On sufficient conditions for planar graphs to be 5-flexible^{*}

Fan Yang[†]

School of Mathematics, Shandong University, Jinan 250100, China

Abstract

In this paper, we study the flexibility of two planar graph classes \mathcal{H}_1 , \mathcal{H}_2 , where \mathcal{H}_1 , \mathcal{H}_2 denote the set of all hopper-free planar graphs and house-free planar graphs, respectively. Let G be a planar graph with a list assignment L. Suppose a preferred color is given for some of the vertices. We prove that if $G \in \mathcal{H}_1$ or $G \in \mathcal{H}_2$ such that all lists have size at least 5, then there exists an L-coloring respecting at least a constant fraction of the preferences.

Key words: Planar graph, reducible, discharging, flexibility, satisfiable.

1 Introduction

All graphs considered are simple, finite, and loopless, and we follow [1] for the terminologies and notation not defined here. Two triangles which intersect exactly at one vertex form a *hopper*, see Figure 1 (A_1). A triangle shares exactly one edge with a 4-cycle form a *house*, see Figure 1 (A_2). Given a graph G, G is called *hopper-free* (or *house-free*) if G does not contain any hopper (or house) as subgraphs. For brevity, denote by \mathcal{H}_1 and \mathcal{H}_2 the set of all hopper-free planar graphs and house-free planar graphs, respectively. In a proper coloring, we want to assign to each vertex of G one of a fixed number of colors in such a way that adjacent vertices receive distinct colors. A *list assignment* L for G is a function that assigns to every vertex of G a set (list) L(v) of colors. An L-coloring is a proper coloring ϕ such that $\phi(v) \in L(v)$ for all $v \in V(G)$. If G has a proper coloring ϕ such that $\phi(v) \in L(v)$ for each vertex v of G, then we say that G is L-colorable. In addition, we say L is an f-assignment if $|L(v)| \geq f(v)$ for all $v \in V(H)$. Specifically, L is called a k-assignment $(k \in \mathbb{N})$ if $f(v) \geq k$ for each $v \in V(G)$. Furthermore, G is k-choosable if G is L-colorable for every k-assignment L.

^{*}This work is supported by NSFC(11971270, 11631014) of China and Shandong Province Natural Science Foundation (ZR2018MA001,ZR2019MA047) of China

[†]E-mail address: yangfan5262@163.com.

Recently, Dvořák, Norin and Postle introduced a coloring with request as follows. Firstly, we give each vertex of $U \subseteq V(G)$ a preferred color from their list sets, is it possible to properly color G so that at least a constant fraction vertices of U satisfy their preferences?

Figure 1: Special subgraphs

Initiated by Dvořák, Norin and Postle [7], a request for a graph G with a list assignment L is a function r with dom $(r) \subseteq V(G)$ such that $r(v) \in L(v)$ for all $v \in \text{dom}(r)$. For $\varepsilon > 0$, a request r is ε -satisfiable if there exists an L-coloring ϕ of G satisfying $\phi(v) = r(v)$ for at least $\varepsilon |\text{dom}(r)|$ vertices $v \in \text{dom}(r)$. We say that a graph G with the list assignment L is ε -flexible if every request is ε -satisfiable. Additionally, we emphasize a stronger weighted form. A weighted request is a function w that to each pair (v, c) with $v \in V(G)$ and $c \in L(v)$ assigns a nonnegative real number. Let $w(G, L) = \sum_{v \in V(G), c \in L(v)} w(v, c)$. For $\varepsilon > 0$, we say that w is ε -satisfiable if there exists an L-coloring ϕ of G such that

$$\sum_{v \in V(G)} w(v, \phi(v)) \ge \varepsilon w(G, L)$$

We say that G with the list assignment L is weighted ε -flexible if every weighted request is ε -satisfiable.

It is worth pointing out that a request r is 1-satisfiable if and only if the precoloring given by r can be extended to an L-coloring of G. One can observe that weighted ε -flexibility implies ε -flexibility by giving the request pairs (v, r(v)) weight 1 and all other pairs weight 0.

Very recently, several scholars contribute a lot on this topic. For some $\varepsilon > 0$, Dvořák, Norin and Postle [7] showed that every planar graph is ε -flexible with a 6-assignment. As we know, planar graphs are 5-choosable [12], so they conjectured that 6-assignemnt can be reduced to 5. In particular, there are lots of results respect to forbidding some configurations in planar graphs. Dvořák, Masařík, Musílek and Pangrác [5] proved that planar graphs without triangles are weighted ε -flexible with a 4-assignment, the result they gave is the best possible with respect to the list size since planar graphs without triangles are 4-choosable. Moreover, they also showed that planar graphs of girth at least six are weighted ε -flexible with a 3-assignment [6]. However, Thomassen [11] studied that planar graphs of girth at least five is 3-choosable, so there is still a gap left open. Masařík [10] showed that C_4 -free planar graphs are weighted ε -flexible with a 5-assignment. Since planar graphs without 4cycles are 4-choosable [9], Masařík conjectured that his result about list assignment would be reduced to 4. In addition, Choi et.al [4] proved three theorems: every planar graph (i) without K_4^- is weighted ε -flexible with a 5-assignment, (ii) without C_4 and C_3 distance at least 2 is weighted ε -flexible with a 4-assignment, (iii) without C_4 , C_5 , C_6 is weighted ε -flexible with a 4-assignment. Their first theorem has strengthened the result of Masařík, which is a good bound up to the list size compared to choosability, since the conjecture that K_4^- -free planar graphs are 4-choosable is still open. Nowadays, Yang and the author [15] extended the third theorem of Choi et. al, they showed that every { C_4, C_5 }-free planar graph is weighted ε -flexible with a 4-assignment, which is the best possible with respect to the list size, since Voigt [13] gave a planar graph without C_4 and C_5 is not 3-choosable.

In the paper, we mainly investigate the weighted ε -flexibility of two classes of planar graphs.

Theorem 1. If G is hopper-free, then there exists $\varepsilon > 0$ such that G is weighted ε -flexible with a 5-assignment.

Theorem 2. If G is house-free, then there exists $\varepsilon > 0$ such that G is weighted ε -flexible with a 5-assignment.

Until now, no result states that G is 4-choosable if $G \in \mathcal{H}_1$ or $G \in \mathcal{H}_2$. However, Wang and Lih [14] proved that a planar graph H is 4-choosable if H has no intersecting 3-cycle, that is, H contains neither hopper nor diamond (which is the graph isomorphic to (A_3) , see Figure 1). On the other hand, Borodin and Ivanova [2], Cheng et al. [3] showed that a planar graph H is 4-choosable if H contains no 4-cycle which shares at least one common edge with a 3-cycle, that is, H contains neither house nor diamond.

The rest of the paper is organized as follows. In Section 2, we develop the notation and introduce some essential tools used in list coloring settings. In Section 3, we give the proof of Theorem 1, the main idea is to produce some reducible configurations and then use discharging method to get a contradiction. In Section 4, we prove Theorem 2.

2 Preliminaries

We shall split Section 2 into two parts. In Section 2.1, we first give some definitions related to our topic. In Section 2.2, we shall present several essential tools to the proof of our theorems.

2.1 Definitions

Let 1_S denote the characteristic function of S, i.e., $1_S(v) = 1$ if $v \in S$ and $1_S(v) = 0$ otherwise. For functions that assign integers to vertices of H, we define addition and subtraction in the natural way, adding/subtracting their values at each vertex independently. Given a graph H and a vertex $v \in V(H)$. For a function $f : V(H) \to \mathbb{Z}$ and a vertex $v \in V(H)$, let $f \downarrow v$ denote the function such that $(f \downarrow v)(w) = f(w)$ for $w \neq v$ and $(f \downarrow v)(v) = 1$. Given a set of graphs \mathcal{F} and a graph H, a set $S \subseteq V(H)$ is \mathcal{F} -forbidding if the graph H together with one additional vertex adjacent to all of the vertices in S does not contain any graph from \mathcal{F} . We first give a crucial definition of (\mathcal{F}, k) -boundary-reducible as follows.

Definition 2.1. A graph H is an (\mathcal{F}, k) -boundary-reducible induced subgraph of a graph G if there exists a set $B \subsetneq V(H)$ such that

- (FIX) for every $v \in V(H) \setminus B$, H B is L-colorable for every $((k \deg_G + \deg_{H-B}) \downarrow v)$ assignment L, and
- **(FORB)** for every \mathcal{F} -forbidding set $S \subseteq V(H) \setminus B$ of size at most k-2, H-B is L'-colorable for every $(k \deg_G + \deg_{H-B} 1_S)$ -assignment L'.

We will call the set B in (FORB) as the *boundary* of the configuration in the following discussion. By the definition of (FORB), we get that (FORB) is implied by (FIX) when |S| = 1. Hence in the following discussion, we mainly consider the case $2 \le |S| \le k - 2$.

Definition 2.2. Let G be a graph with lists of size k that does not contain any graph in \mathcal{F} as an induced subgraph. We define (\mathcal{F}, k, b) -resolution of G as a set G_i of nested subgraphs for $0 \leq i \leq M$, such that $G_0 := G$ and

$$G_i := G - \bigcup_{j=1}^{i} (H_j - B_j),$$

where each H_i is an induced (\mathcal{F}, k) -boundary-reducible subgraph of G_{i-1} with boundary B_i such that $|V(H_i) \setminus B_i| \leq b$ and G_M is an (\mathcal{F}, k) -boundary-reducible subgraph with empty boundary and size at most b. For technical reasons, let $G_{M+1} := \emptyset$. Our strategy is to prove every graph that does not contain any graph from \mathcal{F} as a subgraph contains a reducible subgraph. Actually, we regard a resolution as an inductivelydefined object obtained by iteratively identifying some reducible subgraph H with boundary B and deleting H - B until V(G) is exhausted.

2.2 Basic tools

The following lemma derived from Choi et al. provide us with a unified approach to deal with the weighted flexibility of any graph with forbidden subgraphs, which also strengthen the key lemma implicitly presented by Dvořák, Norin and Postle in [7], and explicitly formulated as Lemma 4 in [5].

Lemma 2.3 ([4]). For all integers $k \ge 3$ and $b \ge 1$ and for all sets \mathcal{F} of forbidden subgraphs, there exists an $\varepsilon > 0$ as follows. Let G be a graph with an (\mathcal{F}, k, b) -resolution. Then G with any assignment of lists of size k is weighted ε -flexible.

The well-known lemma below provide us with a method to deal with the coloring problem of a graph, which will be used frequently in our proofs.

Lemma 2.4 ([8]). Let G be a connected graph and L a list assignment such that $|L(u)| \ge \deg(u)$ for all $u \in V(G)$. If either there exists a vertex $u \in V(G)$ such that $|L(u)| > \deg(u)$, or some 2-connected component of G is neither complete nor an odd cycle, then G is L-colorable.

3 Proof of Theorem 1

In this section, we shall first collect essential notation and then find some reducible subgraphs. Finally we use Euler's formula to complete the proof of Theorem 1.

3.1 Notation

A plane graph is a particular drawing of a planar graph in the Euclidean plane. Let G be a plane graph, let us denote by V(G), E(G), F(G) the vertex set, edge set, face set of G, respectively. We denote by d(v) and $\delta(G)$ the degree of a vertex $v \in V(G)$ and minimum degree of G. A vertex v is called a k-vertex, a k^+ -vertex or a k^- -vertex if d(v) = k, $d(v) \ge k$ or $d(v) \le k$, respectively. For any face $f \in F(G)$, the degree of f, denoted by d(f), is the length of the shortest boundary walk of f, where each cut edge is counted twice. A k-face, a k^+ -face or a k^- -face is a face of degree k, degree at least k, or degree at most k, respectively. We write $f = (d_1, \ldots d_n)$ if v_1, \ldots, v_n are the boundary vertices of f with $d(v_i) = d_i$ for all $i \in \{1, 2, ..., n\}$. We say that $f = (d_1^+, ..., d_n)$ if $d(v_1) \ge d_1$ and $d(v_i) = d_i$ for all $i \in \{2, ..., n\}$; and similarly for other combinations. In addition, Let $f_k(v)$, $n_k(f)$ denote the number of k-faces incident with the vertex v and the number of k-vertices incident with the face f, respectively.

3.2 Reducible configurations

Note that in all figures of the paper, any vertex marked with • has no edges of G incident with it other than those shown. In the following, we say a vertex u has γ ($\gamma \in \mathbb{N}$) available colors in a configuration H means that the maximum number of colors remaining in L(u) is γ after coloring vertices exterior to H. When considering (**FIX**), we reduce the number of available colors on the vertex to 1, and when considering (**FORB**), we reduce the number of available colors on the vertices in S by 1.

Lemma 3.1. Let $G \in \mathcal{H}_1$. If G contains one of the following configurations (see Figure 2).

- (B₁) A cycle vv_1v_2 such that $4 \le d(v) \le 5$, $d(v_i) = 4$ for each $i \in \{1, ..., d(v)\} \setminus \{2\}$ and $d(v_2) = 5$, $v_j \in N(v)$ for each $j \in \{1, ..., d(v)\}$.
- (B₂) A cycle vv_1v_2 such that $4 \leq d(v) \leq 6$ and $d(v_i) = 4$ with $v_i \in N(v)$ for each $i \in \{1, \ldots, d(v) 1\}$.
- (B₃) A cycle $v_1v_2v_3v_4$ and an edge v_1v_3 such that $d(v_2) = d(v_3) = 4$, $d(v_1) = d(v_4) = 5$.
- (B_4) A cycle $v_1v_2v_3v_4$, an edge v_1v_3 and an edge v_1v_5 such that one of the following holds,

(i)
$$d(v_1) = d(v_3) = 5$$
 and $d(v_2) = d(v_4) = d(v_5) = 4$;
(ii) $d(v_1) = 6$, $d(v_i) = 4$ for each $i \in \{2, 3, 4, 5\}$.

- (B₅) A cycle $v_1v_2v_3v_4$, and two edges v_1v_3 , v_4v_5 such that $d(v_i) \leq 5$ for each $i \in \{1, 2\}$, $d(v_4) = 5$, and $d(v_3) = d(v_5) = 4$.
- (B₆) A cycle $v_1v_2v_3v_4$, and three edges v_1v_3 , v_1v_5 , v_1v_6 such that $d(v_i) = 5$ for each $i \in \{1, 3, 4\}$, $d(v_j) = 4$ for each $j \in \{2, 5, 6\}$.

Then G contains a $(\mathcal{H}_1, 5)$ -boundary-reducible induced subgraph with empty boundary.

Figure 2: Reducible subgraphs. The edge marked with a dashed line may not exist, and its existence depends on the degree of the vertex incident with it.

Proof. Let H_i be the graph isomorphic to one of (B_i) for $i \in \{1, \ldots, 6\}$ and set the boundary to be empty. It suffices to prove that H_i satisfies (**FIX**) and (**FORB**) for each $i \in \{1, \ldots, 6\}$.

For H_1 . We only consider d(v) = 4 since the same arguments yield to d(v) = 5.

(FIX): Note that v has five available colors, v_1 has three available colors, and v_i has two available colors for each $i \in \{2, 3, 4\}$. If v (or v_1) is fixed, then we first color v (or v_1). Finally $H_1 - v$ (or $H_1 - v_1$) can be colored by Lemma 2.4. If v_2 is fixed, then we can greedily color v_2 , v_1 , v, v_3 , v_4 in order. Fixing any other vertex in $\{v_3, v_4\}$ is handled in a similar fashion.

(FORB): Let $S \subseteq V(H_1)$ of size at most 3. Recall that (FORB) is implied by (FIX) when |S| = 1. So we mainly discuss the case $2 \leq |S| \leq 3$ in the following proof. Suppose |S| = 2. Then S can be chosen as the following pairs: $\{v, v_1\}, \{v, v_2\}, \{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}$. If $S = \{v, v_1\}$ (or $S = \{v, v_2\}$), then we can greedily color v_2, v_1, v, v_3, v_4 in order. If $S = \{v_1, v_3\}$ (or $S = \{v_1, v_4\}$), then H_1 can be colored by Lemma 2.4. If $S = \{v_1, v_2\}$, then we can greedily color v_2, v_1, v, v_3, v_4 in order. Forb the remaining pair of vertices described as above can be handled in a similar fashion, so we omit them. Now we discuss the case |S| = 3. By the definition of S, we know that S can be chosen as the following triples: $\{v, v_1, v_2\}, \{v_1, v_2, v_3\}, \{v_1, v_2, v_4\}, \{v_2, v_3, v_4\}$. If $S = \{v, v_1, v_2\}$, then we greedily color v_2, v_1, v, v_3, v_4 in order. The rest triples can be handled in a similar fashion. For H_2 . We only consider the case d(v) = 5 as the analysis of the other two cases are similar.

(**FIX**): Note that v has four available colors, v_i has three available colors for each $i \in \{1, 2\}$, and v_j has two available colors for each $j \in \{3, 4\}$. If v is fixed, then we greedily color v, v_1, v_2, v_3, v_4 in order. If v_i is fixed for each $i \in \{1, 2, 3, 4\}$, then we first color v, and finally the coloring can be extended to $H_2 - v_i$ by Lemma 2.4.

(FORB): When |S| = 2, if $S = \{v, v_j\}$ $(j \in \{1, 2\})$, then we can greedily color v_j , v_{3-j} , v, v_3, v_4 in order. If $S = \{s_1, s_2\}$ $(s_1 \neq s_2)$, where $s_i \in \{v_1, v_2, v_3, v_4\}$ for each *i*. Similarly, we first greedily color the vertices in *S* and then extend the coloring to the remaining vertices, which is possible since v has four available colors. When |S| = 3, if $S = \{v, v_1, v_2\}$, then we can color v_1, v_2, v, v_3, v_4 in order. If $S = \{s_1, s_2, s_3\}$, where $s_i \in \{v_1, v_2, v_3, v_4\}$ for each *i* and s_i are distinct from each other, then we can first greedily color the vertices in *S* and finally extend the coloring to the remaining vertices. As a result, (FORB) holds.

For H_3 . We verify both (**FIX**) and (**FORB**) holds.

(FIX): Note that v_i has three available colors for each $i \in \{1, 2\}$, v_3 has four available colors, and v_4 has two available colors. If v_i is fixed for each $i \in \{1, 2, 3, 4\}$, then we first color v_i . At last, $H_3 - v_i$ can be colored by Lemma 2.4.

(FORB): Note that $|S| \leq 2$. If $S = \{v_1, v_3\}$, then we greedily color v_1, v_4, v_3, v_2 in order. If $S = \{v_2, v_4\}$, then we greedily color v_4, v_1, v_2, v_3 in order.

For H_4 . Suppose $d(v_1) = d(v_3) = 5$ and $d(v_2) = d(v_4) = d(v_5) = 4$.

(FIX): Note that v_1 has four available colors, v_i has three available colors for each $i \in \{2, 3, 4\}$, and v_5 has two available colors. If v_1 is fixed, then we greedily color v_1, v_5, v_2, v_3, v_4 in order. If v_i is fixed for each $i \in \{2, 3, 4, 5\}$, then we first color v_i . Finally, $H - v_i$ can be colored by Lemma 2.4.

(FORB): We first consider |S| = 2. If $S = \{v_1, v_3\}$, then we greedily color v_3, v_2, v_1, v_4, v_5 in order. If $S = \{v_2, v_4\}$, then we greedily color v_2, v_3, v_4, v_1, v_5 in order. If $S = \{v_j, v_5\}$ for each $j \in \{2, 3, 4\}$, we may assume j = 2, then we greedily color v_5, v_2, v_1, v_3, v_4 in order. One can observe that the case j = 3 or j = 4 admits (FORB) by the same arguments. If |S| = 3, then $S = \{v_2, v_4, v_5\}$, then we first color v_5 , and then $H - v_5$ can be colored by Lemma 2.4, (FORB) holds.

Suppose $d(v_1) = 6$, $d(v_i) = 4$ for each $i \in \{2, 3, 4, 5\}$.

(FIX): Note that v_i has three available colors for each $i \in \{1, 2, 4\}$, v_3 has four available colors, and v_5 has two available colors. Fix any other vertex, say v_1 , then we can first color v_1 and then extend the coloring to the remaining vertices.

(FORB): When |S| = 2, if $S = \{v_1, v_3\}$, then we color v_5 , v_1 , v_3 , v_2 , v_4 in order. If

 $S = \{v_2, v_4\}$, then we greedily color v_2, v_4, v_1, v_5, v_3 in order. If $S = \{v_j, v_5\}$ for $j \in \{2, 3, 4\}$, say j = 2, then we greedily color v_5, v_2, v_1, v_4, v_3 in order. It is easy to check the cases j = 3and j = 4 also admit (**FORB**) by the same arguments. If |S| = 3, then $S = \{v_2, v_4, v_5\}$, and thus we can greedily color v_5, v_4, v_1, v_2, v_3 in order, implying (**FORB**).

For H_5 . We may assume that $d(v_1) = d(v_2) = 5$.

(FIX): Note that v_i has three available colors for each $i \in \{1, 4\}$, v_j has two available colors for each $j \in \{2, 5\}$, and v_3 has four available colors. If v_i for some $i \in \{1, 2\}$ is fixed, then we greedily color v_i , v_{3-i} , v_3 , v_4 , v_5 in order. If v_4 is fixed, then we greedily color v_4 , v_5 , v_1 , v_2 , v_3 in order. If v_i is fixed for some $i \in \{3, 5\}$, then we first color v_i , and then by Lemma 2.4, $H_5 - v_i$ can be colored.

(FORB): When |S| = 2. If $S = \{v_1, v_3\}$, then we greedily color v_1, v_2, v_3, v_4, v_5 in order. If $S = \{v_2, v_4\}$, then we greedily color v_2, v_1, v_4, v_5, v_3 in order. If $S = \{v_j, v_5\}$ $(j \in \{1, 2, 3\})$, we consider j = 1 here and then we greedily color v_5, v_4, v_1, v_2, v_3 in order. For j = 2 or j = 3, it is easy to check H_5 can be colored by the same arguments. When |S| = 3, we know that $S = \{v_1, v_3, v_5\}$. Let L' be a $(5 - \deg_G + \deg_H - 1_S)$ -assignment. We get that $|L'(v_1)| = |L'(v_2)| = 2$, $|L'(v_3)| = |L'(v_4)| = 3$, and $|L'(v_5)| = 1$. If $L'(v_4) \cap L'(v_5) = \emptyset$, then we can L'-color v_5, v_1, v_2, v_3, v_4 in order. Otherwise, we first color v_5 . Next let $H = H_5 \setminus \{v_5\}$ and L^* be a assignment for H obtained by L' be removing the only color in $L'(v_5)$ from the list of the the vertex set $\{y : |yv_5 \in E(H_5)\}$, that is, $|L^*(v_i)| = |L'(v_i)|$ for each $i \in \{1, 2, 3\}$, $|L^*(v_4)| = 2$. Now we discuss whether $L^*(v_2) \cap L^*(v_4) = \emptyset$. If $L^*(v_2) \cap L^*(v_4) \neq \emptyset$, let $c_1 \in L^*(v_2) \cap L^*(v_4)$, then we first color v_2 and v_4 with c_1 and then greedily L^* -color v_1, v_3 in order. Otherwise $L^*(v_2) \cap L^*(v_4) = \emptyset$, then there must be a color in $L^*(v_2) \cup L^*(v_4)$ but not in $L^*(v_3)$, we denote the color by c_2 and assume that $c_2 \in L^*(v_4)$, then we color v_4 with c_2 and greedily L^* -color v_1, v_2, v_3 in order, implying (FORB).

For H_6 . We shall prove that H_6 also satisfies (FIX) and (FORB).

(FIX): Note that v_1 has five available colors, v_i has two available colors for each $i \in \{4, 5, 6\}$, and v_j has three available colors for each $j \in \{2, 3\}$. If v_1 is fixed, then we greedily color v_1 , v_5 , v_6 , v_4 , v_3 , v_2 in order. If v_3 is fixed, then we greedily color v_3 , v_4 , v_2 , v_1 , v_5 , v_6 in order. If v_4 is fixed, then we greedily color v_4 , v_3 , v_2 , v_1 , v_5 , v_6 in order. If v_i is fixed for each $i \in \{2, 5, 6\}$, then we first color v_i , and $H - v_i$ can be colored by Lemma 2.4.

(FORB): When |S| = 2. If $S = \{v_1, v_3\}$, then we can color $v_3, v_4, v_1, v_5, v_6, v_2$ in order. If $S = \{v_2, v_4\}$, then we can color $v_4, v_3, v_2, v_1, v_5, v_6$ in order. If $S = \{v_5, v_6\}$, then we can color $v_5, v_6, v_1, v_4, v_3, v_2$ in order. If $S = \{s_1, s_2\}$, where $s_1 \in \{v_2, v_3, v_4\}$, $s_2 \in \{v_5, v_6\}$, then we first greedily color s_1, s_2 and finally extend the coloring to the remaining vertices. When |S| = 3, then we have $S = \{v_2, v_4, v_i\}$ $(i \in \{5, 6\})$, then we can color $v_i, v_4, v_3, v_2, v_1, v_{11-i}$ in order, implying (FORB).

From all the above cases, both (**FIX**) and (**FORB**) hold, and thus H_i is $(\mathcal{H}_1, 5)$ -boundary-reducible for each $i \in \{1, \ldots, 6\}$.

3.3 Discharging

Let $\mathcal{F} = \mathcal{H}_1$, and let G_1 be a counterexample to Theorem 1 with minimum number of vertices. Fix a plane embedding of G_1 , by minimality of G_1 , we get that G_1 is connected. Let L be a list assignment on $V(G_1)$ where each vertex receives at least five colors. Note that G_1 does not contain any configurations shown in Lemma 3.1. By [10], we get that G_1 has no 3⁻-vertex. Since G_1 is also a plane graph, by Euler's Formula, we obtain

$$\sum_{v \in V(G_1)} (d(v) - 4) + \sum_{f \in F(G_1)} (d(f) - 4) = -8.$$
 (I)

We define an *initial* charge c on $V(G_1) \cup F(G_1)$ by letting

$$c(x) = \begin{cases} d_{G_1}(x) - 4 & \text{if } x = v \in V(G_1), \\ d_{G_1}(x) - 4 & \text{if } x = f \in F(G_1). \end{cases}$$

We will obtain a *final* charge \tilde{c} from c by discharging rules R1-R6 below. Since these rules merely move charges around, (I) gives

$$\sum_{x \in V(G_1) \cup F(G_1)} \tilde{c}(x) = \sum_{x \in V(G_1) \cup F(G_1)} c(x) < 0.$$
(II)

We will get a contradiction by proving $\tilde{c}(x) \geq 0$ for each element $x \in V(G_1) \cup F(G_1)$. Since $G_1 \in \mathcal{H}_1$, we immediately have the following fact.

Fact 3.2. For each $v \in V(G_1)$ with $d(v) \ge 4$, we have $f_3(v) \le 2$.

For brevity, $(4, 4, 5^{-})$ -face is called a *bad* face and a 4-vertex lying on a bad face is called a *bad* 4-vertex. In addition, a 3-face f is called a *singleton* if all faces incident with it are 4⁺-faces, while two consecutive 3-faces form a *doubleton* \bar{f} . The discharging rules are as follows.

- **R1**. Each 5⁺-vertex v sends $\frac{1}{6}$ to its adjacent bad 4-vertex which is not lying on the same 3-face with v.
- **R2**. Each bad 4-vertex sends the total charge it received to its incident bad 3-face.
- **R3**. Each 5-vertex v with $f_3(v) = 1$ sends a to its incident 3-face f. let $n_b^*(v)$ be the number of bad 4-vertices incident with v while not lying on f.

R3.1. If $f = (4, 5^{-}, 5)$, then $a = \begin{cases} 1 & \text{if } n_{b}^{*}(v) = 0, \\ \frac{2}{3}, & \text{if } 1 \le n_{b}^{*}(v) \le 2. \end{cases}$ **R3.2.** If $f = (4, 6^{+}, 5)$, then $a = \frac{1}{2}$. **R3.3.** If $f = (5^{+}, 5^{+}, 5)$, then $a = \begin{cases} 1 & \text{if } n_{b}^{*}(v) = 0, \\ \frac{1}{2} & \text{if } 1 \le n_{b}^{*}(v) \le 3. \end{cases}$

R4. Each 5-vertex v with $f_3(v) = 2$ sends a to its incident doubleton \overline{f} , let $n_b(v)$ be the number of bad 4-vertices not lying on \overline{f} , then $a = 1 - \frac{n_b(v)}{6}$.

- **R5**. Each 6-vertex v sends a to its incident 3-face,
 - **R5.1.** If $f_3(v) = 1$, then $a = \frac{4}{3}$.
 - **R5.2.** If v is incident with a doubleton \bar{f} and there are at most two 4-vertices on the \bar{f} , then $a = \frac{3}{2}$.
 - **R5.3.** If v is incident with a doubleton \overline{f} and there are three 4-vertices on the \overline{f} , then a = 2.

R6. Each 7⁺-vertex v sends a to its incident 3-face,

R6.1. If $f_3(v) = 1$, then $a = \frac{4}{3}$.

R6.2. If v is incident with a doubleton \overline{f} , then v sends 2 to \overline{f} .

Let f be a face of G_1 . If $d(f) \ge 4$, the initial charge is not changed, and thus $\tilde{c}(f) = c(f) \ge 0$. It remains to consider the case d(f) = 3. In particular, if two 3-faces f_1 and f_2 are consecutive, that is, f_1 and f_2 form a doubleton \bar{f} . In this situation, $c(\bar{f}) = c(f_1) + c(f_2) = -2$, and then we discuss the final charge $\tilde{c}(\bar{f})$.

Case 1: f is a singleton .

If f is bad, then by (B_1) and (B_2) , each 4-vertex on the f must be adjacent to two 5⁺-vertices, and thus $\tilde{c}(f) \ge -1 + \min\{3 \times 2 \times \frac{1}{6}, 2 \times \frac{1}{6} + \frac{2}{3}\} = 0$ by R1-R3. If $f = (4, 4, 6^+)$, then $\tilde{c}(f) \ge -1 + \frac{4}{3} = \frac{1}{3} > 0$ by R5.1. If $f = (4, 5^+, 5^+)$, then $\tilde{c}(f) \ge -1 + \min\{2 \times \frac{2}{3}, \frac{1}{2} + \frac{4}{3}\} = \frac{1}{3} > 0$ by R3. If $f = (5^+, 5^+, 5^+)$, then $\tilde{c}(f) \ge -1 + 3 \times \frac{1}{2} = \frac{1}{2} > 0$ by R3.3.

Case 2: \overline{f} is a doubleton (see Figure 3).

It follows from Lemma 3.1 (B_5) that two 5-vertices in (C_1) are not adjacent to a 4-vertex any more, thus $\tilde{c}(\bar{f}) \ge -2 + 2 \times 1 = 0$ by R3.1. As for (C_2), $\tilde{c}(\bar{f}) \ge -2 + \frac{2}{3} + \frac{4}{3} = 0$ by R3.1, R5.1 and R6.1. For (C_3), we have $\tilde{c}(\bar{f}) \ge -2 + 2 \times \frac{4}{3} = \frac{2}{3} > 0$ by R5.1 and R6.1. For (C_4), we have $\tilde{c}(\bar{f}) \ge -2 + 3 \times \frac{2}{3} = 0$ by R3 and R4. For (C_5), $\tilde{c}(\bar{f}) \ge -2 + \frac{4}{3} + \frac{2}{3} = 0$ by R4-R6. For (C_6), if there are three 4-vertices lying on \bar{f} , then $\tilde{c}(\bar{f}) \ge -2 + 2 = 0$ by R5.3 and R6.2. Otherwise $\tilde{c}(\bar{f}) \ge -2 + \min\{\frac{1}{2} + \frac{3}{2}, 2\} = 0$ by R3, R5 and R6. For (C_7) , it follows from Lemma 3.1 (B_3) and (B_4) that two 5-vertices are not adjacent to any 4-vertex, then $\tilde{c}(\bar{f}) \ge -2 + 2 \times 1 = 0$ by R4. For (C_8) , if three are three 5-vertices lying on \bar{f} , it follows from Lemma 3.1 (B_6) that $\tilde{c}(\bar{f}) \ge -2 + 2 \times \frac{5}{6} + \frac{1}{2} = \frac{1}{6} > 0$ by R3 and R4. Otherwise, $\tilde{c}(\bar{f}) \ge -2 + 2 \times \frac{2}{3} + \frac{4}{3} = \frac{2}{3} > 0$ by R4-R6. For (C_9) , $\tilde{c}(\bar{f}) \ge -2 + 2 \times \frac{2}{3} + 2 \times \frac{1}{2} = \frac{1}{3} > 0$ by R3 and R4. For (C_{10}) , $\tilde{c}(\bar{f}) \ge -2 + \frac{2}{3} + \frac{3}{2} = \frac{1}{6} > 0$ by R4 and R5.

Figure 3: Different kinds of doubletons, the number near a vertex denotes its degree.

Let v be a k-vertex of G_1 . Suppose k = 4, the initial charge remain unchanged. Suppose k = 5. If $f_3(v) = 0$, then there are at most five bad 4-vertices, thus $\tilde{c}(v) \ge 1 - 5 \times \frac{1}{6} = \frac{1}{6} > 0$ by R1. If $f_3(v) = 1$, we consider whether the triangle is bad. When the triangle is bad, we obtain that $\tilde{c}(v) \ge 1 - \max\{\frac{2}{3} + \frac{1}{6}, 1\} = 0$ by R1 and R3.1. Otherwise, $\tilde{c}(v) \ge 1 - \max\{\frac{2}{3} + 2 \times \frac{1}{6}, \frac{1}{2} + 3 \times \frac{1}{6}, 1\} = 0$ by R3.1 and R3.2. If $f_3(v) = 2$, then the two triangles must form a doubleton \bar{f} since G_1 is hopper-free, then we just need to consider the configurations in Figure 3 exclude $(C_1), (C_2), (C_3), (C_6)$, then we obtain $\tilde{c}(v) \ge 1 - \max\{1, \frac{5}{6} + \frac{1}{6}, \frac{2}{3} + 2 \times \frac{1}{6}\} = 0$ by R4. Suppose k = 6. If $f_3(v) = 0$, then there are at most six bad 4-vertices, thus $\tilde{c}(v) \ge 2 - 6 \times \frac{1}{6} = 1 > 0$ by R1. If $f_3(v) = 1$, there are at most four bad 4-vertices, thus

 $\tilde{c}(v) \geq 2 - \frac{4}{3} - 4 \times \frac{1}{6} = 0$ by R1 and R5.1. If v is incident with two consecutive triangles \bar{f} , then we should consider (C_6) and (C_{10}) . As for (C_6) , if there are three 4-vertices lying on \bar{f} , then there exists no 4-vertex among the remaining neighbors of 6-vertex which are not on \bar{f} , thus $\tilde{c}(v) \geq 2 - 2 = 0$ by R5. Otherwise, $\tilde{c}(v) \geq 2 - \frac{3}{2} - 3 \times \frac{1}{6} = 0$ by R1 and R5. For (C_{10}) , there are at most three bad 4-vertices among the remaining neighbors of 6-vertex which are not on \bar{f} by Lemma 3.1, thus $\tilde{c}(v) \geq 2 - \frac{3}{2} - 3 \times \frac{1}{6} = 0$ by R5. Suppose $k \geq 7$. If $f_3(v) = 0$, then $\tilde{c}(v) \geq k - 4 - 7 \times \frac{1}{6} = \frac{6(k-7)+11}{6} > 0$ by R1. If $f_3(v) = 1$, then $\tilde{c}(v) \geq k - 4 - \frac{4}{3} - \frac{1}{6}(k-2) = \frac{5(k-7)+5}{6} > 0$ by R1 and R6. If $f_3(v) = 2$, then $\tilde{c}(v) \geq k - 4 - 2 - \frac{1}{6}(k-3) = \frac{5(k-7)+2}{6} > 0$ by R6.

Hence, we complete the proof of Theorem 1.

4 Proof of Theorem 2

The notation we need in this section follows from Section 3.1. Let $\mathcal{F} = \mathcal{H}_2$, and let G_2 be a counterexample to Theorem 2 with minimum number of vertices. Fix a plane embedding of G_2 , by minimality of G_2 , we get that G_2 is connected. Let L be a list assignment on $V(G_2)$ where each vertex receives at least five colors. Similarly, we have the following lemma to forbid some configurations in G_2 .

4.1 Reducible subgraphs

Lemma 4.1. Let $G_2 \in \mathcal{H}_2$. If G_2 contains one of the following configurations (see Figure 4),

(D₁) A cycle $vv_1v_2v_3v$ such that $d(v) \le 5$ and $d(v_1) = d(v_2) = d(v_3) = 4$;

(D₂) A cycle $vv_1v_2v_3v_4v$ such that $d(v) \le 5$ and $d(v_1) = d(v_2) = d(v_3) = d(v_4) = 4$.

Then G_2 contains a $(\mathcal{H}_2, 5)$ -boundary-reducible induced subgraph with empty boundary.

Figure 4: Reducible graphs

Proof. In the following, we mainly consider both cases with d(v) = 5.

To proof (D_1) . Let H be the subgraph of G_2 induced by $\{v, v_1, v_2, v_3\}$ and set the boundary $B = \emptyset$.

(FIX): Note that v_i has three available colors for each $i \in \{1, 2, 3\}$, and v has two available colors. If v is fixed, then we greedily color v, v_1, v_2, v_3 in order. If v_i is fixed for each $i \in \{1, 2, 3\}$, then we first color v_i and then $H - v_i$ can be colored by Lemma 2.4.

(FORB): Note that $|S| \leq 2$ by the definition of S. When |S| = 2, if $S = \{v, v_2\}$, then we give v a preferred color and then greedily color v_1, v_2, v_3 in order. If $S = \{v_1, v_3\}$, then H can be colored by Lemma 2.4. When |S| = 1, (FORB) will be implied by (FIX).

To proof (D_2) , let H be the subgraph of G_2 induced by $\{v, v_1, v_2, v_3, v_4\}$, and set the boundary $B = \emptyset$.

(**FIX**): Note that v_i has three available colors for each $i \in \{1, 2, 3, 4\}$, and v has two available colors. If v is fixed, then we greedily color v, v_1, v_2, v_3, v_4 in order. If v_i is fixed for each $i \in \{1, 2, 3, 4\}$, then we first color v_i and then $H - v_i$ can be colored by Lemma 2.4.

(FORB): When |S| = 3, then S can be chosen as the following triples: $\{v, v_1, v_2\}$, $\{v, v_1, v_4\}$, $\{v, v_2, v_3\}$, $\{v, v_3, v_4\}$, $\{v_1, v_2, v_3\}$, $\{v_2, v_3, v_4\}$. Up to symmetry, we only discuss $S = \{v, v_1, v_2\}$. In this situation, we can greedily color v, v_1, v_2, v_3, v_4 in order. When |S| = 2, assume that $S = \{v, v_1\}$, then we give v a preferred color and then greedily color v_1, v_2, v_3, v_4 in order. The rest pairs can be handled in a similar fashion, (FORB) holds.

4.2 Discharging

Note that G_2 does not contain any configurations shown in Lemma 4.1. By [10], G_2 also has no 3⁻-vertex. Since G_2 is also a plane graph, by Euler's Formula, we obtain

$$\sum_{v \in V(G_2)} (d(v) - 6) + \sum_{f \in F(G_2)} (2d(f) - 6) = -12.$$
(III)

Now we define an initial weight function on $V(G_2) \cup F(G_2)$ by letting

$$c(x) = \begin{cases} d_{G_2}(x) - 6 & \text{if } x = v \in V(G_2), \\ 2d_{G_2}(x) - 6 & \text{if } x = f \in F(G_2). \end{cases}$$

Since the total sum of charges are the negative number -12, we shall now redistribute the charge, without changing its sum, such that the sum is nonnegative. This contradiction will prove the Theorem 2. Finally, we apply the following rules to redistribute the initial charge that leads to a new charge \hat{c} .

For brevity, a face f is called *bad* in G_2 if it is incident with exactly (d(f) - 1) 4-vertices, otherwise it is *good*.

R1. Each bad 4-face sends $\frac{2}{3}$ to its incident 4-vertex;

- **R2**. Each good 4-face sends $\frac{1}{2}$ to its incident vertex 5⁻-vertex;
- **R3**. Each 5-face sends a to its incident vertex v,

$$a = \begin{cases} 1 & \text{if } d(v) = 4, \\ \frac{1}{2} & \text{if } d(v) = 5. \end{cases}$$

R4. Each 6^+ -face sends 1 to its incident vertex 5^- -vertex.

Fact 4.2. For each v with $d(v) \ge 4$, we have $f_3(v) \le \lfloor \frac{2d(v)}{3} \rfloor$.

Now we shall show that $\hat{c}(x) \geq 0$ for all $x \in V(G_2) \cup F(G_2)$. Let f be a face of G_2 . If d(f) = 3, we keep the initial charge. Suppose d(f) = 4. If f is bad, then there must be a 6^+ -vertex in f by Lemma 4.1 (D_1) , thus $\hat{c}(f) \geq 2 - 3 \times \frac{2}{3} = 0$ by R1. Otherwise, $n_4(f) \leq 2$, then $\hat{c}(f) \geq 2 - 4 \times \frac{1}{2} = 0$ by R2. Suppose d(f) = 5. If f is bad, then there must be a 6^+ -vertex in f by Lemma 4.1 (D_2) , thus $\hat{c}(f) \geq 4 - 4 \times 1 = 0$ by R3. Otherwise, $n_4(f) \leq 3$, then $\hat{c}(f) \geq 4 - 3 \times 1 - 2 \times \frac{1}{2} = 0$. If $d(f) \geq 6$, then the number of 5⁻-vertices incident with f is at most d(f), thus $\hat{c}(f) \geq 2d(f) - 6 - d(f) = d(f) - 6 \geq 0$ by R4.

Let v be a k-vertex of G_2 . Suppose k = 4, then $f_3(v) \le 2$. If $f_3(v) = 0$, then $\hat{c}(v) \ge -2 + 4 \times \frac{1}{2} = 0$ by R2. If $1 \le f_3(v) \le 2$, then $f_{5^+}(v) \ge 2$, thus $\hat{c}(v) \ge -2 + 2 \times 1 = 0$ by R3. Suppose k = 5, then $f_3(v) \le 3$. If $f_3(v) = 0$, then $\hat{c}(v) \ge -1 + 5 \times \frac{1}{2} > 0$ by R2. If $1 \le f_3(v) \le 3$, then $f_{5^+}(v) \ge 2$, thus $\hat{c}(v) \ge -1 + 2 \times \frac{1}{2} = 0$ by R3. Suppose $k \ge 6$, then $\hat{c}(v) = d(v) - 6 \ge 0$.

Hence, for all $x \in V(G_2) \cup F(G_2)$, we have $\hat{c}(x) \ge 0$. We complete the proof of Theorem 2.

5 Acknowledgement

The author would like to thank the the anonymous referees for their valuable remarks, which greatly improve the paper.

References

- [1] J. A. Bondy, U. S. R. Murty, Graph Theory with Application, 1976.
- [2] O. V. Borodin, A. O. Ivanova, Planar graphs without triangular 4-cycles are 4-choosable. Siberian Electronic Mathematical Reports, 2008, 5(0): 75-79.
- P. Cheng, M. Chen, Y. Wang, Planar graphs without 4-cycles adjacent to triangles are 4-choosable. Discrete Mathematics, 2016, 339(12): 3052-3057.
- [4] L. Choi, F. C. Clemen, M. Ferrara, P. Horn, F. Ma, T. Masařík, Flexibility of Planar Graphs-Sharpening the Tools to Get Lists of Size Four. arXiv preprint arXiv:2004.10917, 2020.
- [5] Z. Dvořák, T. Masařík, J. Musílek, O. Pangrác, Flexibility of triangle-free planar graphs. Journal of Graph Theory, doi.org/10.1002/jgt.22634, 2020.
- [6] Z. Dvořák, T. Masařík, J. Musílek, O. Pangrác, Flexibility of planar graphs of girth at least six. Journal of Graph Theory, doi:10.1002/jgt.22567, 2020.
- [7] Z. Dvořák, S. Norin, L. Postle, List coloring with requests. Journal of Graph Theory, 2019, 92(3): 191-206.
- [8] P. Erdös, A. L. Rubin, H. Taylor, Choosability in graphs, Proceedings of the West-Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, California (Congr. Numer. XXVI), 1980, 26: 125-157.
- [9] P. C. B. Lam, B. Xu, J. Liu, The 4-choosability of plane graphs without 4-cycles. Journal of Combinatorial Theory, Series B, 1999, 76(1): 117-126.
- [10] T. Masařík, Flexibility of planar graphs without 4-cycles. Acta Mathematica Universitatis Comenianae, 2019, 88(3): 935-940.
- [11] C. Thomassen, A short list color proof of Grötzsch's theorem. Journal of Combinatorial Theory, Series B, 2003, 88(1): 189-192.

- [12] C. Thomassen, Every planar graph is 5-choosable. Journal of Combinatorial Theory, Series B, 1994, 62(1): 180-181.
- [13] M. Voigt, A non-3-choosable planar graph without cycles of length 4 and 5. Discrete Mathematics, 2007, 307: 1013-1015.
- [14] W. Wang, K. Lih, Choosability and edge choosability of planar graphs without intersecting triangles. SIAM Discrete Mathematics, 2002, 15(4): 538"C545.
- [15] D. Yang, F. Yang, Flexibility of planar graphs without C_4 and C_5 . arXiv preprint arXiv:2006.05243, 2020.