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Abstract
A set S of vertices in a graph G is a paired dominating set if every vertex of G is
adjacent to a vertex in S and the subgraph induced by S contains a perfect matching
(not necessarily as an induced subgraph). The paired domination number, cprðGÞ, of
G is the minimum cardinality of a paired dominating set of G. In this paper, we show
that if T is a tree of order at least 2, then cprðTÞ� 2aðTÞ � uðTÞ where aðTÞ is the
independence number and uðTÞ is the P3-packing number. We present a tight upper
bound on the paired domination number of a tree T in terms of its maximum
degree D. For D� 1, we show that if T is a tree of order n with maximum degree D,
then cprðTÞ� 5D�4

8D�4

� �
nþ 1

2 n1ðTÞ þ 1
4 n2ðTÞ � D�2

4D�2

� �
, where n1ðTÞ and n2ðTÞ denote

the number of vertices of degree 1 and 2, respectively, in T. Further, we show that this
bound is tight for all D� 3. As a consequence of this result, if T is a tree of
order n� 2, then cprðTÞ� 5

8 nþ 1
2 n1ðTÞ þ 1

4 n2ðTÞ, and this bound is asymptotically
best possible.

Keywords Paired domination · Trees · Independence number

Research supported in part by the University of Johannesburg.

& Elżbieta Kleszcz
elzbieta.kleszcz@agh.edu.pl

Aleksandra Gorzkowska
agorzkow@agh.edu.pl

Michael A. Henning
mahenning@uj.ac.za

Monika Pilśniak
pilsniak@agh.edu.pl

1 Department of Discrete Mathematics, AGH University, al. Mickiewicza 30, Krakow 30-059,
Poland

2 Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland
Park, Johannesburg 2006, South Africa

123

Graphs and Combinatorics (2022) 38:129
https://doi.org/10.1007/s00373-022-02542-7(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-1413-2413
http://crossmark.crossref.org/dialog/?doi=10.1007/s00373-022-02542-7&amp;domain=pdf
https://doi.org/10.1007/s00373-022-02542-7


Mathematics Subject Classification 05C69

1 Introduction

A dominating set of a graph G is a set S � V ðGÞ such that every vertex of V ðGÞ n S
is adjacent to some vertex in S. A paired dominating set, abbreviated PD-set, of an
isolate-free graph G is a dominating set S of G with the additional property that the
subgraph G[S] induced by S contains a perfect matching M (not necessarily induced).
With respect to the matching M, two vertices joined by an edge of M are paired and
are called partners in S. The paired domination number, cprðGÞ, of G is the minimum
cardinality of a PD-set of G. We call a PD-set of G of cardinality cprðGÞ a cpr-set of
G. We note that the paired domination number cprðGÞ is an even integer. For a recent
survey on paired domination in graphs, we refer the reader to the book chapter [3].

We in general follow the graph theory notation in [5]. In particular, we denote the
degree of a vertex v in a graph G by dGðvÞ. A vertex of degree 0 is called an isolated
vertex, and a graph is isolate-free if it contains no isolated vertex. The maximum
(minimum) degree among the vertices of G is denoted by DðGÞ (dðGÞ, respectively).
A leaf of a tree T is a vertex of degree 1 in T, and a support vertex of T is a vertex
with a leaf neighbor.

The distance d(u, v) between two vertices u and v in a connected graph G, equals
the minimum length of a (u, v)-path in G from u to v. A shortest, or minimum length,
path between two vertices u and v is called a (u, v)-geodesic. A geodesic is any
shortest path in a graph. The diameter diamðGÞ of G is the maximum distance among
all pairs of vertices in G. A diametral path in G is a geodesic which has length equal
to diameter of G.

A rooted tree T distinguishes one vertex r called the root. For each vertex v 6¼ r of
T, the parent of v is the neighbor of v on the unique (r, v)-path, while a child of v is
any other neighbor of v. A descendant of v is a vertex u 6¼ v such that the unique
(r, u)-path contains v. We let D(v) denote the set of descendants of v, and we define
D½v� ¼ DðvÞ [ fvg. The maximal subtree at v is the subtree of T induced by D[v], and
is denoted by Tv.

The independence number aðGÞ of a graph G is the maximum cardinality of an
independent set of vertices in G. For k� 1 an integer, we use the standard notation
½k� ¼ f1; . . .; kg.

(a) S(K1,1) (b) S(K1,2) (c) S(K1,3) (d) S(K1,4)

Fig. 1 The subdivided stars SðK1;1Þ, SðK1;2Þ, SðK1;3Þ, and SðK1;4Þ
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For r� 1 a subdivided star SðK1;rÞ is the tree of order 2r þ 1 obtained from a star
K1;r by subdividing every edge exactly once. For example, the subdivided stars
SðK1;1Þ, SðK1;2Þ, SðK1;3Þ, and SðK1;4Þ are shown in Figs. 1a,b,c,d.

2 Known results in trees

The paired domination number of a path Pn on n� 2 vertices is essentially one-half
its order.

Observation 1 For n� 2, we have cprðPnÞ ¼ 2dn4e.
Every support vertex in a tree T is contained in every PD-set of T. Further we note

that if every PD-set in T contains an independent set I of vertices, then in order to pair
the vertices of I with (distinct) vertices in the PD-set of T, we have cprðTÞ� 2jI j. For
example, if T is a subdivided star SðK1;rÞ for some r� 2, then T has order n ¼ 2r þ 1
and the set of r support vertices in T form an independent set and belong to every PD-
set of T, implying that cprðTÞ� 2r. However, we can pair each support vertex with its
leaf neighbor to form a PD-set of T, implying that cprðTÞ� 2r. Consequently,
cprðTÞ ¼ 2r. We state this formally as follows.

Observation 2 If T is a subdivided star of order n, then cprðTÞ ¼ n� 1.

In 1998 Haynes and Slater [4] obtained the following upper bound on the paired
domination number of a tree of order at least 3.

Theorem 3 ([4]) If T is a tree of order n� 3, then cprðGÞ� n� 1 with equality if and
only if T is the path P3 or a subdivided star SðK1;rÞ for r� 2.

Subsequent to the 1998 result of Theorem 3, several authors presented improved
bounds on the paired domination number of a tree. We mention, for example, the
2004 paper by Chellali and Haynes [1], the 2006 paper by Raczek [6] and the 2014
paper by Dehgardi, Sheikholeslami and Khodkar [2]. In this paper, we present tight
upper bounds on the paired domination number of a tree in terms of its order,
maximum degree, and number of vertices of degree 1 and 2. We also present tight
upper bounds on the paired domination number of a tree in terms of its independence
number.

3 Main Results

In view of Observation 1, it is only of interest to determine upper bounds on the
paired domination number of a tree with maximum degree at least 3. In this paper, we
present a stronger result than the trivial upper bound of Theorem 3.

In order to state our first result, we define a P3-packing in a tree T as a collection of
vertex disjoint paths P3 (on three vertices) each of which contains at least one leaf of
the original tree T. Further, we define the P3-packing number in T, denoted uðTÞ, as
the maximum cardinality of a P3-packing in T. We are now in a position to state the
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following upper bound on the paired domination of a tree in terms of its
independence number. We present a proof of Theorem 4 in Sect. 4.

Theorem 4 If T is a tree of order at least2, then cprðTÞ� 2aðTÞ � uðTÞ, and this
bound is tight.

The natural consequence of the definition of a P3-packing is its extension to the set
of subdivided stars in trees. For this purpose, let T be a tree of maximum degree D
where D� 3. We define a subdivided star set of T as a set of vertex disjoint
subdivided stars each of which is a subgraph of T. Further, the number of leaves of
each such subdivided star belongs to the set f2; . . .;D� 1g, and every leaf from a
subdivided star in the set is a leaf of T. More formally, a set P ¼ fT1; . . .; Tpg is a
subdivided star set of T if the following holds.

● Ti is a subdivided star SðK1;niÞ where 2� ni �D� 1 for every i 2 ½p�.
● Every leaf of Ti is a leaf of T for all i 2 ½p�.
● V ðTiÞ \ V ðTjÞ ¼ ; for 1� i\j� p.

Further, if P ¼ ;, we define nPðTÞ ¼ 0, and if P 6¼ ;, we define

nPðTÞ ¼
Xp
i¼1

ðni � 1Þ and UDðTÞ ¼ max nPðTÞ

where the maximum in the definition of UDðTÞ is taken over all subdivided star sets
P in the tree T (which satisfies DðTÞ ¼ D� 3). A subdivided star set P of T satis-
fying UDðTÞ ¼ nPðTÞ we call an optimal subdivided star set. We note that taking
P ¼ ;, we have nPðTÞ ¼ 0, and so UDðTÞ� 0.

To illustrate this definition, let T be the tree of maximum degree DðTÞ ¼ 6 (here
D ¼ 6) shown in Fig. 2. Let Ti be the subtree of T induced by the vertex vi, the
support vertices of vi, and the leaves at distance 2 from vi. We note that Ti ffi
SðK1;iþ1Þ for i 2 ½4�. The set P ¼ fT1; T2;T3; T4g is a subdivided star set satisfying
nPðTÞ ¼ 1þ 2þ 3þ 4 ¼ 10, and so U6ðTÞ� 10. From the structure of the tree Twe
can readily deduce that U6ðTÞ� 10. Consequently, U6ðTÞ ¼ 10.

Let n1ðTÞ and n2ðTÞ denote the number of vertices of degree 1 and 2, respectively,
in a tree T, and let n� 3ðTÞ denote the number of vertices of degree at least 3 in T. We
note that if T is a tree of order n� 3, then n ¼ n1ðTÞ þ n2ðTÞ þ n� 3ðTÞ. We are now
in a position to state our second main result, a proof of which we present in Sect. 5.

Theorem 5 For D� 1, if T is a tree of ordern with maximum degree DðTÞ ¼ D, then

v1 v2 v3 v4

Fig. 2 A tree T with DðTÞ ¼ 6 and U6ðTÞ ¼ 10
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4cprðTÞ� 2nþ 2n1ðTÞ þ n2ðTÞ þ UDðTÞ; ð1Þ
and this bound is tight for all D� 3.

We next present the following upper bound on the paired domination of a tree, a
proof of which is presented in Sect. 6.

Theorem 6 For D� 1, if T is a tree of ordern with maximum degree DðTÞ ¼ D, then

cprðTÞ�
5D� 4

8D� 4

� �
nþ 1

2
n1ðTÞ þ 1

4
n2ðTÞ � D� 2

4D� 2

� �
: ð2Þ

As an immediate consequence of Theorem 6, we have the following upper bound
on the paired domination number of a tree.

Corollary 7 If T is a tree of ordern� 2, then

cprðTÞ�
5

8
nþ 1

2
n1ðTÞ þ 1

4
n2ðTÞ; ð3Þ

and this bound is asymptotically best possible.

4 Proof of Theorem 4

In this section we give a proof of Theorem 4. Recall its statement.
Theorem 4. If T is a tree of order at least 2, then cprðTÞ� 2aðTÞ � uðTÞ, and this

bound is tight.

Proof We proceed by induction on the order n� 2 of a tree T. If n ¼ 2, then T ¼ P2,
and cprðTÞ ¼ 2, aðTÞ ¼ 1 and uðTÞ ¼ 0, and so cprðTÞ ¼ 2aðTÞ � uðTÞ. This
establish the base case. Let n� 3 and assume that if T 0 is a tree of order n0 where
2� n0\n, then cprðT 0Þ � 2aðT 0Þ � uðT 0Þ. Let T be a tree of order n.

Suppose that T contains a strong support vertex v, and so v has at least two leaf
neighbors in T. Let u1 and u2 be two leaf neighbors of v, and let T 0 ¼ T � u1. We can
choose a maximum independent set in a tree to contain all its leaves, implying that
aðTÞ ¼ aðT 0Þ þ 1. Further, we note that if P is a maximum P3-packing in T, then
either there is a path P0 2 P that contains the vertex u1, in which case P n fP0g is a
P3-packing in T 0, or no path in P contain the vertex u1, in which case P is a P3-
packing in T 0. Thus, uðT 0Þ � jPj � 1 ¼ uðTÞ � 1. Every PD-set of T 0 contains the
support vertex v, implying that cprðTÞ� cprðT 0Þ. Applying the inductive hypothesis to
T 0, we therefore have cprðTÞ� cprðT 0Þ � 2aðT 0Þ � uðT 0Þ � 2ðaðTÞ � 1Þ�
ðuðTÞ � 1Þ\2aðTÞ � uðTÞ. Hence, we may assume that T contains no strong
support vertex, that is, every support vertex in T has exactly one leaf neighbor.

Since T has order n� 3, our earlier assumptions imply that the tree T is not a star,
and so diamðTÞ� 3. Further our assumptions imply that if diamðTÞ ¼ 3, then
T ¼ P4. In this case, cprðTÞ ¼ 2, aðTÞ ¼ 2 and uðTÞ ¼ 1, and so
cprðTÞ\2aðTÞ � uðTÞ. Hence, we may assume that diamðTÞ� 4, for otherwise
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the desired result follows. Let P : v0v1v2. . .vd be a longest path in T, and so
d ¼ diamðTÞ� 4. We now root the tree T at the vertex r ¼ vd . Since every support
vertex in T has exactly one leaf neighbor, we note that dT ðv1Þ ¼ 2. We proceed
further with the following series of claims.

claim 1 If dT ðv2Þ� 3, then cprðTÞ� 2aðTÞ � uðTÞ.
Proof Suppose that dT ðv2Þ� 3. Suppose firstly that the vertex v2 is a support vertex
with (unique) leaf neighbor u1. Let T 0 ¼ T � u1. We can choose a cpr-set of T

0 to
contain the vertices v1 and v2, implying that cprðTÞ� cprðT 0Þ. Every independent set
in T 0 is an independent set in T, implying that aðTÞ� aðT 0Þ. We can choose a
maximum P3-packing P in T so that it contains the path P0 2 P where P0 : v0v1v2.
The set P is a P3-packing in T 0, and so uðT 0Þ � jPj ¼ uðTÞ. Therefore applying the
inductive hypothesis to the tree T 0, we have
cprðTÞ� cprðT 0Þ � 2aðT 0Þ � uðT 0Þ � 2aðTÞ � uðTÞ. Hence, we may assume that v2
is not a support vertex in T, and so every child of v2 is a support vertex of degree 2 in
T.

By supposition, dT ðv2Þ� 3. Let w1 be a child of v2 different from v1, and let w0 be
the child of w1. We consider the tree T 0 ¼ T � fw0;w1g. In this case, we note that
aðTÞ ¼ aðT 0Þ þ 1. Every cpr-set of T

0 can be extended to a PD-set of T by adding to
it the vertices w0 and w1, and so cprðTÞ� cprðT 0Þ þ 2. We can choose a maximum P3-
packing P in T so that it contains the path P0 2 P where P0 : v0v1v2. The set P is a
P3-packing in T 0, and so uðT 0Þ � jPj ¼ uðTÞ. Therefore applying the inductive
hypothesis to the tree T 0, we have cprðTÞ� cprðT 0Þþ2� 2aðT 0Þ � uðT 0Þþ
2� 2ðaðTÞ � 1Þ � uðTÞ þ 2 ¼ 2aðTÞ � uðTÞ. h

By Claim 1, we may assume that dT ðv2Þ ¼ 2, for otherwise the desired result
follows. More generally, we may assume that every vertex at distance d � 2 from the
root r ¼ vd of the rooted tree T has degree equal to 2.

claim 2 If dT ðv3Þ ¼ 2, then cprðTÞ� 2aðTÞ � uðTÞ.
Proof Suppose that dT ðv3Þ ¼ 2. If T ffi P5, then the inequality holds. Thus, we may
further assume that T 6ffi P5. In this case, we consider the tree
T 0 ¼ T � fv0; v1; v2; v3g. Every independent set in T 0 can be extended to an
independent set in T by adding to it the vertices v0 and v2, and so aðTÞ� aðT 0Þ þ 2.
Every cpr-set of T

0 can be extended to a PD-set of T by adding to it the vertices v1 and
v2, and so cprðTÞ� cprðT 0Þ þ 2. We can choose a maximum P3-packing P in T so that
it contains the path P0 2 P where P0 : v0v1v2. The set P n fP0g is a P3-packing in T 0,
and so uðT 0Þ � jPj � 1 ¼ uðTÞ � 1. Therefore, applying the inductive hypothesis to
the tree T 0, we have cprðTÞ� cprðT 0Þþ 2� 2aðT 0Þ � uðT 0Þ þ 2� 2ðaðTÞ � 2Þ�
ðuðTÞ � 1Þ þ 2\2aðTÞ � uðTÞ. h

claim 3 If v3 is a support vertex, then cprðTÞ� 2aðTÞ � uðTÞ.
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Proof Suppose that the vertex v3 has a leaf neighbor u2. In this case, we consider the
tree T 0 ¼ T � fv0; v1; v2g. We can choose a maximum independent set of T 0 to
contain the leaf u2. Such a maximum independent set can be extended to an
independent set of T by adding to it the vertices v0 and v2, and so aðTÞ� aðT 0Þ þ 2.
Every cpr-set of T

0 can be extended to a PD-set of T by adding to it the vertices v1 and
v2, and so cprðTÞ� cprðT 0Þ þ 2. We can choose a maximum P3-packing P in T so that
it contains the path P0 2 P where P0 : v0v1v2. The set P n fP0g is a P3-packing in T 0,
and so uðT 0Þ � jPj � 1 ¼ uðTÞ � 1. Therefore applying the inductive hypothesis to
the tree T 0, we have cprðTÞ� cprðT 0Þþ 2� 2aðT 0Þ � uðT 0Þ þ 2� 2ðaðTÞ � 2Þ�
ðuðTÞ � 1Þ þ 2\2aðTÞ � uðTÞ. h

claim 4 If the vertex v3 has a descendant at distance 3 that is different from v0, then
cprðTÞ� 2aðTÞ � uðTÞ.
Proof Suppose that the vertex v3 has a descendant w0 at distance 3 that is different
from v0. Let w0w1w2v3 be the path from w0 to the vertex v3. By our earlier
assumptions, the vertex w0 is a leaf and dT ðw1Þ ¼ dT ðw2Þ ¼ 2. We now consider the
tree T 0 ¼ T � fv0; v1; v2g. We can choose a maximum independent set of T 0 to
contain the vertices w0 and w2. Such a maximum independent set can be extended to
an independent set of T by adding to it the vertices v0 and v2, and so
aðTÞ� aðT 0Þ þ 2. Every cpr-set of T

0 can be extended to a PD-set of T by adding
to it the vertices v1 and v2, and so cprðTÞ� cprðT 0Þ þ 2. We can choose a maximum
P3-packing P in T so that it contains the path P0 2 P where P0 : v0v1v2. The set
P n fP0g is a P3-packing in T 0, and so uðT 0Þ � jPj � 1 ¼ uðTÞ � 1. Therefore
applying the inductive hypothesis to the tree T 0, we have cprðTÞ� cprðT 0Þþ
2� 2aðT 0Þ � uðT 0Þ þ 2� 2ðaðTÞ � 2Þ � ðuðTÞ � 1Þ þ 2\2aðTÞ � uðTÞ. h

By Claim 2, 3 and 4, we may assume that dT ðv3Þ� 3 and that every child of v3
different from v2 is a support vertex of degree 2 in T. Let w2 be an arbitrary child of
v3 different from v2, and let w1 be the child of w2. Let ‘ be the number of children of
v3. By assumption, ‘� 2 and every leaf in Tv3 different from v0 is at distance 2 from
v3, where Tv3 is the maximal subtree rooted at v3. Thus, Tv3 is obtained from a star
K1;‘ by subdividing ‘� 1 edges once and subdividing the remaining edge of the star
twice, and so Tv3 has order 2‘þ 2. Let T 0 be the tree obtained from T by deleting the
vertex v3 and all descendants of v3, that is, T 0 ¼ T � V ðTv3Þ. By our earlier
assumptions, the tree T 0 has order at least 3.

Every independent set in T 0 can be extended to an independent set in T by adding
to it the vertex v2 and the ‘ leaves of Tv3 , and so aðTÞ� aðT 0Þ þ ‘þ 1. Every cpr-set
of T 0 can be extended to a PD-set of T by adding to it 2‘ vertices from the tree Tv3 ,
and so cprðTÞ� cprðT 0Þ þ 2‘. We can choose a maximum P3-packing P in T so that it
contains the paths P0 : v0v1v2 and Q0 : w1w2v3. The set P n fP0;Q0g is a P3-packing
in T 0, and so uðT 0Þ � jPj � 2 ¼ uðTÞ � 2. Therefore applying the inductive
hypothesis to the tree T 0, we have
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cprðTÞ� cprðT 0Þ þ 2‘

� 2aðT 0Þ � uðT 0Þ þ 2‘

� 2ðaðTÞ � ‘� 1Þ � ðuðTÞ � 2Þ þ 2‘

¼ 2aðTÞ � uðTÞ:
This completes the proof of the upper bound.

That the upper bound in Theorem 4 is sharp may be seen as follows. For an even
k� 2, let T1; T2; . . .; Tk be vertex disjoint subdivided stars, that is, Ti ¼ SðK1;niÞ
where ni � 1. If ni � 2, then let vi denote the central vertex (of degree i) of the
subdivided star Ti, while if ni ¼ 1, then let vi be one of the two leaves of Ti ffi P3. Let
T ¼ Tkðn1; . . .; nkÞ be the tree obtained from the disjoint union of the trees
T1; T2; . . .; Tk by adding the edges viviþ1 for all i 2 ½k � 1�, and so v1v2. . .vk is a path
in T. The resulting tree T satisfies cprðTÞ ¼ 2aðTÞ � uðTÞ noting that

cprðTÞ ¼
Xk
i¼1

2ni; aðTÞ ¼ 1

2
k þ

Xk
i¼1

ni and uðTÞ ¼ k:

In the special case when ni ¼ 1 for all i 2 ½k�, the tree T ¼ Tkðn1; . . .; nkÞ is the 2-
corona of a path Pk , that is, T ¼ Pk � P2 is obtained from a path Pk by attaching a
path of length 2 to each vertex of Pk so that the resulting paths are vertex-disjoint. In
this case, cprðTÞ ¼ 2k, aðTÞ ¼ 3

2 k and uðTÞ ¼ k, and so cprðTÞ ¼ 2aðTÞ � uðTÞ.
For example, the 2-corona T ¼ P6 � P2 of a path P6 is illustrated in Fig. 3.

When k ¼ 4 and n1 ¼ 5, n2 ¼ n3 ¼ 4 and n4 ¼ 6, the tree T ¼ Tkðn1; . . .; nkÞ, for
example, is illustrated in Fig. 4. For this example, cprðTÞ ¼ 38, aðTÞ ¼ 21 and
uðTÞ ¼ 4, and so cprðTÞ ¼ 2aðTÞ � uðTÞ.

5 Proof of Theorem 5

In this section we give a proof of Theorem 5. Recall its statement.
Theorem 5. For D� 1, if T is a tree of order n with maximum degree DðTÞ ¼ D,

then

Fig. 3 The 2-corona P6 � P2 of a
path P6

v1 v2 v3 v4

Fig. 4 The tree T ¼ T4ð5; 4; 4; 6Þ
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4cprðTÞ� 2nþ 2n1ðTÞ þ n2ðTÞ þ UDðTÞ;
and this bound is tight for all D� 3.

Proof For a tree T of order n with maximum degree DðTÞ ¼ D where D� 1, we
define the weight of T by

wðTÞ ¼ 2nþ 2n1ðTÞ þ n2ðTÞ þ UDðTÞ:
We prove by induction on nþ D that 4cprðTÞ�wðTÞ. If D ¼ 1, then T ¼ K2 and
cprðTÞ ¼ 2, n ¼ n1ðTÞ ¼ 2, and n2ðTÞ ¼ UDðTÞ ¼ 0, and so 4cprðTÞ ¼ 8 ¼ wðTÞ. If
D ¼ 2, then T is a path Pn, where n� 3. In this case, wðTÞ ¼ 3nþ 2þ UDðTÞ. If
n ¼ 5, then UDðTÞ ¼ 1, while if n 6¼ 5, then UDðTÞ ¼ 0. By Observation 1, we
therefore have that 4cprðTÞ\wðTÞ. Hence, we may assume in what follows that
D� 3, for otherwise the desired result is immediate.

Since DðTÞ ¼ D, we note that n�Dþ 1, and so the smallest value of nþ D is
2Dþ 1. If nþ D ¼ 2Dþ 1, then n ¼ Dþ 1 and T is a star K1;D. In this case,
cprðTÞ ¼ 2, n1ðTÞ ¼ D, n2ðTÞ ¼ 0, and UDðTÞ ¼ 0, and so
4cprðTÞ ¼ 8\4Dþ 2 ¼ wðTÞ. This establishes the base cases. Let n�Dþ 2 where

D� 3, and assume that if T 0 is a tree of order n0 and maximum degree DðT 0Þ ¼ D0

where n0 � n and D0 �D satisfying n0 þ D0\nþ D, then 4cprðT 0Þ �wðT0Þ. Let D� 3
and let T be a tree of order n with DðTÞ ¼ D. We proceed further with the following
claim.

claim 1 If T contains a support vertex with at least two leaf neighbors, then
4cprðTÞ�wðTÞ.
Proof Suppose that there is a vertex v in T with at least two leaf neighbors, say v1
and v2. Let S be a cpr-set of T. At most one of v1 and v2 belongs to the set S.
Renaming v1 and v2 if necessary, we may assume that v1 62 S. We now consider the
tree T 0 ¼ T � v1. The set S is a PD-set of T 0, and so cprðT 0Þ � jSj ¼ cprðTÞ. Every
PD-set of T 0 contains the support vertex v, implying that cprðTÞ� cprðT 0Þ.
Consequently, cprðT 0Þ ¼ cprðTÞ. Let T 0 have order n0 with maximum degree

DðT 0Þ ¼ D0. We note that n0 ¼ n� 1, n1ðT 0Þ ¼ n1ðTÞ � 1, n2ðT 0Þ � n2ðTÞ þ 1 and
D0 �D. Every subdivided star set of T 0 is a subdivided star set of T, implying that
U0

DðT 0Þ �UDðTÞ. These observations imply that

wðTÞ � wðT0Þ ¼ 2ðn� n0Þ þ 2ðn1ðTÞ � n1ðT 0ÞÞ
þ ðn2ðTÞ � n2ðT 0ÞÞ þ ðUDðTÞ � U0

DðT 0ÞÞ
� 2þ 2� 1þ 0 ¼ 3;

and so wðTÞ�wðT0Þ þ 3. Applying the inductive hypothesis to the tree T 0, we have

4cprðTÞ ¼ 4cprðT 0Þ �wðT0Þ �wðTÞ � 3\wðTÞ:
This completes the proof of Claim 1. h
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By Claim 1, we may assume that every support vertex of T has exactly one leaf
neighbor, for otherwise the desired inequality, namely 4cprðTÞ�wðTÞ holds. Recall
that n�Dþ 2, and so diamðTÞ� 3. Let P : v0v1. . .vd be a diametral path in T, and so
v1 and vd are two vertices at maximum distance apart in T and d ¼ diamðTÞ� 3. The
vertices v1 and vd�1 are support vertices in T. By Claim 1 and the maximality of the
path P, both v1 and vd�1 have degree 2 in T with v0 and vd , respectively, as their
unique leaf neighbors.

If d ¼ 3, then T ¼ P4, contradicting the fact that DðTÞ ¼ D� 3. If d ¼ 4, then T
is a subdivided star SðK1;DÞ obtained from a star K1;D by subdividing every edge
exactly once. In this case, cprðTÞ ¼ 2D ¼ n� 1. Moreover, n1ðTÞ ¼ n2ðTÞ ¼ D and
UDðTÞ ¼ D� 2. Thus,

wðTÞ ¼ 2ð2Dþ 1Þ þ 2Dþ Dþ ðD� 2Þ ¼ 8D ¼ 4cprðTÞ;
which yields equality in the desired bound. Hence, we may assume that d� 5. We
now root the tree T at the vertex vd . By Claim 1, at most one child of the vertex v2 is a
leaf. Further, by the maximality if the path P, every child of v2 that is not a leaf is a
support vertex of degree 2 in T. Let ‘ be the number of children of v2 that are not
leaves. We note that 1� ‘�D� 1 and that each child of v2 that is not a leaf is a
support vertex of degree 2. If v2 has a leaf neighbor, then let ‘0 ¼ 1, while if v2 is not
a support vertex, let ‘0 ¼ 0.

claim 2 If dT ðv3Þ� 3, then 4cprðTÞ�wðTÞ.
Proof Suppose that dT ðv3Þ� 3. In this case, we consider the tree T 0 obtained from T
by deleting the vertex v2 and all descendants of v2, that is, T 0 ¼ T � V ðTv2Þ where
Tv2 is the maximal subtree rooted at v2. Let T 0 have order n0 with maximum degree
DðT 0Þ ¼ D0. We note that n0 ¼ n� 2‘� ‘0 � 1, n1ðT 0Þ ¼ n1ðTÞ � ‘� ‘0,
n2ðT 0Þ � n2ðTÞ � ‘þ 1 and D0 �D. Every optimal subdivided star set P0 of T 0 is a
subdivided star set of T. Thus if ‘ ¼ 1, then
UDðTÞ�UDðT 0Þ ¼ UDðT 0Þ þ ‘� 1 ¼ UDðT 0Þ. If ‘� 2 and ‘0 ¼ 0, then the maximal
subtree Tv2 is a subdivided star SðK1;‘Þ that can be added to the set P0, while if ‘� 2
and ‘0 ¼ 1, then removing the leaf neighbor of v2 from the maximal subtree Tv2
produces a subdivided star SðK1;‘Þ that can be added to the set P0, implying that
UDðTÞ�UDðT 0Þ þ ‘� 1. These observations imply that

wðTÞ � wðT0Þ ¼ 2ðn� n0Þ þ 2ðn1ðTÞ � n1ðT 0ÞÞ
þ ðn2ðTÞ � n2ðT 0ÞÞ þ ðUDðTÞ � U0

DðT 0ÞÞ
� 2ð2‘þ ‘0 þ 1Þ þ 2ð‘þ ‘0Þ þ ð‘� 1Þ þ ð‘� 1Þ
¼ 8‘þ 4‘0
� 8‘;

and so wðTÞ�wðT0Þ þ 8‘. Every cpr-set of T
0 can be extended to a PD-set of T by

adding to it the vertex v2 and all children of v2 of degree 2 together with their leaf
neighbors, excluding the vertex v0. In the resulting PD-set of T, we note that v1 and v2
are paired, and every child of v2 different from v1 is paired with its (unique) child.
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Thus, cprðTÞ� cprðT 0Þ þ 2‘. Applying the inductive hypothesis to the tree T 0, we
have

4cprðTÞ ¼ 4ðcprðT 0Þ þ 2‘Þ�wðT0Þ þ 8‘�wðTÞ:
This completes the proof of Claim 2. h

By Claim 2, we may assume that dT ðv3Þ ¼ 2, for otherwise the desired inequality
holds. By our earlier assumptions, d ¼ diamðTÞ� 5. We consider the tree T 0

obtained from T by deleting the vertex v3 and all descendants of v3, that is, T 0 ¼
T � V ðTv3Þ where Tv3 is the maximal subtree rooted at v3. Let T 0 have order n0 with
maximum degree DðT 0Þ ¼ D0. We note that n0 � 2 and 1�D0 �D. Further,
n0 ¼ n� 2‘� ‘0 � 2, n1ðT 0Þ � n1ðTÞ � ‘� ‘0 þ 1, and n2ðT 0Þ � n2ðTÞ � ‘. Every
optimal subdivided star set P0 of T 0 is a subdivided star set of T. Analogous argu-
ments as in the proof of Claim 2 show that UDðTÞ�UDðT 0Þ þ ‘� 1. These obser-
vations imply that

wðTÞ � wðT0Þ ¼ 2ðn� n0Þ þ 2ðn1ðTÞ � n1ðT 0ÞÞ
þ ðn2ðTÞ � n2ðT 0ÞÞ þ ðUDðTÞ � U0

DðT 0ÞÞ
� 2ð2‘þ ‘0 þ 2Þ þ 2ð‘þ ‘0 � 1Þ þ ‘þ ð‘� 1Þ
¼ 8‘þ 4‘0 þ 1[ 8‘;

and so wðTÞ[wðT0Þ þ 8‘. Every cpr-set of T
0 can be extended to a PD-set of T by

adding to it the vertex v2 and all children of v2 of degree 2 together with their leaf
neighbors, excluding the vertex v0. Thus, cprðTÞ� cprðT 0Þ þ 2‘. Applying the
inductive hypothesis to the tree T 0, we have

4cprðTÞ ¼ 4ðcprðT 0Þ þ 2‘Þ�wðT0Þ þ 8‘\wðTÞ:
This completes the proof of Theorem 5. h

That the upper bound in Theorem 5 is sharp may be seen as follows. For D� 3
and ‘� 1, let TD;‘ be the tree constructed as follows. Let T1 ¼ SðK1;DÞ, and for ‘� 2,
let T2; . . .; T‘ be ‘� 1 vertex disjoint copies of a subdivided star SðK1;D�1Þ. Let vi be
the central vertex (of degree D) in Ti, and let ui be an arbitrary neighbor of vi in Ti for
all i 2 ½‘�. If ‘ ¼ 1, we define TD;‘ ¼ T1. For ‘� 2, let TD;‘ be constructed from the
disjoint union of the subdivided stars T1; . . .; T‘ by adding the ‘� 1 edges uiviþ1 for
all i 2 ½‘� 1�. For example, the tree T5;4 is illustrated in Fig. 5. By construction, the
tree TD;‘ has maximum degree D.

Suppose that T ¼ TD;1 for some D� 3, and so T ¼ SðK1;DÞ. In this case,
cprðTÞ ¼ 2D, n ¼ 2Dþ 1, n1ðTÞ ¼ n2ðTÞ ¼ D, and UDðTÞ ¼ D� 2. Hence,

v1 v2 v3 v4

u1 u2 u3 u4

Fig. 5 The tree T ¼ T5;4
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4cprðTÞ ¼ 8D ¼ 2nþ 2n1ðTÞ þ n2ðTÞ þ UDðTÞ, and so we have equality in
Inequality (2).

Suppose that T ¼ TD;‘ for some D� 3 and ‘� 2. The set of ðD� 1Þ‘þ 1 support
vertices of T form an independent set, implying that cprðTÞ� 2ðD� 1Þ‘þ 2. How-
ever, we can pair each support vertex with its leaf neighbor to form a PD-set of T,
implying that cprðTÞ� 2ðD� 1Þ‘þ 2. Consequently, cprðTÞ ¼ 2ðD� 1Þ‘þ 2.
Moreover, nðTÞ ¼ 2D‘� ‘þ 2, n1ðTÞ ¼ D‘� ‘þ 1, n2ðTÞ ¼ D‘� 2‘þ 2, and
UDðTÞ ¼ ‘ðD� 2Þ. Hence, 4cprðTÞ ¼ 8ðD� 1Þ‘þ 8 ¼ 2nþ 2n1ðTÞ þ n2ðTÞ
þUDðTÞ, and so we have equality in Inequality (2). We state this formally as follows.

Observation 8 For all integers D� 3 and ‘� 1, the tree TD;‘ satisfies equality in
Inequality (2).

By Observation 8, the upper bound in Theorem 5 is tight.

6 Proof of Theorem 6

In this section we give a proof of Theorem 6. Recall its statement.
Theorem 6. For D� 1, if T is a tree with maximum degree DðTÞ ¼ D, then

cprðTÞ�
5D� 4

8D� 4

� �
nþ 1

2
n1ðTÞ þ 1

4
n2ðTÞ � D� 2

4D� 2

� �
:

Proof Let T be a tree of order n with maximum degree D� 1. Let P ¼ fT1; . . .; Tpg
be an optimal subdivided star set in the tree T. Thus, Ti is a subdivided star SðK1;niÞ
where 2� ni �D� 1 for every i 2 ½p�. The tree Ti has order jV ðTiÞj ¼ 2ni þ 1, and
so

UDðTÞ ¼
Xp
i¼1

ðni � 1Þ ¼
Xp
i¼1

ni � 1

2ni þ 1

� �
jV ðTiÞj � D� 2

2D� 1

� �Xp
i¼1

jV ðTiÞj: ð4Þ

Since P is a subdivided star set, the trees in the set P are vertex disjoint, implying
that

Xp
i¼1

jV ðTiÞj� n: ð5Þ

We consider three cases.

Case 1.
Xp
i¼1

jV ðTiÞj � n� 2. In this case, by Inequalities (1) and (4), we have
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4cprðTÞ� 2nþ 2n1ðTÞ þ n2ðTÞ þ UDðTÞ

� 2nþ 2n1ðTÞ þ n2ðTÞ þ D� 2

2D� 1

� �
ðn� 2Þ

� 5D� 4

2D� 1

� �
nþ 2n1ðTÞ þ n2ðTÞ � 2

D� 2

2D� 1

� �
:

Case 2.
Xp
i¼1

jV ðTiÞj ¼ n� 1. In this case, we have

n ¼ 1þ
Xp
i¼1

ð2ni þ 1Þ ¼ 1þ 3pþ 2
Xp
i¼1

ðni � 1Þ ¼ 2UDðTÞ þ 3pþ 1; ð6Þ

and

n1ðTÞ�
Xp
i¼1

ni ¼
Xp
i¼1

ððni � 1Þ þ 1Þ ¼ UDðTÞ þ p: ð7Þ

Let S be the set of support vertices that belong to the subdivided stars in our optimal
subdivided star set P of T. In this case, the set S can be extended to a PD-set S	 of T
by adding to each vertex of S one of its neighbors in such a way as to maximize the
pairs of vertices of S that form partners, implying that

cprðTÞ� jS	j � 2jSj ¼
Xp
i¼1

2ni ¼ 2
Xp
i¼1

ððni � 1Þ þ 1Þ ¼ 2UDðTÞ þ 2p: ð8Þ

We note that if the set S of support vertices is not an independent set, then we can pair
t support vertices as partners in the PD-set S	 for some t� 1, implying that
cprðTÞ� jS	j � 2ðjSj � tÞ, and we can improve the inequality in Equality (8). Indeed,
the more pairs of support vertices in S that can be paired together as partners in S	,
the smaller the resulting set S	.

We consider here the case when cprðTÞ is as large as possible, namely when the set
S is an independent set, and so jS	j ¼ 2jSj (the case when jS	j\2jSj is simpler to
handle). In this case, we note that since at most p edges of T are incident with support
vertices of T that belong to one of the subdivided stars in our optimal subdivided star
set P, we have

n2ðTÞ�
Xp
i¼1

ni

 !
� p ¼ ðUDðTÞ þ pÞ � p ¼ UDðTÞ: ð9Þ

Hence, by Inequalities (6), (7), (8), and (9), we have

4cprðTÞ� 8UDðTÞ þ 8p� 2nþ 2n1ðTÞ þ n2ðTÞ þ UDðTÞ � 2: ð10Þ
By Inequalities (4) and (10), we have
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4cprðTÞ� 2nþ 2n1ðTÞ þ n2ðTÞ þ UDðTÞ � 2

� 2nþ 2n1ðTÞ þ n2ðTÞ þ D� 2

2D� 1

� �
ðn� 1Þ � 2

� 5D� 4

2D� 1

� �
nþ 2n1ðTÞ þ n2ðTÞ � 5D� 4

2D� 1

� �

\
5D� 4

2D� 1

� �
nþ 2n1ðTÞ þ n2ðTÞ � 2

D� 2

2D� 1

� �
:

Case 3.
Xp
i¼1

jV ðTiÞj ¼ n. In this case, we have

n ¼
Xp
i¼1

ð2ni þ 1Þ ¼ 2
Xp
i¼1

ðni � 1Þ þ 3p ¼ 2UDðTÞ þ 3p: ð11Þ

Inequalities (7) and (8) hold as before. Analogously as in Case 2, we consider here
the case when cprðTÞ is as large as possible, namely when the set S is an independent
set, and so jS	j ¼ 2jSj (the case when jS	j\2jSj is simpler to handle). In this case,
we note that since at most p� 1 edges of T are incident with support vertices of T
that belong to one of the subdivided stars in our optimal subdivided star set P, we
have

n2ðTÞ�
Xp
i¼1

ni

 !
� ðp� 1Þ ¼ ðUDðTÞ þ pÞ � ðp� 1Þ ¼ UDðTÞ þ 1: ð12Þ

Hence, by Inequalities (7), (8), (11), and (12), we have

4cprðTÞ� 8UDðTÞ þ 8p� 2nþ 2n1ðTÞ þ n2ðTÞ þ UDðTÞ � 1: ð13Þ
By Inequalities (4) and (13), we have

4cprðTÞ� 2nþ 2n1ðTÞ þ n2ðTÞ þ UDðTÞ � 1

� 2nþ 2n1ðTÞ þ n2ðTÞ þ D� 2

2D� 1

� �
n� 1

� 5D� 4

2D� 1

� �
nþ 2n1ðTÞ þ n2ðTÞ � 1

\
5D� 4

2D� 1

� �
nþ 2n1ðTÞ þ n2ðTÞ � 2

D� 2

2D� 1

� �
:

In all three cases, the desired Inequality (3) in the statement of the theorem holds.
This completes the proof of Theorem 6. h

For D� 3 and ‘� 1, let TD;‘ be the tree constructed in Sect. 5. If T ¼ TD;1 for
some D� 3, then T ¼ SðK1;DÞ, and, by our earlier observations, we have
cprðTÞ ¼ 2D, n ¼ nðTÞ ¼ 2Dþ 1, and n1ðTÞ ¼ n2ðTÞ ¼ D, and we have equality in
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Inequality (2). If T ¼ TD;‘ for some D� 3 and ‘� 2, then, by our earlier observa-
tions, we have cprðTÞ ¼ 2ðD� 1Þ‘þ 2, n ¼ nðTÞ ¼ 2D‘� ‘þ 2,
n1ðTÞ ¼ D‘� ‘þ 1, and n2ðTÞ ¼ D‘� 2‘þ 2, and once again we have equality in
Inequality (2). We state this formally as follows.

Observation 9 For D� 3 and ‘� 1, the tree TD;‘ satisfies equality in Inequality (3).

By Observation 9, the upper bound in Theorem 6 is tight. As a further application
of Theorem 5, we have the following upper bound on the paired domination of a tree.

Theorem 10 For D� 1, if T is a tree of ordern with maximum degree DðTÞ ¼ D,
then

cprðTÞ�
1

2
nþ 3

4
n1ðTÞ þ 1

4
n2ðTÞ: ð14Þ

Proof Let T be a tree of order n with maximum degree D� 1. We follow the
notation employed in the proof of Theorem 6. Since P is a subdivided star set, the
trees in the set P are vertex disjoint and the leaves of each tree in P are leaves in the
tree T, implying that

UDðTÞ ¼
Xp
i¼1

ðni � 1Þ ¼
Xp
i¼1

ni

 !
� p� n1ðTÞ � p: ð15Þ

By Inequalities (2), (4) and (15), we have

4cprðTÞ� 2nþ 2n1ðTÞ þ n2ðTÞ þ UDðTÞ
� 2nþ 2n1ðTÞ þ n2ðTÞ þ ðn1ðTÞ � pÞ
� 2nþ 3n1ðTÞ þ n2ðTÞ;

which yields the desired Inequality (14) in the statement of the theorem. h
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