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On sufficient conditions for planar graphs to be

5-flexible∗

Fan Yang†

School of Mathematics, Shandong University, Jinan 250100, China

Abstract

In this paper, we study the flexibility of two planar graph classes H1, H2, where

H1, H2 denote the set of all hopper-free planar graphs and house-free planar graphs,

respectively. Let G be a planar graph with a list assignment L. Suppose a preferred

color is given for some of the vertices. We prove that if G ∈ H1 or G ∈ H2 such that all

lists have size at least 5, then there exists an L-coloring respecting at least a constant

fraction of the preferences.

Key words: Planar graph, reducible, discharging, flexibility, satisfiable.

1 Introduction

All graphs considered are simple, finite, and loopless, and we follow [1] for the terminologies

and notation not defined here. Two triangles which intersect exactly at one vertex form a

hopper, see Figure 1 (A1). A triangle shares exactly one edge with a 4-cycle form a house,

see Figure 1 (A2). Given a graph G, G is called hopper-free (or house-free) if G does not

contain any hopper (or house) as subgraphs. For brevity, denote by H1 and H2 the set of all

hopper-free planar graphs and house-free planar graphs, respectively. In a proper coloring,

we want to assign to each vertex of G one of a fixed number of colors in such a way that

adjacent vertices receive distinct colors. A list assignment L for G is a function that assigns

to every vertex of G a set (list) L(v) of colors. An L-coloring is a proper coloring φ such that

φ(v) ∈ L(v) for all v ∈ V (G). If G has a proper coloring φ such that φ(v) ∈ L(v) for each

vertex v of G, then we say that G is L-colorable. In addition, we say L is an f -assignment if

|L(v)| ≥ f(v) for all v ∈ V (H). Specifically, L is called a k-assignment (k ∈ N) if f(v) ≥ k

for each v ∈ V (G). Furthermore, G is k-choosable if G is L-colorable for every k-assignment

L.

∗This work is supported by NSFC(11971270, 11631014) of China and Shandong Province Natural Science
Foundation (ZR2018MA001,ZR2019MA047) of China

†E-mail address: yangfan5262@163.com.
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Recently, Dvořák, Norin and Postle introduced a coloring with request as follows. Firstly,

we give each vertex of U ⊆ V (G) a preferred color from their list sets, is it possible to properly

color G so that at least a constant fraction vertices of U satisfy their preferences?

Figure 1: Special subgraphs

Initiated by Dvořák, Norin and Postle [7], a request for a graph G with a list assignment

L is a function r with dom(r) ⊆ V (G) such that r(v) ∈ L(v) for all v ∈ dom(r). For ε > 0,

a request r is ε-satisfiable if there exists an L-coloring φ of G satisfying φ(v) = r(v) for at

least ε|dom(r)| vertices v ∈ dom(r). We say that a graph G with the list assignment L is

ε-flexible if every request is ε-satisfiable. Additionally, we emphasize a stronger weighted

form. A weighted request is a function w that to each pair (v, c) with v ∈ V (G) and c ∈ L(v)

assigns a nonnegative real number. Let w(G,L) =
∑

v∈V (G),c∈L(v) w(v, c). For ε > 0, we say

that w is ε-satisfiable if there exists an L-coloring φ of G such that

∑

v∈V (G)

w(v, φ(v)) ≥ εw(G,L).

We say that G with the list assignment L is weighted ε-flexible if every weighted request is

ε-satisfiable.

It is worth pointing out that a request r is 1-satisfiable if and only if the precoloring given

by r can be extended to an L-coloring of G. One can observe that weighted ε-flexibility

implies ε-flexibility by giving the request pairs (v, r(v)) weight 1 and all other pairs weight

0.

Very recently, several scholars contribute a lot on this topic. For some ε > 0, Dvořák,

Norin and Postle [7] showed that every planar graph is ε-flexible with a 6-assignment. As

we know, planar graphs are 5-choosable [12], so they conjectured that 6-assignemnt can be

reduced to 5. In particular, there are lots of results respect to forbidding some configurations

in planar graphs. Dvořák, Masařík, Musílek and Pangrác [5] proved that planar graphs

without triangles are weighted ε-flexible with a 4-assignment, the result they gave is the best
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possible with respect to the list size since planar graphs without triangles are 4-choosable.

Moreover, they also showed that planar graphs of girth at least six are weighted ε-flexible

with a 3-assignment [6]. However, Thomassen [11] studied that planar graphs of girth at

least five is 3-choosable, so there is still a gap left open. Masařík [10] showed that C4-free

planar graphs are weighted ε-flexible with a 5-assignment. Since planar graphs without 4-

cycles are 4-choosable [9], Masařík conjectured that his result about list assignment would

be reduced to 4. In addition, Choi et.al [4] proved three theorems: every planar graph

(i) without K−

4 is weighted ε-flexible with a 5-assignment, (ii) without C4 and C3 distance

at least 2 is weighted ε-flexible with a 4-assignment, (iii) without C4, C5, C6 is weighted

ε-flexible with a 4-assignment. Their first theorem has strengthened the result of Masařík,

which is a good bound up to the list size compared to choosability, since the conjecture

that K−

4 -free planar graphs are 4-choosable is still open. Nowadays, Yang and the author

[15] extended the third theorem of Choi et. al, they showed that every {C4, C5}-free planar

graph is weighted ε-flexible with a 4-assignment, which is the best possible with respect to

the list size, since Voigt [13] gave a planar graph without C4 and C5 is not 3-choosable.

In the paper, we mainly investigate the weighted ε-flexibility of two classes of planar

graphs.

Theorem 1. If G is hopper-free, then there exists ε > 0 such that G is weighted ε-flexible

with a 5-assignment.

Theorem 2. If G is house-free, then there exists ε > 0 such that G is weighted ε-flexible

with a 5-assignment.

Until now, no result states that G is 4-choosable if G ∈ H1 or G ∈ H2. However, Wang

and Lih [14] proved that a planar graph H is 4-choosable if H has no intersecting 3-cycle,

that is, H contains neither hopper nor diamond (which is the graph isomorphic to (A3), see

Figure 1). On the other hand, Borodin and Ivanova [2], Cheng et al. [3] showed that a

planar graph H is 4-choosable if H contains no 4-cycle which shares at least one common

edge with a 3-cycle, that is, H contains neither house nor diamond.

The rest of the paper is organized as follows. In Section 2, we develop the notation

and introduce some essential tools used in list coloring settings. In Section 3, we give the

proof of Theorem 1, the main idea is to produce some reducible configurations and then use

discharging method to get a contradiction. In Section 4, we prove Theorem 2.
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2 Preliminaries

We shall split Section 2 into two parts. In Section 2.1, we first give some definitions related

to our topic. In Section 2.2, we shall present several essential tools to the proof of our

theorems.

2.1 Definitions

Let 1S denote the characteristic function of S, i.e., 1S(v) = 1 if v ∈ S and 1S(v) = 0 other-

wise. For functions that assign integers to vertices of H , we define addition and subtraction

in the natural way, adding/subtracting their values at each vertex independently. Given a

graph H and a vertex v ∈ V (H). For a function f : V (H) → Z and a vertex v ∈ V (H), let

f ↓ v denote the function such that (f ↓ v)(w) = f(w) for w 6= v and (f ↓ v)(v) = 1. Given

a set of graphs F and a graph H , a set S ⊆ V (H) is F -forbidding if the graph H together

with one additional vertex adjacent to all of the vertices in S does not contain any graph

from F . We first give a crucial definition of (F , k)-boundary-reducible as follows.

Definition 2.1. A graph H is an (F , k)-boundary-reducible induced subgraph of a graph G

if there exists a set B $ V (H) such that

(FIX) for every v ∈ V (H)\B, H − B is L-colorable for every ((k − degG +degH−B) ↓ v)-

assignment L, and

(FORB) for every F-forbidding set S ⊆ V (H)\B of size at most k−2, H−B is L′-colorable

for every (k − degG +degH−B −1S)-assignment L′.

We will call the set B in (FORB) as the boundary of the configuration in the following

discussion. By the definition of (FORB), we get that (FORB) is implied by (FIX) when

|S| = 1. Hence in the following discussion, we mainly consider the case 2 ≤ |S| ≤ k − 2.

Definition 2.2. Let G be a graph with lists of size k that does not contain any graph in F

as an induced subgraph. We define (F , k, b)-resolution of G as a set Gi of nested subgraphs

for 0 ≤ i ≤ M , such that G0 := G and

Gi := G−
i
⋃

j=1

(Hj − Bj),

where each Hi is an induced (F , k)-boundary-reducible subgraph of Gi−1 with boundary Bi

such that |V (Hi)\Bi| ≤ b and GM is an (F , k)-boundary-reducible subgraph with empty

boundary and size at most b. For technical reasons, let GM+1 := ∅.
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Our strategy is to prove every graph that does not contain any graph from F as a

subgraph contains a reducible subgraph. Actually, we regard a resolution as an inductively-

defined object obtained by iteratively identifying some reducible subgraph H with boundary

B and deleting H −B until V (G) is exhausted.

2.2 Basic tools

The following lemma derived from Choi et al. provide us with a unified approach to deal with

the weighted flexibility of any graph with forbidden subgraphs, which also strengthen the

key lemma implicitly presented by Dvořák, Norin and Postle in [7], and explicitly formulated

as Lemma 4 in [5].

Lemma 2.3 ([4]). For all integers k ≥ 3 and b ≥ 1 and for all sets F of forbidden subgraphs,

there exists an ε > 0 as follows. Let G be a graph with an (F , k, b)-resolution. Then G with

any assignment of lists of size k is weighted ε-flexible.

The well-known lemma below provide us with a method to deal with the coloring problem

of a graph, which will be used frequently in our proofs.

Lemma 2.4 ([8]). Let G be a connected graph and L a list assignment such that |L(u)| ≥

deg(u) for all u ∈ V (G). If either there exists a vertex u ∈ V (G) such that |L(u)| > deg(u),

or some 2-connected component of G is neither complete nor an odd cycle, then G is L-

colorable.

3 Proof of Theorem 1

In this section, we shall first collect essential notation and then find some reducible subgraphs.

Finally we use Euler’s formula to complete the proof of Theorem 1.

3.1 Notation

A plane graph is a particular drawing of a planar graph in the Euclidean plane. Let G be

a plane graph, let us denote by V (G), E(G), F (G) the vertex set, edge set, face set of G,

respectively. We denote by d(v) and δ(G) the degree of a vertex v ∈ V (G) and minimum

degree of G. A vertex v is called a k-vertex, a k+-vertex or a k−-vertex if d(v) = k, d(v) ≥ k

or d(v) ≤ k, respectively. For any face f ∈ F (G), the degree of f , denoted by d(f), is the

length of the shortest boundary walk of f , where each cut edge is counted twice. A k-face, a

k+-face or a k−-face is a face of degree k, degree at least k, or degree at most k, respectively.

We write f = (d1, . . . dn) if v1, . . . , vn are the boundary vertices of f with d(vi) = di for
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all i ∈ {1, 2, . . . , n}. We say that f = (d+1 , . . . dn) if d(v1) ≥ d1 and d(vi) = di for all

i ∈ {2, . . . , n}; and similarly for other combinations. In addition, Let fk(v), nk(f) denote

the number of k-faces incident with the vertex v and the number of k-vertices incident with

the face f , respectively.

3.2 Reducible configurations

Note that in all figures of the paper, any vertex marked with • has no edges of G incident

with it other than those shown. In the following, we say a vertex u has γ (γ ∈ N) available

colors in a configuration H means that the maximum number of colors remaining in L(u) is

γ after coloring vertices exterior to H . When considering (FIX), we reduce the number of

available colors on the vertex to 1, and when considering (FORB), we reduce the number

of available colors on the vertices in S by 1.

Lemma 3.1. Let G ∈ H1. If G contains one of the following configurations (see Figure 2).

(B1) A cycle vv1v2 such that 4 ≤ d(v) ≤ 5, d(vi) = 4 for each i ∈ {1, . . . , d(v)}\{2} and

d(v2) = 5, vj ∈ N(v) for each j ∈ {1, . . . , d(v)}.

(B2) A cycle vv1v2 such that 4 ≤ d(v) ≤ 6 and d(vi) = 4 with vi ∈ N(v) for each i ∈

{1, . . . , d(v)− 1}.

(B3) A cycle v1v2v3v4 and an edge v1v3 such that d(v2) = d(v3) = 4, d(v1) = d(v4) = 5.

(B4) A cycle v1v2v3v4, an edge v1v3 and an edge v1v5 such that one of the following holds,

(i) d(v1) = d(v3) = 5 and d(v2) = d(v4) = d(v5) = 4;

(ii) d(v1) = 6, d(vi) = 4 for each i ∈ {2, 3, 4, 5}.

(B5) A cycle v1v2v3v4, and two edges v1v3, v4v5 such that d(vi) ≤ 5 for each i ∈ {1, 2},

d(v4) = 5, and d(v3) = d(v5) = 4.

(B6) A cycle v1v2v3v4, and three edges v1v3, v1v5, v1v6 such that d(vi) = 5 for each i ∈

{1, 3, 4}, d(vj) = 4 for each j ∈ {2, 5, 6}.

Then G contains a (H1, 5)-boundary-reducible induced subgraph with empty boundary.
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Figure 2: Reducible subgraphs. The edge marked with a dashed line may not exist, and its
existence depends on the degree of the vertex incident with it.

Proof. Let Hi be the graph isomorphic to one of (Bi) for i ∈ {1, . . . , 6} and set the boundary

to be empty. It suffices to prove that Hi satisfies (FIX) and (FORB) for each i ∈ {1, . . . , 6}.

For H1. We only consider d(v) = 4 since the same arguments yield to d(v) = 5.

(FIX): Note that v has five available colors, v1 has three available colors, and vi has two

available colors for each i ∈ {2, 3, 4}. If v (or v1) is fixed, then we first color v (or v1). Finally

H1 − v (or H1 − v1) can be colored by Lemma 2.4. If v2 is fixed, then we can greedily color

v2, v1, v, v3, v4 in order. Fixing any other vertex in {v3, v4} is handled in a similar fashion.

(FORB): Let S ⊆ V (H1) of size at most 3. Recall that (FORB) is implied by (FIX)

when |S| = 1. So we mainly discuss the case 2 ≤ |S| ≤ 3 in the following proof. Suppose

|S| = 2. Then S can be chosen as the following pairs: {v, v1}, {v, v2}, {v1, v2}, {v1, v3},

{v1, v4}, {v2, v3}, {v2, v4}, {v3, v4}. If S = {v, v1} (or S = {v, v2}), then we can greedily

color v2, v1, v, v3, v4 in order. If S = {v1, v3} (or S = {v1, v4}), then H1 can be colored by

Lemma 2.4. If S = {v1, v2}, then we can greedily color v2, v1, v, v3, v4 in order. Forb the

remaining pair of vertices described as above can be handled in a similar fashion, so we omit

them. Now we discuss the case |S| = 3. By the definition of S, we know that S can be chosen

as the following triples: {v, v1, v2}, {v1, v2, v3}, {v1, v2, v4}, {v2, v3, v4}. If S = {v, v1, v2},

then we greedily color v2, v1, v, v3, v4 in order. The rest triples can be handled in a similar

fashion.
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For H2. We only consider the case d(v) = 5 as the analysis of the other two cases are

similar.

(FIX): Note that v has four available colors, vi has three available colors for each i ∈

{1, 2}, and vj has two available colors for each j ∈ {3, 4}. If v is fixed, then we greedily

color v, v1, v2, v3, v4 in order. If vi is fixed for each i ∈ {1, 2, 3, 4}, then we first color v, and

finally the coloring can be extended to H2 − vi by Lemma 2.4.

(FORB): When |S| = 2, if S = {v, vj} (j ∈ {1, 2}), then we can greedily color vj , v3−j ,

v, v3, v4 in order. If S = {s1, s2} (s1 6= s2), where si ∈ {v1, v2, v3, v4} for each i. Similarly, we

first greedily color the vertices in S and then extend the coloring to the remaining vertices,

which is possible since v has four available colors. When |S| = 3, if S = {v, v1, v2}, then

we can color v1, v2, v, v3, v4 in order. If S = {s1, s2, s3}, where si ∈ {v1, v2, v3, v4} for each

i and si are distinct from each other, then we can first greedily color the vertices in S and

finally extend the coloring to the remaining vertices. As a result, (FORB) holds.

For H3. We verify both (FIX) and (FORB) holds.

(FIX): Note that vi has three available colors for each i ∈ {1, 2}, v3 has four available

colors, and v4 has two available colors. If vi is fixed for each i ∈ {1, 2, 3, 4}, then we first

color vi. At last, H3 − vi can be colored by Lemma 2.4.

(FORB): Note that |S| ≤ 2. If S = {v1, v3}, then we greedily color v1, v4, v3, v2 in

order. If S = {v2, v4}, then we greedily color v4, v1, v2, v3 in order.

For H4. Suppose d(v1) = d(v3) = 5 and d(v2) = d(v4) = d(v5) = 4.

(FIX): Note that v1 has four available colors, vi has three available colors for each

i ∈ {2, 3, 4}, and v5 has two available colors. If v1 is fixed, then we greedily color v1, v5, v2,

v3, v4 in order. If vi is fixed for each i ∈ {2, 3, 4, 5}, then we first color vi. Finally, H − vi

can be colored by Lemma 2.4.

(FORB): We first consider |S| = 2. If S = {v1, v3}, then we greedily color v3, v2, v1, v4,

v5 in order. If S = {v2, v4}, then we greedily color v2, v3, v4, v1, v5 in order. If S = {vj , v5}

for each j ∈ {2, 3, 4}, we may assume j = 2, then we greedily color v5, v2, v1, v3, v4 in order.

One can observe that the case j = 3 or j = 4 admits (FORB) by the same arguments. If

|S| = 3, then S = {v2, v4, v5}, then we first color v5, and then H − v5 can be colored by

Lemma 2.4, (FORB) holds.

Suppose d(v1) = 6, d(vi) = 4 for each i ∈ {2, 3, 4, 5}.

(FIX): Note that vi has three available colors for each i ∈ {1, 2, 4}, v3 has four available

colors, and v5 has two available colors. Fix any other vertex, say v1, then we can first color

v1 and then extend the coloring to the remaining vertices.

(FORB): When |S| = 2, if S = {v1, v3}, then we color v5, v1, v3, v2, v4 in order. If
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S = {v2, v4}, then we greedily color v2, v4, v1, v5, v3 in order. If S = {vj, v5} for j ∈ {2, 3, 4},

say j = 2, then we greedily color v5, v2, v1, v4, v3 in order. It is easy to check the cases j = 3

and j = 4 also admit (FORB) by the same arguments. If |S| = 3, then S = {v2, v4, v5},

and thus we can greedily color v5, v4, v1, v2, v3 in order, implying (FORB).

For H5. We may assume that d(v1) = d(v2) = 5.

(FIX): Note that vi has three available colors for each i ∈ {1, 4}, vj has two available

colors for each j ∈ {2, 5}, and v3 has four available colors. If vi for some i ∈ {1, 2} is fixed,

then we greedily color vi, v3−i, v3, v4, v5 in order. If v4 is fixed, then we greedily color v4,

v5, v1, v2, v3 in order. If vi is fixed for some i ∈ {3, 5}, then we first color vi, and then by

Lemma 2.4, H5 − vi can be colored.

(FORB): When |S| = 2. If S = {v1, v3}, then we greedily color v1, v2, v3, v4, v5 in order.

If S = {v2, v4}, then we greedily color v2, v1, v4, v5, v3 in order. If S = {vj , v5} (j ∈ {1, 2, 3}),

we consider j = 1 here and then we greedily color v5, v4, v1, v2, v3 in order. For j = 2 or

j = 3, it is easy to check H5 can be colored by the same arguments. When |S| = 3, we

know that S = {v1, v3, v5}. Let L′ be a (5 − degG +degH −1S)-assignment. We get that

|L′(v1)| = |L′(v2)| = 2, |L′(v3)| = |L′(v4)| = 3, and |L′(v5)| = 1. If L′(v4) ∩ L′(v5) = ∅, then

we can L′-color v5, v1, v2, v3, v4 in order. Otherwise, we first color v5. Next let H = H5\{v5}

and L∗ be a assignment for H obtained by L′ be removing the only color in L′(v5) from the

list of the the vertex set {y : |yv5 ∈ E(H5)}, that is, |L∗(vi)| = |L′(vi)| for each i ∈ {1, 2, 3},

|L∗(v4)| = 2. Now we discuss whether L∗(v2) ∩ L∗(v4) = ∅. If L∗(v2) ∩ L∗(v4) 6= ∅, let

c1 ∈ L∗(v2) ∩ L∗(v4), then we first color v2 and v4 with c1 and then greedily L∗-color v1, v3

in order. Otherwise L∗(v2) ∩ L∗(v4) = ∅, then there must be a color in L∗(v2) ∪ L∗(v4) but

not in L∗(v3), we denote the color by c2 and assume that c2 ∈ L∗(v4), then we color v4 with

c2 and greedily L∗-color v1, v2, v3 in order, implying (FORB).

For H6. We shall prove that H6 also satisfies (FIX) and (FORB).

(FIX): Note that v1 has five available colors, vi has two available colors for each i ∈

{4, 5, 6}, and vj has three available colors for each j ∈ {2, 3}. If v1 is fixed, then we greedily

color v1, v5, v6, v4, v3, v2 in order. If v3 is fixed, then we greedily color v3, v4, v2, v1, v5, v6

in order. If v4 is fixed, then we greedily color v4, v3, v2, v1, v5, v6 in order. If vi is fixed for

each i ∈ {2, 5, 6}, then we first color vi, and H − vi can be colored by Lemma 2.4.

(FORB): When |S| = 2. If S = {v1, v3}, then we can color v3, v4, v1, v5, v6, v2 in order.

If S = {v2, v4}, then we can color v4, v3, v2, v1, v5, v6 in order. If S = {v5, v6}, then we can

color v5, v6, v1, v4, v3, v2 in order. If S = {s1, s2}, where s1 ∈ {v2, v3, v4}, s2 ∈ {v5, v6}, then

we first greedily color s1, s2 and finally extend the coloring to the remaining vertices. When

|S| = 3, then we have S = {v2, v4, vi} (i ∈ {5, 6}), then we can color vi, v4, v3, v2, v1, v11−i
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in order, implying (FORB).

From all the above cases, both (FIX) and (FORB) hold, and thus Hi is (H1, 5)-

boundary-reducible for each i ∈ {1, . . . , 6}.

3.3 Discharging

Let F = H1, and let G1 be a counterexample to Theorem 1 with minimum number of

vertices. Fix a plane embedding of G1, by minimality of G1, we get that G1 is connected.

Let L be a list assignment on V (G1) where each vertex receives at least five colors. Note

that G1 does not contain any configurations shown in Lemma 3.1. By [10], we get that G1

has no 3−-vertex. Since G1 is also a plane graph, by Euler’s Formula, we obtain

∑

v∈V (G1)

(d(v)− 4) +
∑

f∈F (G1)

(d(f)− 4) = −8. (I)

We define an initial charge c on V (G1) ∪ F (G1) by letting

c(x) =

{

dG1
(x)− 4 if x = v ∈ V (G1),

dG1
(x)− 4 if x = f ∈ F (G1).

We will obtain a final charge c̃ from c by discharging rules R1-R6 below. Since these rules

merely move charges around, (I) gives

∑

x∈V (G1)∪F (G1)

c̃(x) =
∑

x∈V (G1)∪F (G1)

c(x) < 0. (II)

We will get a contradiction by proving c̃(x) ≥ 0 for each element x ∈ V (G1) ∪ F (G1). Since

G1 ∈ H1, we immediately have the following fact.

Fact 3.2. For each v ∈ V (G1) with d(v) ≥ 4, we have f3(v) ≤ 2.

For brevity, (4, 4, 5−)-face is called a bad face and a 4-vertex lying on a bad face is called

a bad 4-vertex. In addition, a 3-face f is called a singleton if all faces incident with it are

4+-faces, while two consecutive 3-faces form a doubleton f̄ . The discharging rules are as

follows.

R1. Each 5+-vertex v sends 1
6

to its adjacent bad 4-vertex which is not lying on the same

3-face with v.

R2. Each bad 4-vertex sends the total charge it received to its incident bad 3-face.

R3. Each 5-vertex v with f3(v) = 1 sends a to its incident 3-face f . let n∗

b(v) be the number

of bad 4-vertices incident with v while not lying on f .

10



R3.1. If f = (4, 5−, 5), then a =

{

1 if n∗

b(v) = 0,
2
3
, if 1 ≤ n∗

b(v) ≤ 2.

R3.2. If f = (4, 6+, 5), then a = 1
2
.

R3.3. If f = (5+, 5+, 5), then a =

{

1 if n∗

b(v) = 0,
1
2

if 1 ≤ n∗

b(v) ≤ 3.

R4. Each 5-vertex v with f3(v) = 2 sends a to its incident doubleton f̄ , let nb(v) be the

number of bad 4-vertices not lying on f̄ , then a = 1− nb(v)
6

.

R5. Each 6-vertex v sends a to its incident 3-face,

R5.1. If f3(v) = 1, then a = 4
3
.

R5.2. If v is incident with a doubleton f̄ and there are at most two 4-vertices on the f̄ ,

then a = 3
2
.

R5.3. If v is incident with a doubleton f̄ and there are three 4-vertices on the f̄ , then

a = 2.

R6. Each 7+-vertex v sends a to its incident 3-face,

R6.1. If f3(v) = 1, then a = 4
3
.

R6.2. If v is incident with a doubleton f̄ , then v sends 2 to f̄ .

Let f be a face of G1. If d(f) ≥ 4, the initial charge is not changed, and thus c̃(f) =

c(f) ≥ 0. It remains to consider the case d(f) = 3. In particular, if two 3-faces f1 and f2 are

consecutive, that is, f1 and f2 form a doubleton f̄ , In this situation, c(f̄) = c(f1)+c(f2) = −2,

and then we discuss the final charge c̃(f̄).

Case 1: f is a singleton .

If f is bad, then by (B1) and (B2), each 4-vertex on the f must be adjacent to two 5+-

vertices, and thus c̃(f) ≥ −1+min{3×2× 1
6
, 2× 1

6
+ 2

3
} = 0 by R1-R3. If f = (4, 4, 6+), then

c̃(f) ≥ −1+ 4
3
= 1

3
> 0 by R5.1. If f = (4, 5+, 5+), then c̃(f) ≥ −1+min{2× 2

3
, 1
2
+ 4

3
} = 1

3
> 0

by R3. If f = (5+, 5+, 5+), then c̃(f) ≥ −1 + 3× 1
2
= 1

2
> 0 by R3.3.

Case 2: f̄ is a doubleton (see Figure 3).

It follows from Lemma 3.1 (B5) that two 5-vertices in (C1) are not adjacent to a 4-vertex

any more, thus c̃(f̄) ≥ −2 + 2 × 1 = 0 by R3.1. As for (C2), c̃(f̄) ≥ −2 + 2
3
+ 4

3
= 0 by

R3.1, R5.1 and R6.1. For (C3), we have c̃(f̄) ≥ −2 + 2× 4
3
= 2

3
> 0 by R5.1 and R6.1. For

(C4), we have c̃(f̄) ≥ −2 + 3 × 2
3
= 0 by R3 and R4. For (C5), c̃(f̄) ≥ −2 + 4

3
+ 2

3
= 0 by

R4-R6. For (C6), if there are three 4-vertices lying on f̄ , then c̃(f̄) ≥ −2 + 2 = 0 by R5.3
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and R6.2. Otherwise c̃(f̄) ≥ −2 +min{1
2
+ 3

2
, 2} = 0 by R3, R5 and R6. For (C7), it follows

from Lemma 3.1 (B3) and (B4) that two 5-vertices are not adjacent to any 4-vertex, then

c̃(f̄) ≥ −2 + 2 × 1 = 0 by R4. For (C8), if three are three 5-vertices lying on f̄ , it follows

from Lemma 3.1 (B6) that c̃(f̄) ≥ −2 + 2 × 5
6
+ 1

2
= 1

6
> 0 by R3 and R4. Otherwise,

c̃(f̄) ≥ −2 + 2× 2
3
+ 4

3
= 2

3
> 0 by R4-R6. For (C9), c̃(f̄) ≥ −2 + 2× 2

3
+ 2× 1

2
= 1

3
> 0 by

R3 and R4. For (C10), c̃(f̄) ≥ −2 + 2
3
+ 3

2
= 1

6
> 0 by R4 and R5.

Figure 3: Different kinds of doubletons, the number near a vertex denotes its degree.

Let v be a k-vertex of G1. Suppose k = 4, the initial charge remain unchanged. Suppose

k = 5. If f3(v) = 0, then there are at most five bad 4-vertices, thus c̃(v) ≥ 1− 5× 1
6
= 1

6
> 0

by R1. If f3(v) = 1, we consider whether the triangle is bad. When the triangle is bad, we

obtain that c̃(v) ≥ 1−max{2
3
+ 1

6
, 1} = 0 by R1 and R3.1. Otherwise, c̃(v) ≥ 1−max{2

3
+

2× 1
6
, 1
2
+ 3× 1

6
, 1} = 0 by R3.1 and R3.2. If f3(v) = 2, then the two triangles must form a

doubleton f̄ since G1 is hopper-free, then we just need to consider the configurations in Figure

3 exclude (C1), (C2), (C3), (C6), then we obtain c̃(v) ≥ 1 − max{1, 5
6
+ 1

6
, 2
3
+ 2 × 1

6
} = 0

by R4. Suppose k = 6. If f3(v) = 0, then there are at most six bad 4-vertices, thus

c̃(v) ≥ 2 − 6 × 1
6
= 1 > 0 by R1. If f3(v) = 1, there are at most four bad 4-vertices, thus
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c̃(v) ≥ 2 − 4
3
− 4 × 1

6
= 0 by R1 and R5.1. If v is incident with two consecutive triangles

f̄ , then we should consider (C6) and (C10). As for (C6), if there are three 4-vertices lying

on f̄ , then there exists no 4-vertex among the remaining neighbors of 6-vertex which are

not on f̄ , thus c̃(v) ≥ 2 − 2 = 0 by R5. Otherwise, c̃(v) ≥ 2 − 3
2
− 3 × 1

6
= 0 by R1 and

R5. For (C10), there are at most three bad 4-vertices among the remaining neighbors of

6-vertex which are not on f̄ by Lemma 3.1, thus c̃(v) ≥ 2− 3
2
− 3× 1

6
= 0 by R5. Suppose

k ≥ 7. If f3(v) = 0, then c̃(v) ≥ k − 4 − 7 × 1
6
= 6(k−7)+11

6
>0 by R1. If f3(v) = 1,

then c̃(v) ≥ k − 4 − 4
3
− 1

6
(k − 2) = 5(k−7)+5

6
> 0 by R1 and R6. If f3(v) = 2, then

c̃(v) ≥ k − 4− 2− 1
6
(k − 3) = 5(k−7)+2

6
> 0 by R6.

Hence, we complete the proof of Theorem 1.

4 Proof of Theorem 2

The notation we need in this section follows from Section 3.1. Let F = H2, and let G2 be a

counterexample to Theorem 2 with minimum number of vertices. Fix a plane embedding of

G2, by minimality of G2, we get that G2 is connected. Let L be a list assignment on V (G2)

where each vertex receives at least five colors. Similarly, we have the following lemma to

forbid some configurations in G2.

4.1 Reducible subgraphs

Lemma 4.1. Let G2 ∈ H2. If G2 contains one of the following configurations (see Figure

4),

(D1) A cycle vv1v2v3v such that d(v) ≤ 5 and d(v1) = d(v2) = d(v3) = 4;

(D2) A cycle vv1v2v3v4v such that d(v) ≤ 5 and d(v1) = d(v2) = d(v3) = d(v4) = 4.

Then G2 contains a (H2, 5)-boundary-reducible induced subgraph with empty boundary.

13



Figure 4: Reducible graphs

Proof. In the following, we mainly consider both cases with d(v) = 5.

To proof (D1). Let H be the subgraph of G2 induced by {v, v1, v2, v3} and set the

boundary B = ∅.

(FIX): Note that vi has three available colors for each i ∈ {1, 2, 3}, and v has two

available colors. If v is fixed, then we greedily color v, v1, v2, v3 in order. If vi is fixed for

each i ∈ {1, 2, 3}, then we first color vi and then H − vi can be colored by Lemma 2.4.

(FORB): Note that |S| ≤ 2 by the definition of S. When |S| = 2, if S = {v, v2}, then

we give v a preferred color and then greedily color v1, v2, v3 in order. If S = {v1, v3}, then

H can be colored by Lemma 2.4. When |S| = 1, (FORB) will be implied by (FIX).

To proof (D2), let H be the subgraph of G2 induced by {v, v1, v2, v3, v4}, and set the

boundary B = ∅.

(FIX): Note that vi has three available colors for each i ∈ {1, 2, 3, 4}, and v has two

available colors. If v is fixed, then we greedily color v, v1, v2, v3, v4 in order. If vi is fixed

for each i ∈ {1, 2, 3, 4}, then we first color vi and then H − vi can be colored by Lemma 2.4.

(FORB): When |S| = 3, then S can be chosen as the following triples: {v, v1, v2},

{v, v1, v4}, {v, v2, v3}, {v, v3, v4}, {v1, v2, v3}, {v2, v3, v4}. Up to symmetry, we only discuss

S = {v, v1, v2}. In this situation, we can greedily color v, v1, v2, v3, v4 in order. When

|S| = 2, assume that S = {v, v1}, then we give v a preferred color and then greedily color

v1, v2, v3, v4 in order. The rest pairs can be handled in a similar fashion, (FORB) holds.

4.2 Discharging

Note that G2 does not contain any configurations shown in Lemma 4.1. By [10], G2 also has

no 3−-vertex. Since G2 is also a plane graph, by Euler’s Formula, we obtain
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∑

v∈V (G2)

(d(v)− 6) +
∑

f∈F (G2)

(2d(f)− 6) = −12. (III)

Now we define an initial weight function on V (G2) ∪ F (G2) by letting

c(x) =

{

dG2
(x)− 6 if x = v ∈ V (G2),

2dG2
(x)− 6 if x = f ∈ F (G2).

Since the total sum of charges are the negative number −12, we shall now redistribute

the charge, without changing its sum, such that the sum is nonnegative. This contradiction

will prove the Theorem 2. Finally, we apply the following rules to redistribute the initial

charge that leads to a new charge ĉ.

For brevity, a face f is called bad in G2 if it is incident with exactly (d(f)−1) 4-vertices,

otherwise it is good.

R1. Each bad 4-face sends 2
3

to its incident 4-vertex;

R2. Each good 4-face sends 1
2

to its incident vertex 5−-vertex;

R3. Each 5-face sends a to its incident vertex v,

a =

{

1 if d(v) = 4,
1
2

if d(v) = 5.

R4. Each 6+-face sends 1 to its incident vertex 5−-vertex.

Fact 4.2. For each v with d(v) ≥ 4, we have f3(v) ≤ ⌊2d(v)
3

⌋.

Now we shall show that ĉ(x) ≥ 0 for all x ∈ V (G2) ∪ F (G2). Let f be a face of G2. If

d(f) = 3, we keep the initial charge. Suppose d(f) = 4. If f is bad, then there must be a

6+-vertex in f by Lemma 4.1 (D1), thus ĉ(f) ≥ 2− 3× 2
3
= 0 by R1. Otherwise, n4(f) ≤ 2,

then ĉ(f) ≥ 2 − 4 × 1
2
= 0 by R2. Suppose d(f) = 5. If f is bad, then there must be a

6+-vertex in f by Lemma 4.1 (D2), thus ĉ(f) ≥ 4− 4× 1 = 0 by R3. Otherwise, n4(f) ≤ 3,

then ĉ(f) ≥ 4− 3× 1− 2× 1
2
= 0. If d(f) ≥ 6, then the number of 5−-vertices incident with

f is at most d(f), thus ĉ(f) ≥ 2d(f)− 6− d(f) = d(f)− 6 ≥ 0 by R4.

Let v be a k-vertex of G2. Suppose k = 4, then f3(v) ≤ 2. If f3(v) = 0, then ĉ(v) ≥

−2 + 4 × 1
2
= 0 by R2. If 1 ≤ f3(v) ≤ 2, then f5+(v) ≥ 2, thus ĉ(v) ≥ −2 + 2 × 1 = 0 by

R3. Suppose k = 5, then f3(v) ≤ 3. If f3(v) = 0, then ĉ(v) ≥ −1 + 5 × 1
2
> 0 by R2. If

1 ≤ f3(v) ≤ 3, then f5+(v) ≥ 2, thus ĉ(v) ≥ −1 + 2 × 1
2
= 0 by R3. Suppose k ≥ 6, then

ĉ(v) = d(v)− 6 ≥ 0.

Hence, for all x ∈ V (G2)∪ F (G2), we have ĉ(x) ≥ 0. We complete the proof of Theorem

2.

15



5 Acknowledgement

The author would like to thank the the anonymous referees for their valuable remarks, which

greatly improve the paper.

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory with Application, 1976.

[2] O. V. Borodin, A. O. Ivanova, Planar graphs without triangular 4-cycles are 4-choosable.

Siberian Electronic Mathematical Reports, 2008, 5(0): 75-79.

[3] P. Cheng, M. Chen, Y. Wang, Planar graphs without 4-cycles adjacent to triangles are

4-choosable. Discrete Mathematics, 2016, 339(12): 3052-3057.

[4] L. Choi, F. C. Clemen, M. Ferrara, P. Horn, F. Ma, T. Masařík, Flexibility of Planar

Graphs-Sharpening the Tools to Get Lists of Size Four. arXiv preprint arXiv:2004.10917,

2020.

[5] Z. Dvořák, T. Masařík, J. Musílek, O. Pangrác, Flexibility of triangle-free planar graphs.

Journal of Graph Theory, doi.org/10.1002/jgt.22634, 2020.

[6] Z. Dvořák, T. Masařík, J. Musílek, O. Pangrác, Flexibility of planar graphs of girth at

least six. Journal of Graph Theory, doi:10.1002/jgt.22567, 2020.

[7] Z. Dvořák, S. Norin, L. Postle, List coloring with requests. Journal of Graph Theory,

2019, 92(3): 191-206.

[8] P. Erdös, A. L. Rubin, H. Taylor, Choosability in graphs, Proceedings of the West-

Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, California

(Congr. Numer. XXVI), 1980, 26: 125-157.

[9] P. C. B. Lam, B. Xu, J. Liu, The 4-choosability of plane graphs without 4-cycles. Journal

of Combinatorial Theory, Series B, 1999, 76(1): 117-126.

[10] T. Masařík, Flexibility of planar graphs without 4-cycles. Acta Mathematica Universi-

tatis Comenianae, 2019, 88(3): 935-940.

[11] C. Thomassen, A short list color proof of Grötzsch′s theorem. Journal of Combinatorial

Theory, Series B, 2003, 88(1): 189-192.

16

http://arxiv.org/abs/2004.10917


[12] C. Thomassen, Every planar graph is 5-choosable. Journal of Combinatorial Theory,

Series B, 1994, 62(1): 180-181.

[13] M. Voigt, A non-3-choosable planar graph without cycles of length 4 and 5. Discrete

Mathematics, 2007, 307: 1013-1015.

[14] W. Wang, K. Lih, Choosability and edge choosability of planar graphs without inter-

secting triangles. SIAM Discrete Mathematics, 2002, 15(4): 538¨C545.

[15] D. Yang, F. Yang, Flexibility of planar graphs without C4 and C5. arXiv preprint

arXiv:2006.05243, 2020.

17

http://arxiv.org/abs/2006.05243

	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Basic tools

	3 Proof of Theorem 1
	3.1 Notation
	3.2 Reducible configurations
	3.3 Discharging

	4 Proof of Theorem 2
	4.1 Reducible subgraphs
	4.2 Discharging

	5 Acknowledgement

