(u, v). For a proper subset W
of V (G), let m(W ) be the maximum value of d(u, v) as u ranging over W
and v ranging over V (G) \ W . The proper subset W = {w1, . . . , w|W |} is a
completeness-resolving set of G if

ΨW : V (G) \W −→ [m(W )]|W |, u 7−→ (d(w1, u), . . . , d(w|W |, u))

is a bijection, where

[m(W )]|W | = {(a(1), . . . , a(|W |)) | 1 ≤ a(i) ≤ m(W ) for each i = 1, . . . , |W |}.

A graph is completeness-resolvable if it admits a completeness-resolving set. In
this paper, we first construct the set of all completeness-resolvable graphs by
using the edge coverings of some vertices in given bipartite graphs, and then
establish posets on some subsets of this set by the spanning subgraph relation-
ship. Based on each poset, we find the maximum graph and give the lower
and upper bounds for the number of edges in a minimal graph. Furthermore,
minimal graphs satisfying the lower or upper bound are characterized.

Key words: completeness-resolvable, resolving sets, distance, edge coverings,
bipartite graphs
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1 Introduction

For a positive integer m, denote by [m] the set of positive integers at most m, and
for a positive integer k, write

[m]k = {(a(1), . . . , a(k)) | a(i) ∈ [m] for all i ∈ [k]}.

Throughout of this paper, a graph means a finite and simple graph with at least two
vertices. Given a graph G, we always use V (G) and E(G) to denote the vertex and

∗Corresponding author.
E-mail address: fgmn 1998@163.com (M. Feng), xuanlma@mail.bnu.edu.cn (X. Ma),

xuhuiling@njust.edu.cn (H. Xu).

1

http://arxiv.org/abs/2101.02838v1


edge sets of G, respectively. The order and size of G are the cardinalities of V (G)
and E(G), respectively. We say that G is connected if for any vertices x, y ∈ V (G),
there is a path from x to y in G. The distance between x and y, denoted by d(x, y),
is the length of a shortest path from x to y. For a proper subset W of V (G), write

m(W ) = max{d(w, u) | w ∈ W,u ∈ V (G) \W}.

The proper subset W = {w1, . . . , w|W |} of V (G) is a resolving set of G if

ΨW : V (G) \W −→ [m(W )]|W |, u 7−→ (d(w1, u), . . . , d(w|W |, u))

is an injection.
Resolving sets of a graph were first introduced, by Slater [10] and independently,

by Harary and Melter [6] in the 1970s. Subsequently, various applications of resolving
sets have appeared in the literature, as diverse as network discovery and verification
[2], robot navigation [8], pharmaceutical chemistry [4], strategies for the Mastermind
game [5], combinatorial optimization [9] and so on. For an overview of resolving sets
and related topics, we refer to [1], [3] and [7].

A resolving set W of a connected graph G is a completeness-resolving set if ΨW

is a bijection. We say that G is completeness-resolvable if G admits a completeness-
resolving set. Note that every connected graph has a resolving set.

Problem 1. Which graphs are completeness-resolvable?

A vertex x of a graph G is universal if x is adjacent to every other vertices in
G. Denote by K the set of graphs which have a universal vertex. Let P be the set
of all paths. In this paper, we study completeness-resolvable graphs and obtain the
following result.

Theorem 1.1 Let G be a connected graph. Then G is completeness-resolvable if

and only if G is isomorphic to a graph in P ∪K∪B ∪ C, where B and C are as refer

to Constructions 2.1 and 2.3, respectively.

The rest of this paper is organized as follows.
In Section 2, we first give some notions and notations, and then construct families

Bk and Ck of graphs for each k ≥ 2. The constructions depends on edge coverings of
some vertices in given bipartite graphs. Actually, the sets B and C in Theorem 1.1
are equal to

⋃+∞
k=2 Bk and

⋃+∞
k=2 Ck, respectively.

In Section 3, Theorem 1.1 is proved.
In Section 4, using the spanning subgraph relationship, we establish respective

posets on Bk and Ck. Based on each poset, we find the maximum graph and give
the lower and upper bounds for the size of a minimal graph. Furthermore, we
characterize the minimal graphs satisfying the lower or upper bound.

In Section 5, we first obtain the respective ranges for diameters of graphs in
Bk and Ck. Then we introduce the concept of perfectness-resolvable graphs, which
are closely related to completeness-resolvable graphs. Finally, we give sufficient
conditions to determine a perfectness-resolvable graph, and conclude this paper by
raising a problem which graphs are perfectness-resolvable.
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2 Constructions

We first give some notions and notations that will be used throughout of this paper.
Let G be a graph. For x ∈ V (G) and e ∈ E(G), we say that e covers x, or x is
covered by e, if e is incident to x in G. For S ⊆ V (G), an edge covering of S, or
S-covering, is a family E of edges in G such that each vertex in S is covered by at
least one edge in E.

Notation 1 Given a graph G and a subset S ⊆ V (G), denote by E(G,S) the set of
all S-coverings in G.

Notation 2 Let k and m be positive integers.
(i) For any vector x ∈ [m]k, denote by x(i) the ith component of x.
(ii) For I ⊆ [k] and J ⊆ [m], write

[m]kI (J) = {x ∈ [m]k | x(i) ∈ J for all i ∈ I}.

For simplify, we write [m]ki (J), [m]kI (j) and [m]ki (j) instead of [m]k{i}(J), [m]kI ({j})

and [m]k{i}({j}), respectively.

(iii) For S ⊆ [k] ∪ [m]k, let KS and KS denote the complete and null graphs on
S, respectively.

(iv) Denote by G([k]) and G([m]k) the sets of all graphs with the vertex sets [k]
and [m]k, respectively.

Let G be a graph. A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆
E(G). Furthermore, the subgraph H is a spanning subgraph of G if V (H) = V (G).
For S ⊆ V (G), the induced subgraph of G on S is the graph with the vertex set S
such that two vertices are adjacent if and only if they are adjacent in G.

Notation 3 Let k and m be positive integers. For E ⊆ E(K[m]k), denote by
span(E) the spanning subgraph of K[m]k with the edge set E.

Notation 4 Let k and m be positive integers. For H1 ∈ G([k]) and H2 ∈ G([m]k),
define H1 ◦ H2 as the graph on the disjoined union [k] ⊔ [m]k with the edge set
E(H1) ∪ E(H2) ∪E(H1,H2), where

E(H1,H2) = {{i, x} | i ∈ [k], x ∈ [m]k, x(i) = 1}.

Remark 1 For H1 ∈ G([k]) and H2 ∈ G([m]k), we have

|E(H1 ◦H2)| = |E(H1)|+ |E(H2)|+ k ·mk−1. (1)

Next, we construct a family B of graphs.

Construction 2.1 Let B =
⋃+∞

k=2 Bk, where Bk is defined by the following steps.
(i) For each i ∈ [k], denote by Bk

i the complete bipartite graph with two parts
[2]ki (1) and [2]ki (2).

3



(ii) Define

Bk = {H1 ◦ span(
⋃

i∈[k]

Ei) | H1 ∈ G([k]), Ei ∈ E(Bk
i , [2]

k
H1(i)

(2))},

where H1(i) is the union of {i} and the set of vertices adjacent to i in H1.

Observing that
⋃

i∈[k]E(Bk
i ) = E(K[2]m), we have the following result immedi-

ately from Construction 2.1.

Proposition 2.2 For k ≥ 2, pick H1 ∈ G([k]) and H2 ∈ G([2]k). Then H1◦H2 ∈ Bk

if and only if the edge subset Li(H2) is a [2]k
H1(i)

(2)-covering for each i ∈ [k], where

Li(H2) = E(H2) ∩ E(Bk
i ). (2)

We now construct another family C of graphs.

Construction 2.3 Let C =
⋃+∞

k=2 Ck, where Ck is constructed by the following steps.
(i) For i ∈ [k], let Ck

i be the bipartite graph with two parts [3]ki (1) and [3]ki (2),
where the edge set is

{{x, y} | x ∈ [3]ki (1), y ∈ [3]ki (2), |x(t) − y(t)| ≤ 1 for each t ∈ [k] \ {i}}.

(ii) For i ∈ [k], let Dk
i be the bipartite graph with two parts [3]ki (2) and [3]ki (3),

where the edge set is

{{x, y} | x ∈ [3]ki (2), y ∈ [3]ki (3), |x(t) − y(t)| ≤ 1 for each t ∈ [k] \ {i}}.

(iii) Define

Ck = {K [k] ◦ span(
⋃

i∈[k]

(Ei ∪ Fi)) | Ei ∈ E(Ck
i , [3]

k
i (2)), Fi ∈ E(Dk

i , S
k
i )},

where Sk
i = [3]k[k]({2, 3}) ∩ [3]ki (3).

We get the following result immediately from the construction of Ck.

Proposition 2.4 For k ≥ 2, choose H2 ∈ G([3]k). Then K[k] ◦H2 ∈ Ck if and only

if the following conditions hold.

(i) E(H2) ⊆
⋃

i∈[k](E(Ck
i ) ∪E(Dk

i )).

(ii) For each i ∈ [k], the edge subset Mi(H2) is a [3]ki (2)-covering, where

Mi(H2) = E(H2) ∩ E(Ck
i ). (3)

(iii) For each i ∈ [k], the edge subset Ni(H2) is an Sk
i -covering, where

Ni(H2) = E(H2) ∩ E(Dk
i ). (4)

4



3 Proof of Theorem 1.1

In this section, we always suppose thatG is a connected graph. IfW is a completeness-
resolving set of G with |W | = k and m(W ) = m, we say that W is a (k,m)-
completeness-resolving set, or (k,m)-CRS for simplify, andG is a (k,m)-completeness-

resolvable graph, or (k,m)-CRG for simplify. The proof of Theorem 1.1 is divided
in three subsections.

3.1 k ≥ 2 and m = 2

In this subsection, we determine the set of all (k, 2)-CRGs for k ≥ 2.

Lemma 3.1 With references to Construction 2.1, let H be a graph in Bk.

(i) For i ∈ [k] and x ∈ [2]k, we have d(i, x) = x(i).
(ii) The graph H is a (k, 2)-CRG.

Proof. (i) Write H = H1 ◦H2, where H1 ∈ G([k]) and H2 ∈ G([2]k). If x(i) = 1,
then d(i, x) = 1 = x(i). Now suppose x(i) = 2. On one hand, since i and x are

not adjacent in H, we have d(i, x) ≥ 2. On the other hand, if x ∈ [2]k
H1(i)

(2), by

Proposition 2.2, there is an edge {x, y} ∈ Li(H2), then y(i) = 1, and so we get a path

(i, y, x) in H, which implies that d(i, x) ≤ 2. If x /∈ [2]k
H1(i)

(2), then there exists a

vertex t ∈ H1(i) \ {i} such that x(t) = 1, and so we get a path (i, t, x) in H, which
implies that d(i, x) ≤ 2. Consequently, one has d(i, x) = 2 = x(i).

(ii) It follows from (i) that Φ[k](x) = x for each x ∈ [2]k. Therefore, we have
derived that Φ[k] is a bijection, which implies that [k] is a (k, 2)-CRS, and so H is a
(k, 2)-CRG, as desired. ✷

Proposition 3.2 For k ≥ 2, a graph G is a (k, 2)-CRG if and only if G is isomor-

phic to a graph in Bk.

Proof. The sufficiency holds by Lemma 3.1 (ii). To prove the necessity, suppose
that G is a (k, 2)-CRG and let W = {w1, . . . , wk} be a (k, 2)-CRS of G. Then

ΨW : V (G) \W −→ [2]k, u 7−→ (d(w1, u), . . . , d(wk, u))

is a bijection. Define a graph H on the set [k] ∪ [2]k with the edge set E[k] ∪E[2]k ∪
E[k],[2]k, where

E[k] = {{i, j} | i, j ∈ [k], {wi, wj} ∈ E(G)},

E[2]k = {{x, y} | x, y ∈ [2]k, {Ψ−1
W (x),Ψ−1

W (y)} ∈ E(G)},

E[k],[2]k = {{i, x} | i ∈ [k], x ∈ [2]k, x(i) = 1}. (5)

Note that x(i) = d(wi,Ψ
−1
W (x)). It is routine to verify that

Ψ : V (G) −→ [k] ∪ [2]k, u 7−→

{

i, if u = wi,
ΨW (u), if u ∈ V (G) \W

5



is an isomorphism from G to H. Hence, graphs G and H are isomorphic. Now it
suffices to prove H ∈ Bk.

Let H1 and H2 be the induced subgraphs of H on [k] and [2]k, respectively. Then
H = H1 ◦H2 by (5). Let i ∈ [k]. Pick any vertex x ∈ [2]k

H1(i)
(2). For each t ∈ H1(i),

we have d(wt,Ψ
−1
W (x)) = x(t) = 2. Particularly, one gets d(wi,Ψ

−1
W (x)) = 2. Hence,

there is u ∈ V (G) \W such that (wi, u,Ψ
−1
W (x)) is a path in G, which implies that

(i,ΨW (u), x) is a path inH, and so {ΨW (u), x} ∈ Li(H2), where Li(H2) is as refer to
(2). From the arbitrary choice of x in [2]k

H1(i)
(2), we have Li(H2) ∈ E(Bk

i , [2]
k
H1(i)

(2)).
It follows from Proposition 2.2 that H ∈ Bk, as desired. ✷

3.2 k ≥ 2 and m = 3

In this subsection, we determine the set of all (k, 3)-CRGs for k ≥ 2.

Lemma 3.3 With references to Construction 2.3, let H be a graph in Ck.
(i) For i ∈ [k] and x ∈ [3]k, we have d(i, x) = x(i).
(ii) The graph H is a (k, 3)-CRG.

Proof. (i) Write H = K[k] ◦H2, where H2 ∈ G([3]k). Note that x(i) ∈ {1, 2, 3}.
Case 1. x(i) = 1. Then d(i, x) = 1 = x(i).

Case 2. x(i) = 2. Since x ∈ [3]ki (2), from Proposition 2.4 (ii), there is an edge

{x, y} ∈ Mi(H2) for y ∈ [3]ki (1), and so we obtain a path (i, y, x) in H, which implies
that d(i, x) = 2 = x(i).

Case 3. xi = 3. Then x ∈ [3]ki (3). On one hand, for any x′ ∈ [3]ki (1), since
|x(i) − x′(i)| = 2 > 1, according to Proposition 2.4 (i), vertices x and x′ are not

adjacent in H2, which implies that d(x′, x) ≥ 2. Hence, we get d(i, x) ≥ 3. On the
other hand, if x ∈ Sk

i , then by Proposition 2.4 (iii), there is an edge {x, z} ∈ Ni(H2)
for z ∈ [3]ki (2), and further by Proposition 2.4 (ii), there is an edge {z, v} ∈ Mi(H2)
for v ∈ [3]ki (1), which implies that there is a path (i, v, z, x) in H, and so d(i, x) ≤ 3;
If x 6∈ Sk

i , then there is t ∈ [k] with x(t) = 1, which indicates that (i, (1, . . . , 1), t, x)
is a path in H, and so d(i, x) ≤ 3. Consequently, we get d(i, x) = 3 = x(i).

Combining all these three cases, we obtain (i).
(ii) It follows from (i) that Φ[k](x) = x for each x ∈ [3]k. This indicates that Φ[k]

is a bijection, and so H is a (k, 3)-CRG, as desired. ✷

Lemma 3.4 Let W be a (k, 3)-CRS of a graph G.

(i) Then the induced subgraph of G on W is a null graph.

(ii) For u, v ∈ V (G) \ W , write x = ΦW (u) and y = ΦW (v). If u and v are

adjacent in G, then |x(i) − y(i)| ≤ 1 for each i ∈ [k].

Proof. Let W = {w1, w2, . . . , wk}.
(i) Suppose for the contrary that there are vertices wi, wj ∈ W such that {wi, wj}

is an edge in G. Without loss of generality, assume that {wi, wj} = {w1, w2}. Since
ΦW is an bijection, there is a vertex u0 ∈ V (G)\W such that ΦW (u0) = (3, 1, . . . , 1),
which implies that

3 = d(w1, u0) ≤ d(w1, w2) + d(w2, u0) = 1 + 1,

6



a contradiction.
(ii) By contradiction, suppose that there exists i ∈ [k] such that |x(i) − y(i)| ≥ 2.

Noting that x, y ∈ [3]k, we have {x(i), y(i)} = {1, 3}. Without loss of generality,
assume that x(i) = 1 and y(i) = 3. Then

3 = y(i) = d(wi, v) ≤ d(wi, u) + d(u, v) = x(i) + 1 = 2,

a contradiction. ✷

Proposition 3.5 For k ≥ 2, a graph G is a (k, 3)-CRG if and only if G is isomor-

phic to a graph in Ck.

Proof. The sufficiency holds by Lemma 3.3 (ii). Substituting [3]k for [2]k in the
proof of Proposition 3.2, we can obtain a graph H = H1 ◦H2 and an isomorphism Φ
fromG toH, whereH1 andH2 are graphs defined on the set [k] and [3]k, respectively.
To get the necessity, it is enough to prove H ∈ Ck.

Noting that Φ−1([k]) is a (k, 3)-CRS of G, we infer from Lemma 3.4 (i) that
H1 = K [k]. Combining Lemma 3.4 (ii) and Proposition 2.4, we only need to show

that Mi(H2) ∈ E(Ck
i , [3]

k
i (2)) and Ni(H2) ∈ E(Dk

i , S
k
i ) for each i ∈ [k].

Pick any vertex x ∈ [3]ki (2). Then d(i, x) = x(i) = 2 by Lemma 3.3 (i). Since H1

is null, there is a vertex x′ ∈ [3]k such that (i, x′, x) is a path in H, which implies
that x′(i) = 1, and so {x′, x} ∈ Mi(H2) by Lemma 3.4 (ii). From the arbitrary choice

of x in [3]ki (2), we have Mi(H2) ∈ E(Ck
i , [3]

k
i (2)).

Pick any vertex y ∈ Sk
i . Then d(i, y) = y(i) = 3 by Lemma 3.3 (i). Hence,

there exist vertices y′, y′′ ∈ [k] ∪ [3]k such that (i, y′′, y′, y) is a path in H. Since
d(t, y) = y(t) ≥ 2 for each t ∈ [k], one gets y′ ∈ [3]k. Noting that H1 = K[k], we have

y′′ ∈ [3]k and furthermore y′′(i) = 1. It follows from Lemma 3.4 (ii) that |y′′(i)−y′(i)| ≤ 1

and |y′(i) − y(i)| ≤ 1, and so y′(i) = 2, which implies that {y′, y} ∈ Ni(H2). By the

arbitrary choice of y in Sk
i , we have Ni(H2) ∈ E(Dk

i , S
k
i ).

The proof is completed. ✷

3.3 Proof of Theorem 1.1

Proposition 3.6 A graph G is a (1,m)-CRG if and only if G is a path.

Proof. If G is a (1,m)-CRG, then G has a resolving set of cardinality 1, and so G is
a path. Conversely, if G is a path (u0, u1, . . . , um), then Φ{u0}(ui) = (i) for i ∈ [m],
which implies that {u0} is a (1,m)-CRS, and so G is a (1,m)-CRG, as desired. ✷

Proposition 3.7 A graph G is a (k, 1)-CRG if and only if the order of G is k + 1
and G has a universal vertex.

Proof. Note that a vertex u of G is universal if and only if

ΦV (G)\{u}(u) = (1, . . . , 1).

Hence, the desired result follows. ✷

7



Lemma 3.8 If G is a (k,m)-CRG with k ≥ 2 and m ≥ 2, then m = 2 or 3.

Proof. By contradiction, suppose m ≥ 4. Let W = {w1, w2, . . . , wk} be a (k,m)-
CRS of G. Since ΦW is a bijection, there exist vertices u and v in V (G) \W such
that ΦW (u) = (1, 1, . . . , 1) and ΦW (v) = (4, 1, . . . , 1), which implies that

4 = d(w1, v) ≤ d(w1, u) + d(u,w2) + d(w2, v) = 1 + 1 + 1,

a contradiction. ✷

Theorem 1.1 follows from Lemma 3.8 and Propositions 3.2, 3.5, 3.6 and 3.7.

4 Partially ordered sets

In Theorem 1.1, graphs in P ∪K are well-understood, however, graphs in B ∪ C are
non-intuitive. Now the letter k is always used to denote a given positive integer at
least 2. Note that graphs in Bk (resp. Ck) have the same vertex set [2]k (resp. [3]k).

Notation 5 For graphs G1 and G2 with the same vertex set, define G1 � G2 if G1

is a spanning subgraph of G2. Write G1 ≺ G2 if G1 � G2 and G1 6= G2.

A partially ordered set, or poset, is an ordered pair (A,≤) such that ≤ is a
reflexive, antisymmetric and transitive binary relation on the set A. An element x
is maximum in A if a ≤ x for each a ∈ A. An element y is minimal in A if a ≤ y
implies a = y. Observe that (Bk,�) and (Ck,�) are posets on graphs.

In Subsection 4.1 (resp. 4.2), based on the poset (Bk,�) (resp. (Ck,�)), we first
obtain the maximum graph in Bk (resp. Ck), and turn the problem of characterizing
graphs in Bk (resp. Ck) into characterizing minimal graphs in Bk (resp. Ck). Then
we investigate minimal graphs in Bk (resp. Ck).

In Subsection 4.1, noting from Construction 2.1 that the first factor of a graph
in Bk is an arbitrary graph in G([k]), we fix H1 ∈ G([k]) and give a definition of
an H1-minimal graph. Then the size of an H1-minimal graph is bounded by using
the degrees of vertices in H1, and furthermore, we describe the H1-minimal graphs
satisfying the lower or upper bound. As examples, we apply the results to study
K[k]-minimal graphs and K[k]-minimal graphs.

In Subsection 4.2, noting from Construction 2.3 that the first factor of a graph in
Ck is the null graph in G([k]), we say that H2 is k-minimal if K [k] ◦H2 is a minimal
graph in Ck. We establish the lower and upper bounds for the size of a k-minimal
graph, and characterize all k-minimal graphs satisfying the lower or upper bound.

4.1 A poset on Bk

In this subsection, we focus on the poset (Bk,�), and always suppose that H1 ∈
G([k]) and H2 ∈ G([2]k).

Theorem 4.1 Suppose that H1◦H2 ∈ Bk. If H1 � H ′
1 � K[k] and H2 � H ′

2 � K[2]k ,

then H ′
1 ◦H

′
2 ∈ Bk.

8



Proof. For each i ∈ [k], we get [2]k
H′

1(i)
(2) ⊆ [2]k

H1(i)
(2) and Li(H2) ⊆ Li(H

′
2), where

Li(H2) is as refer to (2). Hence, the desired result follows by Proposition 2.2. ✷

Let G1 and G2 be graphs with the same vertex set V . The union G1 ∪G2 is the
graph with the vertex set V and the edge set E(G1) ∪ E(G2).

Corollary 4.2 For G1, G2 ∈ Bk, we have G1 ∪G2 ∈ Bk. Particularly, we have

⋃

G∈Bk

G = K[k] ◦K[2]k ∈ Bk.

Proof. Let G1 = H1 ◦H2 and G2 = H ′
1◦H

′
2. Then G1∪G2 = (H1∪H ′

1)◦(H2∪H ′
2).

Hence, the desired result follows from Theorem 4.1. ✷

A join-semilattice is a poset in which any pair of elements has the least upper
bound. Note that each finite join-semilattice has a unique maximum element. The
following result is immediate from Corollary 4.2.

Proposition 4.3 The poset (Bk,�) is a finite join-semilattice with the maximum

graph K[k] ◦K[2]k .

From Theorem 4.1, it is nature to put forward the following notion. We say that
H2 is H1-minimal if H1 ◦H2 ∈ Bk and H1 ◦H

′
2 6∈ Bk for H ′

2 ≺ H2.

Remark 2 If H1 ◦H2 is a minimal graph in Bk, then H2 is H1-minimal. However,
the converse is not true.

We get the following result from Proposition 2.2.

Lemma 4.4 A graph H2 is H1-minimal if and only if the following conditions hold.

(i) For each i ∈ [k], the edge subset Li(H2), as refer to (2), is a [2]k
H1(i)

-covering.

(ii) For each e ∈ E(H2), there exists a vertex i ∈ [k] such that Li(H2) \ {e} is

not a [2]k
H1(i)

-covering.

Notation 6 Let H1 ∈ G([k]) and H2 ∈ G([2]k).
(i) For x ∈ [2]k, let Jx = {i ∈ [k] | x ∈ [2]k

H1(i)
(2)}.

(ii) For x ∈ [2]k and e ∈ E(H2), write

Ix(e) = {i ∈ [k] | x ∈ [2]kH1(i)
(2), e ∈ Li(H2), e covers x},

and furthermore, let

Ix =
⋃

f∈E(H2)

Ix(f) and Ĩx(e) = Ix \ (
⋃

f∈E(H2)\{e}

Ix(f)).

Lemma 4.5 A graph H2 is H1-minimal if and only if the following conditions hold.

(i) For each x ∈ [2]k, we have Ix = Jx.
(ii) For each e ∈ E(H2), there is a vertex x ∈ [2]k such that Ĩx(e) 6= ∅.

9



Proof. Note that Ix ⊆ Jx. Observing that i ∈ Jx if and only if x ∈ [2]k
H1(i)

(2), we

obtain (i) if and only if the condition (i) in Lemma 4.4 holds.
Now suppose that the condition (i) in Lemma 4.4 holds. Then i ∈ Ĩx(e) if and

only if any edge in Li(H2) \ {e} does not cover x. Hence, we obtain (ii) if and only
if the condition (ii) in Lemma 4.4 holds.

Consequently, the desired result follows from Lemma 4.4. ✷

Actually, given a graph H1, the H1-minimal graph H2 is not unique. We give
lower and upper bounds for the size of H2. The degree of a vertex in a graph is the
number of edges covering this vertex in the graph.

Theorem 4.6 If H2 is H1-minimal, then

2k−min{di|i∈[k]}−1 ≤ |E(H2)| ≤
k

∑

i=1

2k−di−1,

where di is the degree of the vertex i in H1.

Proof. For each i ∈ [k], write Ei = Li(H2) and denote by E′
i the set of edges e such

that Li(H2) \ {e} is not a [2]k
H1(i)

-covering. By Lemma 4.4 (ii), we have

max{|Ei| | i ∈ [k]} ≤ |
⋃

i∈[k]

Ei| = |E(H2)| = |
⋃

i∈[k]

E′
i| ≤

∑

i∈[k]

|E′
i|.

Noting that |E′
i| ≤ 2k−|H1(i)| = 2k−di−1 ≤ |Ei|, we get the desired result. ✷

Remark 3 If H1 ◦H2 is a minimal graph in Bk, then combining the equation (1),
Remark 2 and Theorem 4.6, we get

k · 2k−1 +
1

2

k
∑

i=1

di + 2k−min{di|i∈[k]}−1 ≤ |E(H1 ◦H2)| ≤ k · 2k−1 +
1

2

k
∑

i=1

(2k−di + di).

The minimum degree of a graph is the minimum value of degrees of all vertices in
this graph. We use the following result to characterize the bounds in Theorem 4.6.

Corollary 4.7 Suppose that H2 is H1-minimal.

(i) The lower bound in Theorem 4.6 is attained if and only if there exists a vertex

i with minimum degree in H1 such that Li(H2) = E(H2).
(ii) The upper bound in Theorem 4.6 is attained if and only if for any distinct

vertices x, y ∈ [2]k and any distinct edges e, f ∈ E(H2), we have (a) |Ix(e)| ≤ 1, (b)
either Ix(e) = ∅ or Iy(e) = ∅, (c) Ix(e) ∩ Ix(f) = ∅.

Proof. (i) It is immediate from the proof of the lower bound in Theorem 4.6.
(ii) Suppose that (a), (b) and (c) hold. Observing that Ĩx(e) ⊆ Ix(e), we infer

from Lemma 4.5 (ii) that

E(H2) =
⋃

x∈[2]k

{e ∈ E(H2) | Ĩx(e) 6= ∅} =
⋃

i∈[k]

⋃

x∈[2]k
H1(i)

(2)

{e ∈ E(H2) | i ∈ Ix(e)}

=
⋃

i∈[k]

{e ∈ E(H2) | i ∈ Ix(e) for a certain vertex x ∈ [2]kH1(i)
(2)},

10



and so |E(H2)| =
∑

i∈[k] |[2]
k
H1(i)

(2)|, attaining the upper bound in Theorem 4.6.

In the following, suppose that |E(H2)| attains the upper bound in Theorem 4.6.
With references to the proof of Theorem 4.6, the following conditions hold.

(C1) |E′
i| = 2k−di−1 for each i ∈ [k].

(C2) E′
i ∩ E′

j = ∅ for any distinct vertices i and j in [k].

By (C1), the following condition holds for each i ∈ [k].

(C1′) For each x ∈ [2]k
H1(i)

(2), there is a unique edge e ∈ E′
i such that e covers x.

Now we divide the proof in three steps.
We first prove (c). By contradiction, suppose Ix(e) ∩ Ix(f) 6= ∅. Pick i ∈

Ix(e)∩Ix(f). Then x ∈ [2]k
H1(i)

(2), {e, f} ⊆ Li(H2) and both e and f cover x, which

implies that there is no edge in E′
i covering x, contrary to (C1′).

The next thing is to prove (a). Suppose for the contrary that |Ix(e)| ≥ 2. Pick
distinct vertices i, j ∈ Ix(e). Note that E′

i ⊆ Li(H2) and E′
j ⊆ Lj(H2). Combining

(C1′) and (c), we get e ∈ E′
i ∩ E′

j, contrary to (C2).
Finally, we prove (b). By contradiction, suppose that Ix(e) 6= ∅ and Iy(e) 6= ∅.

Then e = {x, y}. Taking i ∈ Ix(e) and j ∈ Iy(e), we have (y(i), x(i)) = (1, 2) and
(x(j), y(j)) = (1, 2), which implies that i 6= j. An argument similar to the one used
in the previous step shows that e ∈ E′

i ∩E′
j , contrary to (C2).

The proof is complete. ✷

As applications, we study K[k]-minimal graphs and K[k]-minimal graphs in the
rest of this subsection. To inverstigate K[k]-minimal graphs, we observe that

[2]kK[k](i)
(2) = {(2, . . . , 2)}, (6)

and then get the following example from Lemma 4.5.

Example 4.8 (i) Define Uk as the graph with the vertex set [2]k and the edge set

E(Uk) = {(1, . . . , 1), (2, . . . , 2)}.

Then Uk is a K[k]-minimal graph with size 1.

(ii) Define Vk as the graph with the vertex set [2]k and the edge set

E(Vk) =
⋃

i∈[k]

{{x, (2, . . . , 2)} | x(i) = 1, x(t) = 2 for each t ∈ [k] \ {i}}.

Then Vk is a K[k]-minimal graph with size k.

Corollary 4.9 If H2 is K[k]-minimal, then 1 ≤ |E(H2)| ≤ k,
(i) with the lower bound if and only if H2 = Uk.

(ii) with the upper bound if and only if H2 = Vk.

Proof. Noting that the degree of each vertex i inK[k] is k−1, we have 1 ≤ |E(H2)| ≤
k by Theorem 4.6.

(i) The “if” implication follows immediately from Example 4.8 (i), while the
“only if” implication follows from (6) and Lemma 4.5 (i).
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(ii) We get the sufficiency from Example 4.8 (ii). To prove the necessity, suppose
|E(H2)| = k. Write y = (2, . . . , 2). By (6), we have Jy = [k] and Jz = ∅ for
z ∈ [2]k \ {y}. Noting that |E(H2)| attains the upper bound in Theorem 4.6, we
deduced from Corollary 4.7 (ii) and Lemma 4.5 that |Iy(e)| = 1 for e ∈ E(H2) and
{Iy(e) | e ∈ E(H2)} is a partition of [k]. For any e ∈ E(H2), write e = {x, y}.
Choosing the unique vertex i ∈ Iy(e), we have x(i) = 1 and x(t) = 2 for each
t ∈ [k] \ {i}, as desired. ✷

To investigate K[k]-minimal graphs, we observe that

[2]k
K [k](i)

(2) = [2]ki (2), (7)

and for each x ∈ [2]k, we have

Jx = {i ∈ [k] | x(i) = 2}. (8)

Example 4.10 Define Rk as the graph with the vertex set [2]k and the edge set

E(Rk) = {{x, y} | x, y ∈ [2]k, x(i) 6= y(i) for each i ∈ [k]}.

Then Rk is a K [k]-minimal graph with size 2k−1.

Proof. Noting that E(Rk) is a matching, we infer that Rk has size 2k−1 and each
vertex is covered by a unique edge in Rk. Observing that Li(Rk) = E(Rk) for each
i ∈ [k], we conclude that Rk is K [k]-minimal from Lemma 4.4 and (7). ✷

Remark 4 Actually, if H1 has an isolated vertex, then Rk is H1-minimal. However,
if K[k] ≺ H1, then H1 ◦ Rk is not a minimal graph in Bk.

Given a graph G, the Cartesian product of s copies of G is the graph G✷s with
the vertex set

V (G✷s) = {(x(1), . . . , x(s)) | x(i) ∈ V (G) for i ∈ [s]},

where two vertices x and y are adjacent if and only if there exists an index i ∈ [s]
such that {x(i), y(i)} ∈ E(G) and x(j) = y(j) for all indices j ∈ [s] \ {i}.

Example 4.11 Let P2 be the graph with the vertex set {1, 2} and the edge set
{{1, 2}}. Then P✷k

2 is a K [k]-minimal graph with size k · 2k−1.

Proof. It is routine to verify that |E(P✷k
2 )| = k · 2k−1. For an edge {x, y} in P✷k

2

with (x(i), y(i)) = (1, 2), by (7), we have Ix({x, y}) = ∅ and Iy({x, y}) = {i}, and so

Ĩy({x, y}) = {i}. By Lemma 4.5 and (8), we conclude that P✷k
2 is K [k]-minimal. ✷

Corollary 4.12 If H2 is K [k]-minimal, then 2k−1 ≤ |E(H2)| ≤ k · 2k−1,

(i) with the lower bound if and only if H2 = Rk.

(ii) with the upper bound if and only if H2 = P✷k
2 .
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Proof. Since the degree of each vertex i in K [k] is 0, by Theorem 4.6, we have

2k−1 ≤ |E(H2)| ≤ k · 2k−1.
(i) The “if” implication follows immediately from Example 4.10, while the “only

if” implication follows from (7) and Corollary 4.7 (i).
(ii) We get the sufficiency from Example 4.11. To prove the necessity, suppose

that the size of H2 is k · 2k−1, as well as the upper bound in Theorem 4.6 for
H1 = K [k]. For x ∈ [2]k, write ε(x) = {e ∈ E(H2) | Ix(e) 6= ∅}. It follows from
(8) and Lemma 4.5 (i) that ε(x) = ∅ if and only if x = (1, . . . , 1). Observing that
Ĩx(e) ⊆ Ix(e), we have derived from Lemma 4.5 (ii) that

E(H2) =
⋃

x∈[2]k

{e ∈ E(H2) | Ix(e) 6= ∅} =
⋃

x∈[2]k\{(1,...,1)}

ε(x).

Pick any vertex x ∈ [2]k\{(1, . . . , 1)}. Combining Corollary 4.7 (ii) and Lemma 4.5 (i),
we get |Ix(e)| = 1 for any e ∈ ε(x) and {Ix(e) | e ∈ ε(x)} is a partition of Jx. For any
edge e = {y, x} ∈ ε(x), taking the unique vertex i ∈ Ix(e), one has (y(i), x(i)) = (1, 2)
and (y(t), x(t)) = (2, 2) for t ∈ Jx \ {i}, and further by Corollary 4.7 (ii), we get

Iy(e) = ∅, and so (y(t), x(t)) = (1, 1) for t ∈ [k] \ Jx. Hence, we have ε(x) ∈ E(P✷k
2 ),

and so E(H2) ⊆ E(P✷k
2 ). It follows from |E(H2)| = |E(P✷k

2 )| that H2 = P✷k
2 , as

desired. ✷

4.2 A poset on Ck

In this subsection, we focus on the poset (Ck,�), and always suppose that H2 is a
graph with the vertex set [3]k. We begin by constructing a graph on the set [3]k.
Let Γk be the graph with the vertex set [3]k and the edge set

E(Γk) = {{x, y} | x, y ∈ [3]k, x 6= y, |x(i) − y(i)| ≤ 1 for each i ∈ [k]}.

Observation 4.13 Γk = span(
⋃

i∈[k](E(Ck
i ) ∪ E(Dk

i ))).

Theorem 4.14 Suppose that K [k] ◦H2 ∈ Ck.
(i) Then H2 � Γk.

(ii) If H2 � H ′
2 � Γk, then K [k] ◦H

′
2 ∈ Ck.

Proof. (i) Combining Proposition 2.4 (i) and Observation 4.13, we have E(H2) ⊆
E(Γk), and so H2 � Γk.

(ii) Observe that E(H ′
2) ⊆ E(Γk), Mi(H2) ⊆ Mi(H

′
2) and Ni(H2) ⊆ Ni(H

′
2),

where Mi(H2) and Ni(H2) are as refer to (3) and (4), respectively. For each i ∈ [k],
by Observation 4.13, we have Mi(Γk) = E(Ck

i ) and Ni(Γk) = E(Dk
i ), which are

[3]ki (2)-covering and Sk
i -covering, respectively. Hence, the desired result follows from

Proposition 2.4. ✷

Corollary 4.15 For any graph K[k] ◦ H2 ∈ Ck, we have |E(H2)| ≤ 7k−3k

2 , with
equality if and only if H2 = Γk.
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Proof. Noting that |x(i) − y(i)| ≤ 1 if and only if

(x(i), y(i)) ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)},

we have |{(x, y) | x, y ∈ [3]k, |x(i) − y(i)| ≤ 1 for each i ∈ [k]}| = 7k, which implies

that |E(Γk)| =
7k−3k

2 . Hence, by Theorem 4.14, we get the desired result. ✷

Corollary 4.16 For G1, G2 ∈ Ck, we have G1 ∪G2 ∈ Ck. In particular, we have

⋃

G∈Ck

G = K[k] ◦ Γk ∈ Ck.

Proof. Write G1 = K [k] ◦H2 and G2 = K [k] ◦H
′
2. Then G1∪G2 = K [k] ◦(H2∪H ′

2).
Hence, the desired result follows from Theorem 4.14. ✷

The following result is immediate from Corollary 4.16.

Proposition 4.17 The poset (Ck,�) is a finite join-semilattice with the maximum

graph K[k] ◦ Γk.

A graph H2 is k-minimal if K [k] ◦H2 ∈ Ck and K [k] ◦H
′
2 6∈ Ck for H ′

2 ≺ H2.

Remark 5 A graph H2 is k-minimal if and only if K [k] ◦H2 is minimal in Ck.

To study k-minimal graph, we give the following notation for convenience.

Notation 7 Write X = [3]k[k]({2, 3}), Y = [3]k[k]({1, 3}) and

X = [3]k \X, Y = [3]k \ Y, Z = [3]k \ (X ∪ Y ).

We establish the bounds for the size of a k-minimal graph.

Theorem 4.18 If H2 is k-minimal, then

3k + 1

2
≤ |E(H2)| ≤ k · (3k−1 + 2k−1).

Proof. For i ∈ [k], denote by M ′
i (resp. N ′

i) the set of edges e in Mi(H2) (resp.
Ni(H2)) such that Mi(H2) \ {e} (resp. Ni(H2) \ {e}) is not a [3]ki (2)-covering (resp.
an Sk

i -covering), where Mi(H2) (resp. Ni(H2)) is as refer to (3) (resp. (4)). Then
|M ′

i | ≤ |[3]ki (2)| = 3k−1 and |N ′
i | ≤ |Sk

i | = 2k−1. Since H2 is k-minimal, it follows
from Proposition 2.4 that E(H2) =

⋃

i∈[k](M
′
i ∪N ′

i), and so

|E(H2)| = |
⋃

i∈[k]

(M ′
i ∪N ′

i)| ≤
∑

i∈[k]

(|M ′
i |+ |N ′

i |) ≤ k · (3k−1 + 2k−1). (9)

In the following, we prove the lower bound. Pick any vertex x ∈ [3]k. We shall
find an edge ex in H2 covering x for the following two cases.
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Case 1. x = (3, . . . , 3). Then x ∈ Sk
1 . Note that K [k] ◦ H2 ∈ Ck. By Proposi-

tion 2.4 (iii), there exists at least one edge ex in H2 covering x.
Case 2. x ∈ Y . Then there is an index i ∈ [k] with x(i) = 2. By Proposi-

tion 2.4 (ii), there is an edge ex = {x, y} in H2 such that y(i) = 1, and so y ∈ X.

Observing that X = (X ∩ Y ) ∪ {(3, . . . , 3)} and Z ⊆ Y , we choose two families
of edges from the above two cases:

FX = {ex | x ∈ X} and FZ = {ex | x ∈ Z}.

By Case 2, the edge ex for x ∈ X ∩ Y does not cover any other vertices in X except
x, and so |FX | = |X| = 2k. Noting that Z ⊆ X , we have derived that all of the
vertices covered by edges in FZ are in X , which implies that FX ∩ FZ = ∅. Since
each edge covers two vertices, one gets 2|FZ | ≥ |Z| = 3k − 2k+1 + 1 by a short
calculation. Consequently, we have

|E(H2)| ≥ |FX ∪ FZ | = |FX |+ |FZ | ≥ 2k +
3k − 2k+1 + 1

2
=

3k + 1

2
, (10)

as desired. ✷

Remark 6 If K [k] ◦H2 is minimal in Ck, then by the equation (1), Remark 5 and
Theorem 4.18, we have

(2k + 3) · 3k−1 + 1

2
≤ |E(K [k] ◦H2)| ≤ 2k · (3k−1 + 2k−2).

To characterize the lower bound in Theorem 4.18, we define a graph on [3]k.

Example 4.19 Define Tk as the graph with the vertex set [3]k and the edge set
E(Tk) = EX ∪ EZ , where

EX = {{x, y} | x ∈ X, y ∈ [3]k, x(i) − y(i) = 1 for each i ∈ [k]},
EZ = {{x, y} | x, y ∈ Z, x(i) = y(i) = 3 or {x(i), y(i)} = {1, 2} for each i ∈ [k]}.

Then Tk is a k-minimal graph with size 3k+1
2 .

Proof. We first compute |E(Tk)|. Since there is a bijection from X to EX , one has
|EX | = |X| = 2k. Each vertex in Z is covered by a unique edge in EZ , so EZ is a
matching in Z, which implies that

|EZ | =
|Z|

2
=

3k − 2k+1 + 1

2
.

Noting that EZ does not cover any vertex in X, we have EX ∩ EZ = ∅. Hence, we
get |E(Tk)| = |EX |+ |EZ | =

3k+1
2 .

The next thing is to prove K [k] ◦ Tk ∈ Ck. Take any index i ∈ [k] and then pick

any vertex x ∈ [3]ki (2)∪Sk
i . If x ∈ X, let y be a vertex in [3]k such that y(t) = x(t)−1

for each t ∈ [k], then {x, y} ∈ EX ∩ E(Ck
i ) or EX ∩ E(Dk

i ) according to x ∈ [3]ki (2)
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or Sk
i . If x ∈ X, then x ∈ Z, and so {x, y} ∈ EZ ∩ E(Ck

i ), where y is a vertex in Z
such that

y(t) =







2, if x(t) = 1,

1, if x(t) = 2,

3, if x(t) = 3.

Therefore, we have derived that Mi(H2), as refer to (3), is a [3]ki (2)-covering and
Ni(H2), as refer to (4), is an Sk

i -covering. Observing that EX∪EZ ⊆
⋃

i∈[k](E(Ck
i )∪

E(Dk
i )), we get K [k] ◦H2 ∈ Ck from Proposition 2.4.
Finally, we show that Tk is k-minimal. By contradiction, if Tk is not k-minimal,

then there is a graph H2 ≺ Tk such that K [k] ◦H2 ∈ Ck, and so |E(H2)| < |E(Tk)| =
3k+1
2 , contrary to Theorem 4.18. This contradiction implies that Tk is minimal.
The proof is complete. ✷

We use the following result to characterize the lower bound in Theorem 4.18.

Corollary 4.20 The lower bound in Theorem 4.18 is attained if and only if H2 =
Tk.

Proof. The “if” implication follows from Example 4.19. To obtain the “only if”
implication, let H2 be a k-minimal graph with size 3k+1

2 . With references to the
proof of Theorem 4.18, we have derived from (10) that

E(H2) = FX ∪ FZ , |FX | = 2k = |EX | and |FZ | =
|Z|

2
= |EZ |.

It follows from Proposition 2.4 that FX = EX and FZ = EZ , as desired. ✷

To characterize the upper bound in Theorem 4.18, we give the following notation.

Notation 8 For i ∈ [k] and x ∈ [3]ki (2) ∪ Sk
i , denote by ǫi(x) the set of edges

e = {x, x′} such that x′(i) = x(i) − 1 and for each t ∈ [k] \ {i}, one of the following
conditions holds.

(i) If x ∈ Sk
i , then x′(t) = x(t).

(ii) If x ∈ X ∩ [3]ki (2), then

x′(t) =

{

2 or 3, if x(t) = 2,

3, if x(t) = 3.

(iii) If x ∈ X ∩ [3]ki (2), then

x′(t) =

{

1, if x(t) = 1,

2 or 3, if x(t) = 2 or 3.

Lemma 4.21 Let i, j ∈ [k]. Pick x ∈ [3]ki (2) ∪ Sk
i and y ∈ [3]kj (2) ∪ Sk

j . If (i, x) 6=
(j, y), then ǫi(x) ∩ ǫj(y) = ∅.
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Proof. Suppose for the contrary that ǫi(x) ∩ ǫj(y) 6= ∅. Take e ∈ ǫi(x) ∩ ǫj(y).
Case 1. i = j. Then x 6= y and e = {x, y}, which implies that y(i) = x(i)− 1 and

x(i) = y(i) − 1, a contradiction.
Case 2. i 6= j and x = y. Write e = {x, x′}. Then

x′(i) = x(i) − 1 and x′(j) = x(j) − 1.

Note that e ∈ ǫi(x). If x ∈ Sk
i or X ∩ [3]ki (2), then x′j ≥ xj , a contradiction. If

x ∈ X ∩ [3]ki (2), then (x′(j), x(j)) = (2, 3), which implies that x ∈ Sk
j , and so x ∈ X,

a contradiction.
Case 3. i 6= j and x 6= y. Then e = {x, y}, and so

y(i) = x(i) − 1 and y(j) = x(j) + 1.

If x ∈ Sk
i , then y(j) = x(j), a contradiction. Now suppose x ∈ [3]ki (2). Then

y(i) = 1 and (x(j), y(j)) = (2, 3). Noting that {x, y} ∈ ǫj(y), we have y ∈ Sk
j , and so

x(i) = y(i), a contradiction.
We accomplish the proof. ✷

Example 4.22 Define

Qk = {span(
⋃

i∈[k]

⋃

x∈[3]k
i
(2)∪Sk

i

{ei(x)}) | ei(x) ∈ ǫi(x)}.

Then each graph in Qk is a k-minimal graph with size k · (3k−1 + 2k−1).

Proof. Choose any graph H2 ∈ Qk. Observe that ǫi(x) ⊆ E(Ck
i ) ∪ E(Dk

i ). Noting
that E(H2) ∩ ǫi(x) has exactly one edge, as well as the unique edge covering x in
Mi(H2) or Ni(H2) according to x ∈ [3]ki (2) or Sk

i , we deduce that H2 is k-minimal
from Proposition 2.4 and Lemma 4.21. By Lemma 4.21 again, one has

|E(H2)| = k · (|[3]ki (2)|+ |Sk
i |) = k · (3k−1 + 2k−1),

as desired. ✷

Remark 7 Let P3 be the graph with the vertex set {1, 2, 3} and the edge set
{{1, 2}, {2, 3}}. Let Qk be the graph obtained from the Cartesian product P✷k

3

by deleting the edges {x, x′} such that there exist indices i and j in [k] with
(xi, x

′
i) = (2, 3) and xj = x′j = 1. Then Qk ∈ Qk.

We use the following result to characterize the upper bound in Theorem 4.18.

Corollary 4.23 The upper bound in Theorem 4.18 is attained if and only if H2 ∈
Qk.
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Proof. We get the sufficiency from Example 4.22. To prove the necessity, let H2

be a k-minimal graph with size k · (3k−1 + 2k−1). With references to the proof of
Theorem 4.18, we have derived from (9) that

|M ′
i | = 3k−1 = |[3]ki (2)|, |N ′

i | = 2k−1 = |Sk
i |, (11)

and the following condition.

(A) All sets M ′
i ’s and N ′

i ’s are pairwise non-intersecting.

Take any x ∈ [3]ki (2) ∪ Sk
i . By (11), there is a unique edge fi(x) covering x in

M ′
i or N ′

i according to x ∈ [3]ki (2) or Sk
i . Note that E(H2) =

⋃

i∈[k](M
′
i ∪ N ′

i). To
get the desired result, we only need to prove fi(x) ∈ ǫi(x).

Suppose for the contrary that fi(x) 6∈ ǫi(x). It is routine to verify that there is
an index t ∈ [k] \ {i} such that either (x, fi(x)) ∈ [3]kt (2) × E(Ck

t ) or (x, fi(x)) ∈
Sk
t × E(Dk

t ). Then fi(x) ∈ Mt(H2) or Nt(H2) according to x ∈ [3]kt (2) or Sk
t .

Noting that M ′
t ⊆ Mt(H2) and N ′

t ⊆ Nt(H2), by the definitions of M ′
t and N ′

t

in Theorem 4.18, we get ft(x) = fi(x), which contradicts (A). This contradiction
completes the proof. ✷

5 Perfectness-resolvable

We begin this section by computing the diameters of graphs in Bk or Ck.

Proposition 5.1 (i) The diameter of any graph in Bk is 2 or 3.
(ii) The diameter of any graph in Ck is 3, 4 or 5.

Proof. (i) Choose any graph H ∈ Bk. Pick i, j ∈ [k]. By Lemma 3.1 (i), we have
d(i, z) = z(i) for each z ∈ [2]k, and so

d(i, j) ≤ d(i, (1, . . . , 1)) + d(j, (1, . . . , 1)) = 1 + 1 = 2.

For distinct vertices x, y ∈ [2]k, there exists a vertex t ∈ [k] such that x(t) = 1 or
y(t) = 1. Hence, we have

d(x, y) ≤ d(t, x) + d(t, y) ≤ 1 + 2 = 3.

Since d(i, (2, . . . , 2)) = 2, the diameter of H is 2 or 3.
(ii) An argument similar to the proof of (i) shows that (ii) holds. ✷

Remark 8 (i) The diameters of K[k] ◦K[2]k and K[k] ◦U2 are 2 and 3, respectively.

(ii) The diameters of K[k]◦Γk, K [k]◦Q2 and K [k]◦T2 are 3, 4 and 5, respectively.

Given a graph G, themetric dimension of G, denoted by dim(G), is the minimum
cardinality of a resolving set of G. A metric basis of G is a resolving set of G with
cardinality dim(G). A metric basis of G is perfect if it is a completeness-resolving set.
We say that G is perfectness-resolvable if it admits a perfect metric basis. Clearly,
a perfectness-resolvable graph is completeness-resolvable.
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Observation 5.2 (i) All paths are perfectness-resolvable.
(ii) A graph in K is perfectness-resolvable if and only if it is complete.

Proposition 5.3 (i) Let G be a graph in Bk. If the diameter of G is 2, then G is

perfectness-resolvable.

(ii) Let G be a graph in Ck. If the diameter of G is 3, then G is perfectness-

resolvable.

Proof. By [4, Theorem 1], we have |V (G)| ≤ dim(G) + ddim(G), where d is the
diameter of G. Note that |V (G)| is equal to k + 2k or k + 3k according to G ∈ Bk

or Ck. Hence, one has k ≤ dim(G) if the condition in (i) or (ii) holds. Since [k] is a
completeness-resolving set of graphs in Bk ∪ Ck, the two desired results follow. ✷

We conclude the paper by raising the following problem.

Problem 2. Which graphs are perfectness-resolvable?
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