Multiple DP-coloring of planar graphs without 3-cycles and normally adjacent 4-cycles

Huan Zhou * Xuding Zhu ${ }^{\dagger}$

January 31, 2022

Abstract

The concept of DP-coloring of a graph is a generalization of list coloring introduced by Dvořák and Postle in 2015. Multiple DP-coloring of graphs, as a generalization of multiple list coloring, was first studied by Bernshteyn, Kostochka and Zhu in 2019. This paper proves that planar graphs without 3 -cycles and normally adjacent 4 -cycles are $(7 m, 2 m)$-DP-colorable for every integer m. As a consequence, the strong fractional choice number of any planar graph without 3 -cycles and normally adjacent 4 -cycles is at most $7 / 2$.

Key words and phrases: DP-coloring, Fractional coloring, Strong fractional choice number, Planar graph, Cycles.

1 Introduction

A b-fold coloring of a graph G is a mapping φ which assigns to each vertex v a set $\varphi(v)$ of b colors so that adjacent vertices receive disjoint color sets. An (a, b)-coloring of G is a b-fold coloring φ of G such that $\varphi(v) \subseteq\{1,2, \cdots, a\}$ for each vertex v. The fractional chromatic number of G is

$$
\chi_{f}(G)=\inf \left\{\frac{a}{b}: G \text { is }(a, b) \text {-colorable }\right\} .
$$

An a-list assignment of G is a mapping L which assigns to each vertex v a set $L(v)$ of a permissible colors. A b-fold L-coloring of G is a b-fold coloring φ of G such that $\varphi(v) \subseteq L(v)$ for each vertex v. We say G is (a, b)-choosable if for any a-list assignment L of G, there is a b-fold L-coloring of G. The choice number of G is

$$
\operatorname{ch}(G)=\min \{a: G \text { is }(a, 1) \text {-choosable. }\} .
$$

[^0]The fractional choice number of G is

$$
\operatorname{ch}_{f}(G)=\inf \{r: G \text { is }(a, b) \text {-choosable for some positive integers } a, b \text { with } a / b=r\} .
$$

The strong fractional choice number of G is

$$
c h_{f}^{*}(G)=\inf \{r: G \text { is }(a, b) \text {-choosable for all positive integers } a, b \text { with } a / b \geq r\} .
$$

It was proved by Alon, Tuza and Voigt [1] that for any finite graph $G, \chi_{f}(G)=c h_{f}(G)$ and moreover the infimum in the definition of $c h_{f}(G)$ is attained and hence can be replaced by minimum. So the fractional choice number $c h_{f}(G)$ of a graph is not a new invariant. On the other hand, the concept of strong fractional choice number, introduced in [11], was intended to be a refinement of $c h(G)$. It follows from the definition that $c h_{f}^{*}(G) \geq \operatorname{ch}(G)-1$. However, it remains an open question whether $c h_{f}^{*}(G) \leq \operatorname{ch}(G)$.

For a family \mathcal{G} of graphs, let
$\operatorname{ch}(\mathcal{G})=\max \{\operatorname{ch}(G): G \in \mathcal{G}\}, \operatorname{ch}_{f}(\mathcal{G})=\max \left\{\operatorname{ch}_{f}(G): G \in \mathcal{G}\right\}, c h_{f}^{*}(\mathcal{G})=\sup \left\{c h_{f}^{*}(G): G \in \mathcal{G}\right\}$.
We denote by \mathcal{P} the family of planar graphs, and by \mathcal{P}_{Δ} the family of triangle free planar graphs. It is known that $\operatorname{ch}(\mathcal{P})=5, \operatorname{ch}\left(\mathcal{P}_{\Delta}\right)=4, \operatorname{ch} f(\mathcal{P})=4$ and $\operatorname{ch}_{f}\left(\mathcal{P}_{\Delta}\right)=3$. It is easy to see that $c h_{f}^{*}(\mathcal{P}) \leq 5$ and $c h_{f}^{*}\left(\mathcal{P}_{\Delta}\right) \leq 4$, and these are the best known upper bounds for $c h_{f}^{*}(\mathcal{P})$ and $c h_{f}^{*}\left(\mathcal{P}_{\Delta}\right)$, respectively. The best known lower bounds for $c h_{f}^{*}(\mathcal{P})$ and $c h_{f}^{*}\left(\mathcal{P}_{\Delta}\right)$ are obtained in [10] and [8] respectively:

$$
c h_{f}^{*}(\mathcal{P}) \geq 4+1 / 3, c h_{f}^{*}\left(\mathcal{P}_{\Delta}\right) \geq 3+\frac{1}{17}
$$

It would be interesting to find better upper or lower bounds for $c h_{f}^{*}(\mathcal{P})$ and $c h_{f}^{*}\left(\mathcal{P}_{\Delta}\right)$. In particular, the following questions remain open:

Question 1.1. Is it true that every planar graph is (9,2)-choosable?
Question 1.2. Is it true that every triangle free planar graph is $(7,2)$-choosable?
It follows from the Four Color Theorem that every planar graph is $(4 m, m)$-colorable for any positive integer m. However, the problem of proving every planar graph is $(9,2)$ colorable without using the Four Color Theorem remained open for a long time, before it was done by Cranston and Rabern in 2018 [3]. As a weaker version of Question 1.1, it was proved by Han, Kierstead and Zhu [7] that every planar graph G is 1-defective (9, 2)-paintable (and hence 1-defective (9,2)-choosable), where a 1-defective coloring is a coloring in which each vertex v has at most one neighbour colored the same color as v.

This paper studies a variation of Question 1.2 . We consider a more restrictive family of graphs: the family of planar graphs without 3 -cycle and without normally adjacent 4cycles, where two 4 -cycles are said to be normally adjacent if they share exactly one edge. We prove a stronger conclusion for this family of graphs, i.e., all graphs in this family are ($7 m, 2 m$)-DP-colorable for all positive integer m.

The concept of DP-coloring is a generalization of list coloring introduced by Dvořák and Postle in [4]. For $v \in V(G), N_{G}(v)$ is the set of neighbours of v and $N_{G}[v]=N_{G}(v) \cup\{v\}$.

Definition 1.3. Let G be a graph. A cover of G is a pair (L, H), where H is a graph and $L: V(G) \rightarrow \operatorname{Pow}(V(H))$ is a function, with the following properties:

- The sets $\{L(u): u \in V(G)\}$ form a partition of $V(H)$.
- If $u, v \in V(G)$ and $L(v) \cap N_{H}(L(u)) \neq \emptyset$, then $v \in N_{G}[u]$.
- Each of the graphs $H[L(u)], u \in V(G)$, is complete.
- If $u v \in E(G)$, then $E_{H}(L(u), L(v))$ is a matching (not necessarily perfect and possibly empty).

We denote by \mathbb{N} the set of non-negative integers. For a set X, denote by \mathbb{N}^{X} the set of mappings $f: X \rightarrow \mathbb{N}$. For a graph G, we write \mathbb{N}^{G} for $\mathbb{N}^{V(G)}$.

For $f, g \in \mathbb{N}^{G}$, we write $g \leq f$ if $g(v) \leq f(v)$ for each vertex v of G, and let $(f+g) \in \mathbb{N}^{G}$ be defined as $(f+g)(v)=f(v)+g(v)$ for each vertex v of G. If G^{\prime} is a subgraph of G, $f \in \mathbb{N}^{G}, g \in \mathbb{N}^{G^{\prime}}$, we write $g \leq f$ if $g(v) \leq f(v)$ for each vertex v of G^{\prime}.

For $f \in \mathbb{N}^{G}$, an f-cover of G is a cover (L, H) of G with $|L(v)|=f(v)$ for each vertex v.
Definition 1.4. Let G be a graph and let (L, H) be a cover of G. An (L, H)-coloring of G is an independent set I of size $|V(G)|$. If for every f-cover (L, H) of G, there is an (L, H)-coloring of G, then we say G is DP- f-colorable. We say G is DP- k-colorable if G is DP-f-colorable for the constant mapping f with $f(v)=k$ for all v. The DP-chromatic number of G is defined as

$$
\chi_{D P}(G)=\min \{k: G \text { is DP- } k \text {-colorable }\} .
$$

List coloring of a graph G is a special case of a DP-coloring of G : assume L^{\prime} is an f-list assignment of G, which assigns to each vertex v a set $L^{\prime}(v)$ of $f(v)$ permissible colors. Let (L, H) be the f-cover graph of G defined as follows:

- For each vertex v of $G, L(v)=\{v\} \times L^{\prime}(v)$.
- For each edge $u v$ of G, connect (v, c) and $\left(u, c^{\prime}\right)$ by an edge in H if $c=c^{\prime}$.

Then a mapping φ is an L^{\prime}-coloring of G if and only if the set $\{(v, \varphi(v)): v \in V(G)\}$ is an independent set of H. Therefore, for each graph G,

$$
\operatorname{ch}(G) \leq \chi_{D P}(G)
$$

and it is known that the difference $\chi_{D P}(G)-c h(G)$ can be arbitrarily large.
Multiple DP-coloring of graphs was first studied in [2]. Given a cover $\mathcal{H}=(L, H)$ of a graph G, we refer to the edges of H connecting distinct parts of the partition $\{L(v)$: $v \in V(G)\}$ as cross-edges. A subset $S \subset V(H)$ is quasi-independent if $H[S]$ contains no cross-edges.

Definition 1.5. Assume $\mathcal{H}=(L, H)$ is a cover of G and $g \in \mathbb{N}^{G}$. An (\mathcal{H}, g)-coloring is a quasi-independent set $S \subset V(H)$ such that $|S \cap L(v)|=g(v)$ for each $v \in V(G)$. We say G is (\mathcal{H}, g)-colorable if there exists an (\mathcal{H}, g)-coloring of G. We say graph G is $(f, g)-D P-$ colorable if for any f-cover \mathcal{H} of G, G is (\mathcal{H}, g)-colorable. If $f, g \in \mathbb{N}^{G}$ are constant maps with $g(v)=b$ and $f(v)=a$ for all $v \in V(G)$, then (\mathcal{H}, g)-colorable is called (\mathcal{H}, b)-colorable, and (f, g)-DP-colorable is called (a, b)-DP-colorable.

Similarly, we can show that (a, b)-DP-colorable implies (a, b)-choosable.
Definition 1.6. The fractional DP-chromatic number, $\chi_{D P}^{*}$, of G is defined in [2] as

$$
\chi_{D P}^{*}(G)=\inf \{r: G \text { is }(a, b) \text {-DP-colorable for some } a / b=r\} .
$$

We define the strong fractional DP-chromatic number as

$$
\chi_{D P}^{* *}(G)=\inf \{r: G \text { is }(a, b) \text {-DP-colorable for every } a / b \geq r\}
$$

Observation 1.7. As (a, b)-DP-colorable implies (a, b)-choosable, we have

$$
c h_{f}(G) \leq \chi_{D P}^{*}(G), c h_{f}^{*}(G) \leq \chi_{D P}^{* *}(G)
$$

It follows from the definition that

$$
\chi_{D P}^{*}(G) \leq \chi_{D P}(G) \text { and } \chi_{D P}^{* *}(G) \geq \chi_{D P}(G)-1
$$

It was proved in [2] that there are large girth graphs G with $\chi(G)=d$ and $\chi_{D P}^{*}(G) \leq d / \log d$. As $\chi_{D P}(G) \geq \operatorname{ch}(G) \geq \chi(G)$, the difference $\chi_{D P}^{* *}(G)-\chi_{D P}^{*}(G)$ can be arbitrarily large.

The following is the main result of this paper.
Theorem 1.8. Let G be a planar graph without C_{3} and normally adjacent C_{4}. Then G is $(7 m, 2 m)$-DP-colorable for every integer m.

As $(7 m, 2 m)$-DP-colorable implies $(7 m, 2 m)$-choosable, we have the following corollary.
Corollary 1.9. If G is a planar graph without C_{3} and normally adjacent C_{4}, then ch $_{f}^{*}(G) \leq$ 7/2.

The following notations will be used in the remainder of this paper. Assume G is a graph. A k-vertex (k^{+}-vertex, k^{-}-vertex, respectively) is a vertex of degree k (at least k, at most k, respectively). A k-face, k^{-}-face or a k^{+}-face is a face of degree k, at most k or at least k, respectively. The notions of k-neighbor, k^{+}-neighbor, k^{-}-neighbor are defined similarly. Two faces are intersecting (respectively, adjacent or normally adjacent) if they share at least one vertex (respectively, at least one edge or exactly one edge). For a face $f \in F$, if the vertices on f in a cyclic order are $v_{1}, v_{2}, \ldots, v_{k}$, then we write $f=\left[v_{1} v_{2} \ldots v_{k}\right]$, and call f a $\left(d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{k}\right)\right)$-face.

We use the following conventions in this paper:

1. For any f-cover $\mathcal{H}=(L, H)$ of a graph G, for any edge $e=u v$ of G with $f(u) \leq f(v)$, we assume that the matching between $L(u)$ and $L(v)$ has $f(u)$ edges, and hence saturates $L(u)$, because adding edges to the matching only makes it more difficult to color the graph.
2. If the vertices of a graph G is labelled as $v_{1}, v_{2}, \ldots, v_{n}$, then a mapping $f \in \mathbb{N}^{G}$ will be given as an integer sequence $\left(f\left(v_{1}\right), \ldots, f\left(v_{n}\right)\right)$.
3. For an f-cover $\mathcal{H}=(L, H)$ of a graph G, an induced subgraph H^{\prime} of H defines an f^{\prime}-cover $\mathcal{H}^{\prime}=\left(L^{\prime}, H^{\prime}\right)$ of G, where for each vertex $v, L^{\prime}(v)=L(v) \cap V\left(H^{\prime}\right)$ and $f^{\prime}(v)=\left|L^{\prime}(v)\right|$.

2 Strongly extendable coloring of a subset

Assume G is a graph, $f, g \in \mathbb{N}^{G}, X$ is a subset of $V(G), \mathcal{H}=(L, H)$ is an f-cover of G. By considering restriction of these mappings, we shall treat \mathcal{H} as an f-cover of $G[X]$. Hence we can talk about (\mathcal{H}, g)-coloring of $G[X]$.

Assume G is a graph and X is a vertex cut-set. If G_{1}, G_{2} are induced subgraphs of G such that $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=X$, then we say G_{1}, G_{2} are the components of G separated by X.

In an inductive proof, if every proper coloring of X can be extended to a proper coloring of G_{2}, then we can first color G_{1}, and then extend it to G_{2} to obtain a proper coloring of the whole graph. In our proofs below, usually G_{2} do not have the property that every (\mathcal{H}, g)-coloring of $G[X]$ can be extended to an (\mathcal{H}, g)-coloring of G_{2}. Nevertheless, every (\mathcal{H}, g)-coloring φ of $G[X]$ satisfying the property that $\varphi(v) \supseteq h(v)$ for some pre-chosen subsets $h(v)$ can be extended to an (\mathcal{H}, g)-coloring of G_{2}. In many cases, this property is enough for the induction to be carried out. This technique is frequently used in the proofs below. We first give a precise definition of the desired property.

Assume φ is an (\mathcal{H}, g)-coloring of $G[X]$ and φ^{\prime} is an (\mathcal{H}, g)-coloring of G. If $\varphi^{\prime}(v)=\varphi(v)$ for each vertex $v \in X$, then we say φ^{\prime} is an extension of φ. We say φ is (\mathcal{H}, g)-extendable if there exists an (\mathcal{H}, g)-coloring of G which is an extension of φ to G.

Definition 2.1. Assume G is a graph, $f, h, h^{\prime} \in \mathbb{N}^{G}, h \leq h^{\prime} \leq f, \mathcal{H}=(L, H)$ is an f-cover of G. Assume φ is an (\mathcal{H}, h)-coloring of G. An h^{\prime}-augmentation of φ is an $\left(\mathcal{H}, h^{\prime}\right)$-coloring φ^{\prime} of G such that $\varphi(v) \subseteq \varphi^{\prime}(v)$ for each vertex $v \in V(G)$.

Definition 2.2. Assume G is a graph, X is a subset of $V(G), f, g, h \in \mathbb{N}^{G}$ and $h \leq g \leq f$. Assume $\mathcal{H}=(L, H)$ is an f-cover of G. An (\mathcal{H}, h)-coloring φ of $G[X]$ is called strongly (\mathcal{H}, g)-extendable if

- φ has an g-augmentation.
- Every g-augmentation of φ is (\mathcal{H}, g)-extendable.

We say (f, h) is strongly (f, g) extendable from X to G, written as

$$
(f, h)_{X} \preceq(f, g)_{G},
$$

if for any f-cover $\mathcal{H}=(L, H)$ of G, there exists a strongly (\mathcal{H}, g)-extendable (\mathcal{H}, h)-coloring of $G[X]$.

The following lemma illustrates how the concept of strongly reducible coloring of an induced subgraph can be used to prove the (f, g)-DP-colorability of a graph.
Lemma 2.3. Assume G is a graph, X is a cut-set of G and G_{1}, G_{2} are components of G separated by X. Assume $f, g, h \in \mathbb{N}^{G}$ and $h \leq g \leq f$. Let $f^{\prime}, g^{\prime} \in \mathbb{N}^{G}$ be defined as follows:

1. $f^{\prime}(v)=f(v)-\sum_{u \in N_{G}[v] \cap X} h(u)$ for $v \in V\left(G_{2}\right)$, and $f^{\prime}(v)=f(v)$ for $v \notin V\left(G_{2}\right)$.
2. $g^{\prime}(v)=g(v)-h(v)$ for $v \in X$, and $g^{\prime}(v)=g(v)$ for $v \notin X$.

If $(f, h)_{X} \preceq(f, g)_{G_{1}}$ and G_{2} is $\left(f^{\prime}, g^{\prime}\right)$-DP-colorable, then G is (f, g)-DP-colorable.
Proof. Let $\mathcal{H}=(L, H)$ be an f-cover of G. Since $(f, h)_{X} \preceq(f, g)_{G_{1}}$, there exists an (\mathcal{H}, h) coloring φ of $G[X]$, such that any g-augmentation φ^{\prime} of φ can be extended to an (\mathcal{H}, g) coloring of G_{1}.

Let $H^{\prime}=H-N_{H}\left[\cup_{v \in X} \varphi(v)\right]$. It is straightforward to verify that $\mathcal{H}^{\prime}=\left(L^{\prime}, H^{\prime}\right)$ is an f^{\prime}-cover of G_{2}. Since G_{2} is $\left(f^{\prime}, g^{\prime}\right)$-DP-colorable, there exists an $\left(\mathcal{H}^{\prime}, g^{\prime}\right)$-coloring ψ of G_{2}.

For $v \in X$, let $\psi^{\prime}(v)=\psi(v) \cup \varphi(v)$. Then ψ^{\prime}, as a coloring of $G[X]$, is a g-augmentation of φ, and hence can be extended to an (\mathcal{H}, g)-coloring of G_{1}, which we also denote by ψ^{\prime}. Then $\psi^{\prime \prime}$ defined as

$$
\psi^{\prime \prime}(v)= \begin{cases}\psi^{\prime}(v), & \text { if } v \in V\left(G_{1}\right), \\ \psi(v), & \text { if } v \notin V\left(G_{1}\right)\end{cases}
$$

is an (\mathcal{H}, g)-coloring of G.

Observe that as φ is an (\mathcal{H}, h)-coloring of $G[X]$, a g-augmentation of φ is an (\mathcal{H}, g) coloring of $G[X]$.

In the formula $(f, h)_{X} \preceq(f, g)_{G}$, if h or g is a constant function, then we replace it by a constant. For example, we write $(f, b)_{X} \preceq(f, a)_{G}$ for $(f, h)_{X} \preceq(f, g)_{G}$ where $h(v)=b$ for $v \in X$ and $g(v)=a$ for $v \in V(G)$.

Note that in the statement $(f, h)_{X} \preceq(f, g)_{G}$, the values of $h(v)$ for $v \notin X$ are irrelevant.
Given a partial (\mathcal{H}, g)-coloring φ of G, for each vertex $v, \varphi(v)$ is a subset of $L(v)$, and is treated as a subset of $V(H)$. For example, $H^{\prime}=H-N_{H}(\varphi(v))$ is a subgraph of H and hence defines a cover $\mathcal{H}^{\prime}=\left(L^{\prime}, H^{\prime}\right)$ of G.
Lemma 2.4. Assume G is a graph, X is a subset of $V(G), f, g, h, h^{\prime} \in \mathbb{N}^{G}$ and $h \leq h^{\prime} \leq$ $g \leq f$. Then

$$
(f, h)_{X} \preceq(f, g)_{G} \Rightarrow\left(f, h^{\prime}\right)_{X} \preceq(f, g)_{G} .
$$

If X^{\prime} is a subset of X, then

$$
(f, h)_{X} \preceq(f, g)_{G} \Rightarrow(f, h)_{X^{\prime}} \preceq(f, g)_{G} .
$$

Proof. Assume $\mathcal{H}=(L, H)$ is an f-cover of G and φ is a strongly (\mathcal{H}, g)-extendable (\mathcal{H}, h) coloring of $G[X]$. Since φ has a g-augmentation, there is a h^{\prime}-augmentation φ^{\prime} of φ. As any g-augmentation of φ^{\prime} extends to a g-augmentation of φ, we conclude that every g augmentation of φ^{\prime} is (\mathcal{H}, g)-extendable. Hence $\left(f, h^{\prime}\right)_{X} \preceq(f, g)_{G}$.

The second half of the lemma is proved similarly and is omitted.

Note that for any $h \leq g \leq f \in \mathbb{N}^{G}, X \subseteq V(G)$,

$$
(f, h)_{X} \preceq(f, g)_{G}
$$

implies that G is (f, g)-DP-colorable, and

$$
(f, g)_{X} \preceq(f, g)_{G}
$$

is equivalent to say that G is (f, g)-DP-colorable.
Lemma 2.5. Assume G is a graph, X is a cut-set of G and G_{1}, G_{2} are components of G separated by X. Assume $X_{i} \subseteq V\left(G_{i}\right), X \subseteq X_{i}, f, g, h_{1}, h_{2} \in \mathbb{N}^{G}$, and for $i=1,2, h_{i}(v)=0$ for $v \notin X_{i}$. If $h_{1}+h_{2} \leq g$, then

$$
\left(f, h_{1}\right)_{X_{1}} \preceq(f, g)_{G_{1}} \text { and }\left(f, h_{2}\right)_{X_{2}} \preceq(f, g)_{G_{2}} \Rightarrow\left(f, h_{1}+h_{2}\right)_{X_{1} \cup X_{2}} \preceq(f, g)_{G} .
$$

Proof. Assume $\mathcal{H}=(L, H)$ is an f-cover of G and for $i=1,2, \varphi_{i}$ is an $\left(\mathcal{H}, h_{i}\right)$-coloring of $G\left[X_{i}\right]$ which is strongly (\mathcal{H}, g)-extendable to G_{i}. Let φ^{\prime} be the multiple coloring of $G\left[X_{1} \cup X_{2}\right]$ defined as follows:

$$
\varphi^{\prime}(v)= \begin{cases}\varphi_{1}(v) \cup \varphi_{2}(v), & \text { if } v \in X \\ \varphi_{i}(v), & \text { if } v \in X_{i}-X_{3-i}\end{cases}
$$

Note that $\left|\varphi^{\prime}(v)\right| \leq\left(h_{1}+h_{2}\right)(v)$ for $v \in X$. By arbitrarily adding some colors from $L(v)$ to $\varphi^{\prime}(v)$ if needed, we may assume that $\left|\varphi^{\prime}(v)\right|=\left(h_{1}+h_{2}\right)(v)$ for $v \in X$. Then φ^{\prime} is an $\left(\mathcal{H}, h^{\prime}\right)$-coloring of $G\left[X_{1} \cup X_{2}\right]$. For any g-augmentation of φ^{\prime}, its restriction to X_{i}, is a g-augmentation of φ_{i}, and hence can be extended to an (\mathcal{H}, g)-coloring φ_{i}^{\prime} of G_{i}. Note that φ_{1}^{\prime} and φ_{2}^{\prime} agree on the intersection $V\left(G_{1}\right) \cap V\left(G_{2}\right)=X$. Hence the union $\varphi_{1}^{\prime} \cup \varphi_{2}^{\prime}$ is an (\mathcal{H}, g)-coloring of G. Therefore

$$
\left(f, h_{1}+h_{2}\right)_{X_{1} \cup X_{2}} \preceq(f, g)_{G} .
$$

Lemma 2.6. Assume G is a 3-path $v_{1} v_{2} v_{3}, X=\left\{v_{1}, v_{3}\right\}, f, g, h \in \mathbb{N}^{G}$, with $h=(p, 0, p) \leq$ $g \leq f$. If

$$
f\left(v_{1}\right)-f\left(v_{2}\right)+f\left(v_{3}\right) \geq p, f\left(v_{2}\right) \geq g\left(v_{1}\right)+g\left(v_{2}\right)+g\left(v_{3}\right)-p,
$$

then

$$
(f, h)_{X} \preceq(f, g)_{G} .
$$

Proof. We prove the lemma by induction on p. If $p=0$, then $f\left(v_{2}\right) \geq g\left(v_{1}\right)+g\left(v_{2}\right)+g\left(v_{3}\right)$ implies that any (\mathcal{H}, g)-coloring of X can be extended to an (\mathcal{H}, g)-coloring of G.

Assume $p>0$. Assume $\mathcal{H}=(L, H)$ is an f-cover of G. We consider two cases.
Case $1 f\left(v_{1}\right), f\left(v_{3}\right) \leq f\left(v_{2}\right)$.
Since $f\left(v_{1}\right)-f\left(v_{2}\right)+f\left(v_{3}\right) \geq h\left(v_{1}\right),\left|L\left(v_{2}\right) \cap N_{H}\left(L\left(v_{1}\right)\right) \cap N_{H}\left(L\left(v_{3}\right)\right)\right| \geq p$.
Let U be a p-subset of $L\left(v_{2}\right) \cap N_{H}\left(L\left(v_{1}\right)\right) \cap N_{H}\left(L\left(v_{3}\right)\right)$, and for $i=1,3$, let

$$
\varphi\left(v_{i}\right)=N_{H}(U) \cap L\left(v_{i}\right) .
$$

Then φ is an (\mathcal{H}, h)-coloring of $G[X]$.
If φ^{\prime} is a g-augmentation of φ, then

$$
\left|L\left(v_{2}\right)-\left(N_{H}\left(\varphi^{\prime}\left(v_{1}\right)\right) \cup \varphi^{\prime}\left(v_{3}\right)\right)\right| \geq f\left(v_{2}\right)-p-\left(g\left(v_{1}\right)-p\right)-\left(g\left(v_{3}\right)-p\right) \geq g\left(v_{2}\right)
$$

We can extend φ^{\prime} to an (\mathcal{H}, g)-coloring of G by letting $\varphi^{\prime}\left(v_{2}\right)$ be a $g\left(v_{2}\right)$-subset of $L\left(v_{2}\right)$ $\left(N_{H}\left(\varphi^{\prime}\left(v_{1}\right)\right) \cup \varphi^{\prime}\left(v_{3}\right)\right)$. So φ^{\prime} is (\mathcal{H}, g)-extendable.
Case $2 f\left(v_{1}\right)>f\left(v_{2}\right)$ or $f\left(v_{3}\right)>f\left(v_{2}\right)$.
By symmetry, we may assume that $f\left(v_{1}\right)-f\left(v_{2}\right)>0$. Let

$$
s=\min \left\{f\left(v_{1}\right)-f\left(v_{2}\right), p\right\} .
$$

Then there exists an s-element set S of $L\left(v_{1}\right)$ such that

$$
S \cap N_{H}\left(L\left(v_{2}\right)\right)=\emptyset .
$$

We modify the mappings f, g, h to $f^{\prime}, g^{\prime}, h^{\prime}$ as follows:

- $f^{\prime}\left(v_{i}\right)=f\left(v_{i}\right)-s$ for $i=1,2,3$.
- $h^{\prime}\left(v_{i}\right)=h\left(v_{i}\right)-s$ and $g^{\prime}\left(v_{i}\right)=g\left(v_{i}\right)-s$ for $i=1,3, g^{\prime}\left(v_{2}\right)=g\left(v_{2}\right)$.

It is straightforward to verify that $f^{\prime}, g^{\prime}, h^{\prime}$ satisfy the condition of the lemma. So by induction hypothesis, $\left(f^{\prime}, h^{\prime}\right)_{X} \preceq\left(f^{\prime}, g^{\prime}\right)_{G}$.

Let T be an arbitrary s-subset of $L\left(v_{3}\right)$, and let T^{\prime} be an s-subset of $L\left(v_{2}\right)$ which contains $N_{H}(T) \cap L\left(v_{2}\right)$. Let $H^{\prime}=H-\left(S \cup T \cup T^{\prime}\right)$. Then $\mathcal{H}^{\prime}=\left(L^{\prime}, H^{\prime}\right)$ is an f^{\prime}-cover of G. Let φ^{\prime} be a strongly X^{\prime} - $\left(\mathcal{H}^{\prime}, g^{\prime}\right)$-extendable $\left(\mathcal{H}^{\prime}, h^{\prime}\right)$-coloring of $G[X]$.

Let

$$
\varphi\left(v_{1}\right)=\varphi^{\prime}\left(v_{1}\right) \cup S, \varphi\left(v_{3}\right)=\varphi^{\prime}\left(v_{3}\right) \cup T
$$

We shall show that φ is a strongly (\mathcal{H}, g)-extendable (\mathcal{H}, h)-coloring of $G[X]$.
For any g-augmentation ψ of φ,

$$
\psi^{\prime}\left(v_{1}\right)=\psi\left(v_{1}\right)-S, \psi^{\prime}\left(v_{3}\right)=\psi\left(v_{3}\right)-T
$$

is a g^{\prime}-augmentation of φ^{\prime}. Hence ψ^{\prime} can be extended to an $\left(\mathcal{H}^{\prime}, g^{\prime}\right)$-coloring ψ^{*} of G. Then $\varphi^{*}=\psi^{*}$ except that $\varphi^{*}\left(v_{1}\right)=\psi\left(v_{1}\right) \cup S$ and $\varphi^{*}\left(v_{3}\right)=\psi^{*}\left(v_{3}\right) \cup T$ is an (\mathcal{H}, g)-coloring of G which is an extension of ψ.

The following corollary follows from Lemma 2.3 and Lemma 2.6 , and will be used frequently.

Corollary 2.7. Assume G is a graph and $v_{1} v_{2} v_{3}$ is an induced 3-path in $G, f, g \in \mathbb{N}^{G}$ and $k \leq g\left(v_{1}\right), g\left(v_{2}\right)$ is a positive integer such that $g \leq f$ and $f\left(v_{1}\right)+f\left(v_{3}\right)-f\left(v_{2}\right) \geq k$. Let $f^{\prime}, g^{\prime} \in \mathbb{N}^{G}$ be defined as follows:

1. $f^{\prime}\left(v_{2}\right)=f\left(v_{2}\right)-k, g^{\prime}\left(v_{i}\right)=g\left(v_{i}\right)-k$ for $i \in\{1,3\}$.
2. For $v \neq v_{2}, f^{\prime}(v)=f(v)-k\left|N_{G}[v] \cap\left\{v_{1}, v_{3}\right\}\right|$, and for $v \neq v_{1}, v_{3}, g^{\prime}(v)=g(v)$.

If G is $\left(f^{\prime}, g^{\prime}\right)$-DP-colorable, then G is (f, g)-colorable.
Corollary 2.8. Assume G is a 3-path $v_{1} v_{2} v_{3}$.

1. If $f=(3 m, 4 m, 3 m)$, then $(f, 2 m)_{\left\{v_{1}, v_{3}\right\}} \preceq(f, 2 m)_{G}$.
2. If $f=(3 m, 5 m, 3 m)$, then $(f, m)_{\left\{v_{1}, v_{3}\right\}} \preceq(f, 2 m)_{G}$.

$3(f, 2 m)$-DP-colorable graphs

Lemma 3.1. For $k \geq 1, G$ is a k-path $v_{1} v_{2} \ldots v_{k}, f \in \mathbb{N}^{G}$ such that

1. $f\left(v_{1}\right)=f\left(v_{k}\right)=3 m$ and $f\left(v_{i}\right)=3 m$ or $5 m$ for $i \in\{2,3, \ldots, k-1\}$,
2. $f\left(v_{i}\right)+f\left(v_{i+1}\right) \geq 8 m$ for $i \in[k-1]$.

Then

$$
(f, m)_{\left\{v_{1}, v_{k}\right\}} \preceq(f, 2 m)_{G} .
$$

In particular, G is $(f, 2 m)$-DP-colorable.
Proof. We prove this lemma by induction on k. If $k=1$, then the lemma is obviously true. Assume $k \geq 2$ and the lemma holds for shorter paths. Since $f\left(v_{1}\right)+f\left(v_{2}\right) \geq 8 m$ and $f\left(v_{1}\right)=f\left(v_{k}\right)=3 m$, we know that $k \geq 3$. If $k=3$, then this is Corollary 2.8. Assume $k \geq 4$.

If $f\left(v_{i}\right)=3 m$ for some $3 \leq i \leq k-2$, then let G_{1} be the path $v_{1} \ldots v_{i}$ and G_{2} be the path $v_{i} \ldots v_{k}$. By induction hypothesis,

$$
(f, m)_{\left\{v_{1}, v_{i}\right\}} \preceq(f, 2 m)_{G_{1}} \text {, and }(f, m)_{\left\{v_{i}, v_{k}\right\}} \preceq(f, 2 m)_{G_{2}} .
$$

By letting $X=\left\{v_{1}, v_{i}, v_{k}\right\}$ and $h\left(v_{1}\right)=h\left(v_{k}\right)=m$ and $h\left(v_{i}\right)=2 m$, it follows from Lemma 2.5 that $(f, h)_{X} \preceq(f, 2 m)_{G}$, which is equivalent to $(f, m)_{\left\{v_{1}, v_{k}\right\}} \preceq(f, 2 m)_{G}$.

Assume $f\left(v_{i}\right)=5 m$ for $i=2, \ldots, k-1$ and $k \geq 4$. In this case, we show a stronger result: for $h\left(v_{1}\right)=m$ and $h\left(v_{k}\right)=0,(f, h)_{\left\{v_{1}, v_{k}\right\}} \preceq(f, 2 m)_{G}$.

Assume $\mathcal{H}=(L, H)$ is an f-cover of G. We need to show that there exists an m-subset S of $L\left(v_{1}\right)$ such that for any $2 m$-subset S^{\prime} of $L\left(v_{1}\right)$ containing S, and any $2 m$-subset T of $L\left(v_{k}\right)$, there exists an $(\mathcal{H}, 2 m)$-coloring ψ of G such that $\psi\left(v_{1}\right)=S^{\prime}$ and $\psi\left(v_{k}\right)=T$.

Let \mathcal{H}^{\prime} be the restriction of \mathcal{H} to $G-v_{k}$, except that $L^{\prime}\left(v_{k-1}\right)=L\left(v_{k-1}\right)-N_{H}(T)$. Let f^{\prime} be the restriction of f to $G-v_{k}$, except that $f^{\prime}\left(v_{k-1}\right)=3 m$. Then \mathcal{H}^{\prime} is an f^{\prime}-cover of $G-v_{k}$. By induction hypothesis, $\left(f^{\prime}, m\right)_{\left\{v_{1}, v_{k-1}\right\}} \preceq\left(f^{\prime}, 2 m\right)_{G-v_{k}}$. Hence there exists an m-subset S of $L\left(v_{1}\right)$ such that such that for any $2 m$-subset S^{\prime} of $L\left(v_{1}\right)$ containing S, there exists an $\left(\mathcal{H}^{\prime}, 2 m\right)$-coloring ψ of $G-v_{k}$. Now ψ extends to an $(\mathcal{H}, 2 m)$-coloring ψ^{\prime} of G with $\psi^{\prime}\left(v_{k}\right)=T$.

Lemma 3.2. Assume G is a cycle $v_{1} v_{2} \ldots v_{k} v_{1}$ such that $k \geq 4$,

1. $f\left(v_{i}\right)=3 m$ or $5 m$ for $i \in[k]$,
2. $f\left(v_{i}\right)+f\left(v_{i+1}\right) \geq 8 m$ for $i \in[k]$.

Then G is $(f, 2 m)$-DP-colorable.
Proof. If there are two vertices v_{i} and v_{j} with $f\left(v_{i}\right)=f\left(v_{j}\right)=3 m$, then let $P_{1}=v_{i} v_{i+1} \ldots v_{j}$ and $P_{2}=v_{j} v_{j+1} \ldots v_{i}$ be the two paths of G connecting v_{i} and v_{j}. By Lemma 3.1,

$$
(f, m)_{\left\{v_{i}, v_{j}\right\}} \preceq(f, 2 m)_{P_{1}} \text {, and }(f, m)_{\left\{v_{i}, v_{j}\right\}} \preceq(f, 2 m)_{P_{2}} .
$$

It follows from Lemma 2.4 that $(f, 2 m)_{\left\{v_{i}, v_{j}\right\}} \preceq(f, 2 m)_{G}$. So G is $(f, 2 m)$-DP-colorable.
Otherwise, we may assume that $f\left(v_{i}\right)=5 m$ for $i=2,3, \ldots, k$. Let $f^{\prime}=f$ except that $f^{\prime}\left(v_{1}\right)=f^{\prime}\left(v_{3}\right)=3 m$. Then f^{\prime} satisfies the condition of the lemma, and by the previous paragraph, G is $\left(f^{\prime}, 2 m\right)$-DP-colorable, which implies that G is $(f, 2 m)$-DP-colorable.

Lemma 3.3. Assume $G=K_{1,3}$ is star with v_{4} be the center and $\left\{v_{1}, v_{2}, v_{3}\right\}$ be the three leaves. Then for $f=(3 m, 3 m, 3 m, 5 m), G$ is $(f, 2 m)$-DP-colorable.

Proof. Apply Lemma 2.3 to (f, g) and $\left(v_{1}, v_{4}, v_{2}\right)$, it suffices to show that G is $\left(f_{1}, g_{1}\right)$-DPcolorable, where $f_{1}=(2 m, 2 m, 3 m, 4 m), g_{1}=(m, m, 2 m, 2 m)$.

Apply Lemma 2.3 to $\left(f_{1}, g_{1}\right)$ and $\left(v_{2}, v_{4}, v_{3}\right)$, it suffices to show that G is $\left(f_{2}, g_{2}\right)$-DPcolorable, where $f_{2}=(2 m, m, 2 m, 3 m), g_{2}=(m, 0, m, 2 m)$. (Now v_{2} needs no more colors and can be deleted. However, to keep the labeling of the vertices, we do not delete it).

Apply Lemma 2.3 to $\left(f_{2}, g_{2}\right)$ and $\left(v_{1}, v_{4}, v_{3}\right)$, it suffices to show that G is $\left(f_{3}, g_{3}\right)$-DPcolorable, where $f_{3}=(m, m, m, 2 m), g_{3}=(0,0,0,2 m)$, and this is obviously true.

Lemma 3.4. Assume $G=K_{1,4}$ is a star with center v_{5} and four leaves $v_{1}, v_{2}, v_{3}, v_{4}$. Let $f=(2 m, 2 m, 2 m, 2 m, 4 m), g=(m, m, m, m, 2 m)$. Then G is $(f, g)-D P$-colorable.

Proof. Assume $\mathcal{H}=(L, H)$ is an f-cover of G. We construct an (\mathcal{H}, g)-coloring φ of G as follows:

Initially let $\varphi(v)=\emptyset$ for all $v \in V(G)$.
Assume $\left|N_{H}\left(L\left(v_{1}\right)\right) \cap N_{H}\left(L\left(v_{2}\right)\right) \cap L\left(v_{5}\right)\right|=a$. Let $k=\min \{a, m\}$, let $S_{1}\left(v_{5}\right)$ be a k-subset of $N_{H}\left(L\left(v_{1}\right)\right) \cap N_{H}\left(L\left(v_{2}\right)\right) \cap L\left(v_{5}\right)$.

For $i=1,2$, add $L\left(v_{i}\right) \cap N_{H}\left(S_{1}\left(v_{5}\right)\right)$ to $\varphi\left(v_{i}\right)$. Let

$$
H_{1}=H-N_{H}\left[\varphi\left(v_{1}\right) \cup \varphi\left(v_{2}\right)\right], \quad \text { and } \mathcal{H}_{1}=\left(L_{1}, H_{1}\right)
$$

Let $g_{1}\left(v_{i}\right)=g_{1}\left(v_{i}\right)-k$ for $i=1,2$, and $g_{1}\left(v_{j}\right)=g_{1}\left(v_{j}\right)$ for $j \neq 1,2$.
It suffices to show that there exists an $\left(\mathcal{H}_{1}, g_{1}\right)$-coloring of G. If $k=m$, then $g_{1}\left(v_{i}\right)=0$ for $i=1,2$. So we can delete v_{1}, v_{2}. As $\left|L_{1}\left(v_{5}\right)\right|=3 m$, it follows from Lemma 2.6 that there exists an $\left(\mathcal{H}_{1}, g_{1}\right)$-coloring of G.

Assume $k=a<m$. Then $N_{H}\left(L_{1}\left(v_{1}\right)\right) \cap N_{H}\left(L_{1}\left(v_{2}\right)\right)=\emptyset$. As $\left|L_{1}\left(v_{5}\right)\right|=4 m-k$ and $\left|L_{1}\left(v_{3}\right)\right|=\left|L_{1}\left(v_{4}\right)\right|=2 m$, we have

$$
\left.\left.\mid L_{1}\left(v_{5}\right) \cap N_{H_{1}}\left(L_{1}\left(v_{3}\right)\right)\right) \cap N_{H_{1}}\left(L_{1}\left(v_{4}\right)\right)\right) \mid \geq k .
$$

Let $S_{2}\left(v_{5}\right)$ be a k-subset of $\left.\left.L_{1}\left(v_{5}\right) \cap N_{H_{1}}\left(L_{1}\left(v_{3}\right)\right)\right) \cap N_{H_{1}}\left(L_{1}\left(v_{4}\right)\right)\right)$. For $i=3,4$, add $L_{1}\left(v_{i}\right) \cap N_{H_{1}}\left(S_{2}\left(v_{5}\right)\right)$ to $\varphi\left(v_{i}\right)$. Let

$$
H_{2}=H_{1}-N_{H_{1}}\left[\varphi\left(v_{3}\right) \cup \varphi\left(v_{4}\right)\right], \text { and } \mathcal{H}_{2}=\left(L_{2}, H_{2}\right) .
$$

Let $g_{2}\left(v_{i}\right)=g_{1}\left(v_{i}\right)-k$ for $i=3,4$, and $g_{2}\left(v_{j}\right)=g_{1}\left(v_{j}\right)$ for $j \neq 3,4$. It suffices to show that there exists an $\left(\mathcal{H}_{2}, g_{2}\right)$-coloring of G.

As $N_{H_{2}}\left(L_{2}\left(v_{1}\right)\right) \cap N_{H_{2}}\left(L_{2}\left(v_{2}\right)\right)=\emptyset$, we conclude that $\mid N_{H_{2}}\left(L_{2}\left(v_{1}\right)\right) \cap N_{H_{2}}\left(L_{2}\left(v_{3}\right)\right) \cap$ $L_{2}\left(v_{5}\right) \mid \geq m-k$, or $\left|N_{H_{2}}\left(L_{2}\left(v_{2}\right)\right) \cap N_{H_{2}}\left(L_{2}\left(v_{3}\right)\right) \cap L_{2}\left(v_{5}\right)\right| \geq m-k$. By symmetry, we assume that

$$
\left|N_{H_{2}}\left(L_{2}\left(v_{1}\right)\right) \cap N_{H_{2}}\left(L_{2}\left(v_{3}\right)\right) \cap L_{2}\left(v_{5}\right)\right| \geq m-k
$$

Let $S_{3}\left(v_{5}\right)$ be an $(m-k)$-subset of $\left.L_{2}\left(v_{5}\right) \cap N_{H_{2}}\left(L_{2}\left(v_{3}\right)\right)\right) \cap N_{H_{2}}\left(L_{2}\left(v_{4}\right)\right)$). For $i=3$, 4 , add $L_{2}\left(v_{i}\right) \cap N_{H_{2}}\left(S_{3}\left(v_{5}\right)\right)$ to $\varphi\left(v_{i}\right)$. Let

$$
H_{3}=H_{2}-N_{H_{2}}\left[\varphi\left(v_{3}\right) \cup \varphi\left(v_{4}\right)\right], \text { and } \mathcal{H}_{3}=\left(L_{3}, H_{3}\right) .
$$

Let $g_{3}\left(v_{i}\right)=g_{2}\left(v_{i}\right)-(m-k)$ for $i=1,3$, and $g_{3}\left(v_{j}\right)=g_{2}\left(v_{j}\right)$ for $j \neq 1,3$. It suffices to show that there exists an $\left(\mathcal{H}_{3}, g_{3}\right)$-coloring of G.

Observe that $g_{3}\left(v_{1}\right)=g_{3}\left(v_{3}\right)=0$, and hence v_{1}, v_{3} can be deleted. The remaining graph is a 3-path. It is easy to verify that $\left|L_{3}\left(v_{5}\right)\right|=3 m-k$ and $\left|L_{3}\left(v_{2}\right)\right|=\left|L_{3}\left(v_{4}\right)\right|=2 m-k$, $g\left(v_{5}\right)=2 m$ and $g_{3}\left(v_{2}\right)=g_{3}\left(v_{4}\right)=m-k$. It follows from Lemma 2.6 that G is $\left(\mathcal{H}_{3}, g_{3}\right)$ colorable.

Corollary 3.5. For the graph G and $f \in \mathbb{N}^{G}$ shown in Figure 1, G is $(f, 2 m)$-DP-colorable. Proof. Let G_{1} be the 3-path induced by $\left\{v_{1}, v_{6}, v_{2}\right\}$. By Corollary 2.8 . $(f, m)_{\left\{v_{1}, v_{2}\right\}} \preceq$ $(f, 2 m)_{G_{1}}$.

Apply Lemma 2.3 to the cut-set $X=\left\{v_{1}, v_{2}\right\}$, it suffices to show that $G^{\prime}=G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\right]$ is (f, g)-DP-colorable, where $f=(2 m, 2 m, 3 m, 3 m, 5 m)$ and $g=(m, m, 2 m, 2 m, 2 m)$.

Apply Corollary 2.7 to the 3 -path $v_{3} v_{5} v_{4}$ with $k=m$, it suffices to show that G^{\prime} is $\left(f_{1}, g_{1}\right)$-DP-colorable, where $f_{1}=(2 m, 2 m, 2 m, 2 m, 4 m)$ and $g_{1}=(m, m, m, m, 2 m)$. This follows from Lemma 3.4.

Figure 1: The graph G and $f \in \mathbb{N}^{G}$

Figure 2: The graph G and $f, g \in \mathbb{N}^{G}$
Lemma 3.6. For the graph G and $f \in \mathbb{N}^{G}$ shown in Figure 2. Let $g=(2 m, 2 m, 2 m, 2 m, m)$. Then G is (f, g)-DP-colorable.

Proof. Apply Corollary 2.7 to the 3 -path $v_{4} v_{3} v_{5}$ with $k=m$, it suffices to show that $G^{\prime}=G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]$ is $\left(f^{\prime}, g^{\prime}\right)$-DP-colorable, where $f^{\prime}=(3 m, 5 m, 3 m, 2 m)$ and $g^{\prime}=$ $(2 m, 2 m, 2 m, m)$.

Let G_{1} be 3-path $v_{1} v_{2} v_{3}$ and G_{2} be single edge $v_{3} v_{4}$. Apply Lemma 2.6 to G_{1} with $p=m$ and Lemma 2.3, it suffices to show that G_{2} is $(2 m, m)$-DP-colorable, which is obviously true.

Corollary 3.7. For the graphs G and $f \in \mathbb{N}^{G}$ shown in Figure 3, G is $(f, 2 m)$-DP-colorable.
Proof. First we show the left graph in Figure 3 is $(f, 2 m)$-DP-colorable. Let G_{1} be the 3-path induced by $\left\{v_{5}, v_{6}, v_{7}\right\}$. By Corollary $2.8,(f, m)_{\left\{v_{5}, v_{7}\right\}} \preceq(f, 2 m)_{G_{1}}$. Apply Lemma 2.3 to the cut-set $X=\left\{v_{5}\right\}$, it suffices to show that $G^{\prime}=G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\right]$ is $\left(f^{\prime}, g^{\prime}\right)$-DP-colorable, where $f^{\prime}=(3 m, 5 m, 4 m, 3 m, 2 m)$ and $g=(2 m, 2 m, 2 m, 2 m, m)$. This follows from Lemma 3.6.

Figure 3: The graphs G and $f \in \mathbb{N}^{G}$

Next we consider the right graph in Figure 3. Assume $\mathcal{H}=(L, H)$ is an f-cover of G. We construct an (\mathcal{H}, g)-coloring φ of G as follows: Let $S_{1}\left(v_{5}\right)$ be an m-subset of $L\left(v_{5}\right)-N_{H}\left(L\left(v_{6}\right)\right)$, and add $S_{1}\left(v_{5}\right)$ to $\varphi\left(v_{5}\right)$. Choose a $2 m$-subset from $L\left(v_{7}\right)-N_{H}\left(S_{1}\left(v_{5}\right)\right)$ and add it to $\varphi\left(v_{7}\right)$. It suffices to prove $G^{\prime}=G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}\right]$ has an $\left(f^{\prime}, g^{\prime}\right)$-DP-coloring, where $f^{\prime}=(3 m, 5 m, 4 m, 3 m, 2 m, 3 m)$ and $g^{\prime}=(2 m, 2 m, 2 m, 2 m, m, 2 m)$. By Lemma 3.6, $G^{\prime}-v_{6}$ has an $\left(f^{\prime}, g^{\prime}\right)$-DP-coloring φ^{\prime}. Choose a $2 m$-subset of $L\left(v_{6}\right)-\varphi^{\prime}\left(v_{5}\right)$ and add the $2 m$-subset to $\varphi\left(v_{6}\right)$. Let $\varphi\left(v_{i}\right)=\varphi^{\prime}\left(v_{i}\right)$ for $i=1,2,3,4$ and $\varphi\left(v_{5}\right)=\varphi^{\prime}\left(v_{5}\right) \cup S_{1}\left(v_{5}\right)$. Thus φ is an (\mathcal{H}, g)-coloring of G.

Figure 4: The graphs G and $f \in \mathbb{N}^{G}$

Corollary 3.8. For the graphs G and $f \in \mathbb{N}^{G}$ shown in Figure 4, G is $(f, 2 m)$-DP-colorable.
Proof. Assume G is any of the two graphs in Figure 4, and $\mathcal{H}=(L, H)$ is an f-cover of G. Let $H^{\prime}=H-L\left(v_{8}\right) \cap N_{H}\left(L\left(v_{4}\right)\right)$ and $\mathcal{H}^{\prime}=\left(L^{\prime}, H^{\prime}\right)$. Let $e=v_{4} v_{8}$. Then it suffices to show that $G^{\prime}=G-e$ is $\left(\mathcal{H}^{\prime}, 2 m\right)$-colorable.

By Corollary 2.8, the subgraph $G^{\prime}\left[v_{8}, v_{9}, v_{10}\right]$ has an $\left(\mathcal{H}^{\prime}, 2 m\right)$-coloring φ_{1}.
Let $H^{\prime \prime}=H^{\prime}-L^{\prime}\left(v_{5}\right) \cap N_{H^{\prime}}\left(\varphi_{1}\left(v_{8}\right)\right)$. It remains to prove that $G^{\prime \prime}=G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}\right]$ is $\left(\mathcal{H}^{\prime \prime}, 2 m\right)$-coloring. For the graph G on the left, $\mathcal{H}^{\prime \prime}$ is an f^{\prime}-cover of $G^{\prime \prime}$, where $f^{\prime}=$ $(3 m, 5 m, 5 m, 3 m, 3 m, 5 m, 3 m)$. For the graph G on the right, $\mathcal{H}^{\prime \prime}$ is an f^{\prime}-cover of $G^{\prime \prime}$, where $f^{\prime}=(3 m, 5 m, 5 m, 3 m, 5 m, 3 m, 3 m)$. Now the conclusion follows from Corollary 3.7.

4 Proof of Theorem 1.8

Let G be a counterexample to Theorem 1.8 with minimum number of vertices. It is trivial that G is connected and has minimum degree at least 3. Let $\mathcal{H}=(L, H)$ be a $7 m$-cover of G such that G is not $(\mathcal{H}, 2 m)$-colorable. By our assumption, $E_{H}(L(u), L(v))$ is a perfect matching whenever $u v \in E(G)$.

In the following, for an induced subgraph G^{\prime} of G, we denote by $f^{\prime} \in \mathbb{N}^{G^{\prime}}$ the mapping defined as $f^{\prime}(v) \geq 7 m-2\left(d_{G}(v)-d_{G^{\prime}}(v)\right) m$ for $v \in V\left(G^{\prime}\right)$.

Definition 4.1. A configuration in G is an induced subgraph G^{\prime} of G, where each vertex v of G^{\prime} is labelled with its degree $d_{G}(v)$ in G. A configuration G^{\prime} is reducible if G^{\prime} is $\left(f^{\prime}, 2 m\right)$ -DP-colorable.

Lemma 4.2. G contains no reducible configuration.
Proof. Assume G^{\prime} is a reducible configuration in G. By minimality of $G, G-G^{\prime}$ has an $(\mathcal{H}, 2 m)$-coloring φ. For $v \in V\left(G^{\prime}\right)$, let

$$
L^{\prime}(v)=L(v)-\cup_{u \in N_{G}(v)-V\left(G^{\prime}\right)} \varphi(u)
$$

and $H^{\prime}=H\left[\cup_{v \in V\left(G^{\prime}\right)} L^{\prime}(v)\right]$. Then $\mathcal{H}^{\prime}=\left(L^{\prime}, H^{\prime}\right)$ is an f^{\prime}-cover of G^{\prime}. As G^{\prime} is reducible, G^{\prime} has an $\left(\mathcal{H}^{\prime}, 2 m\right)$-coloring φ^{\prime}. Then $\varphi \cup \varphi^{\prime}$ is an $(\mathcal{H}, 2 m)$-coloring of G, a contradiction.

Corollary 4.3. The following configurations in Figure 5 are reducible.
Proof. The reducibility of configurations $(a),(b),(c)$ follows from Lemma 3.1, (d) follows from Lemma 3.3, (e) and (f) follows from Lemma 3.2.

Now we prove the reducibility of configurations (g). Let $G^{\prime}=G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\right]$. Let $f^{\prime}(v)=7 m-2\left(d_{G}(v)-d_{G^{\prime}}(v)\right) m$. Then $f^{\prime}\left(v_{i}\right)=3 m$ for $i=1,2$ and $f^{\prime}\left(v_{j}\right)=5 m$ for $j=3,4,5$. Assume $\mathcal{H}^{\prime}=\left(L^{\prime}, H^{\prime}\right)$ is an f^{\prime}-cover of G^{\prime}. We color v_{5} with a $2 m$ subset $\varphi\left(v_{5}\right)$ of $L^{\prime}\left(v_{5}\right)-N_{H^{\prime}}\left(L^{\prime}\left(v_{2}\right)\right)$. Let $\mathcal{H}^{\prime \prime}=\mathcal{H}^{\prime}-L^{\prime}\left(v_{3}\right) \cap N_{H^{\prime}}\left(\varphi\left(v_{5}\right)\right)$. It suffices to prove $G^{\prime \prime}=G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]$ has an $\left(\mathcal{H}^{\prime \prime}, 2 m\right)$-coloring. As $\mathcal{H}^{\prime \prime}$ is an $f^{\prime \prime}$-cover, where $f^{\prime \prime}=(3 m, 3 m, 3 m, 5 m)$, this follows from Lemma 3.3.

Lemma 4.4. If two 4-faces intersect at a 4-vertex, then one of them contains at most one 3-vertex.

Figure 5: Reducible configurations, where hollow circles is a 3 -vertex, and squares is a 4 vertex.

Proof. Assume that f_{1} and f_{2} are 4 -faces intersect at a 4 -vertex v, and each of f_{1}, f_{2} contains at least two 3 -vertices. Then either v is adjacent to three 3 -vertices and hence G contains reducible configuration (d), or G contains a (3, 3, 4, 3, 3)-path, which is the reducible configuration (b).

We call a 4 -face f light if f is $(4,4,3,3)$-face, a $(4,5,3,3)$-face or a $(4,3,5,3)$-face. (Note that G contains no ($4,3,4,3$)-face, as it is reducible by Corollary 4.3 (e)).

Assume v is a 4 -vertex. We say v is

1. strong if it is not incident to any light 4 -face.
2. normal if it is incident to a light 4 -face and three 5^{+}-faces.
3. weak if it is incident to a light 4 -face and a 4 -face with no 3 -vertex.
4. very weak if it is incident to a light 4 -face and a 4 -face with a 3 -vertex.

Let v be a weak or very weak 4 -vertex. If v has a 3 -neighbor u such that $v u$ is shared by a light 4 -face and a 5 -face f, then f is called a special 5 -face of v.

Lemma 4.5. $A(4,4,4,3)$-face does not intersect a (4, 4, 3, 3)-face at a 4-vertex.
Proof. Assume that a $(4,4,3,3)$-face intersects a $(4,4,4,3)$-face at a 4 -vertex v. Thus one of the graphs in Figure 6 is a subgraph of G. Assume G^{\prime} on the left of Fig. 6 is a subgraph of

Figure 6: (4, 4, 4, 3)-face intersects (4, 4, 3, 3)-face
G. Since G is triangle free, contains no (3,3,3)-path and no normally adjacent 4-cycles, G^{\prime} is an induced subgraph of G. We shall prove that G^{\prime} is reducible.

Note that $f^{\prime}=(3 m, 3 m, 3 m, 5 m, 7 m, 5 m, 5 m)$. Assume $\mathcal{H}^{\prime}=\left(L^{\prime}, H^{\prime}\right)$ is an f^{\prime}-cover of G^{\prime}. We color v_{7} with a $2 m$-subset $\varphi\left(v_{7}\right)$ of $L^{\prime}\left(v_{7}\right)-N_{H^{\prime}}\left(L^{\prime}\left(v_{3}\right)\right)$. Let $\mathcal{H}^{\prime \prime}=\mathcal{H}^{\prime}-L^{\prime}\left(v_{4}\right) \cap N_{H^{\prime}}\left(\varphi\left(v_{7}\right)\right)$. It suffices to prove $G^{\prime \prime}=G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}\right]$ has an $\left(\mathcal{H}^{\prime \prime}, 2 m\right)$-coloring. As $\mathcal{H}^{\prime \prime}$ is an $f^{\prime \prime}$ cover of $G^{\prime \prime}$, where $f^{\prime \prime}=(3 m, 3 m, 3 m, 3 m, 7 m, 5 m)$, the result follows from Corollary 3.5 . Thus G^{\prime} is reducible, a contradiction.

Assume the graph on the right of Figure 6 is a subgraph of G. Then $G^{\prime}=G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\right]$ is the reducible configuration (g), a contradiction.

Lemma 4.6. $A(4,4,4,3)$-face does not intersect a (4, 3, 5, 3)-face at a 4-vertex.

Figure 7: (4, 3, 5, 3)-face intersects (4, 4, 4, 3)-face

Proof. Assume a $(4,3,5,3)$-face f_{1} intersect a $(4,4,4,3)$-face f_{2} at a 4 -vertex. By Corollary 4.3 (d), a 4 -vertex has at most two 3 -neighbors. Thus the 4 -cycles are as shown in Figure 7. But the induced subgraph $G^{\prime}=G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}\right]$ is reducible by Corollary 3.5, a contradiction.

Lemma 4.7. $A\left(4^{+}, 4^{+}, 4^{+}, 3\right)$-face contains at most one very weak 4 -vertex.
Proof. Assume that $f=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ is a $\left(4^{+}, 4^{+}, 4^{+}, 3\right)$-face and contains two very weak 4 -vertices.

If v_{1} and v_{3} are very weak 4 -vertices, then since a 4 -vertex has at most two 3 -neighbors, the light faces incident to v_{1} and v_{3} are $\left(4,4^{+}, 3,3\right)$-faces. This implies that G has a (3, 3, 4, 3, 4, 3, 3)-path in G, which is a reducible configuration (c), a contradiction.

Thus we assume that v_{1}, v_{2} are very weak 4 -vertices. Using the fact that a 4 -vertex has at most two 3 -neighbors, we conclude that G contains one of the graphs in Figure 8 as an induced subgraph. But by Corollary 3.7, the subgraph $G\left[v_{1}, v_{2}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right]$ is reducible, a contradiction.

Figure 8: $\left(4,4,4^{+}, 3\right)$-face with two very weak 4 -vertices

Lemma 4.8. Assume a (4, 4, 4, 4)-face f contains a weak 4-vertex, which is incident to a $(4,3,5,3)$-face. Then f contains at most two weak 4 -vertices.

Proof. Assume f has three weak vertices and at least one vertex in f is incident to a $(4,3,5,3)$-face. Then G contains one of the graphs in Figure 9 as a subgraph. Since G is triangle free and without normally adjacent 4-faces, then G^{\prime} is an induced subgraph of G. Assume $\mathcal{H}^{\prime}=\left(L^{\prime}, H^{\prime}\right)$ is an f^{\prime}-cover of G^{\prime}. We construct an $\left(\mathcal{H}^{\prime}, 2 m\right)$-coloring φ of G^{\prime} for each graph in Figure 9 .

Assume $G^{\prime}=G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}\right]$ is the subgraph in Figure 9 (a). Choose an m-subset $S\left(v_{9}\right)$ from $L^{\prime}\left(v_{9}\right)-N_{H^{\prime}}\left(L^{\prime}\left(v_{7}\right)\right)-N_{H^{\prime}}\left(L^{\prime}\left(v_{8}\right)\right)$ and add it to $\varphi\left(v_{9}\right)$.

Let $\mathcal{H}^{\prime \prime}=\mathcal{H}^{\prime}-N_{H^{\prime}}\left[S\left(v_{9}\right)\right]$. It suffices to prove G^{\prime} has an $\left(\mathcal{H}^{\prime \prime}, g\right)$-coloring φ, where $g\left(v_{9}\right)=$ m and $g\left(v_{i}\right)=2 m$ for $i \in[8]$. By Corollary 2.8, $v_{1} v_{2} v_{3}$ has an $\left(\mathcal{H}^{\prime \prime}, 2 m\right)$-coloring φ_{1}. Similarly, $v_{4} v_{5} v_{6}$ has an $\left(\mathcal{H}^{\prime \prime}, 2 m\right)$-coloring φ_{2}. Add an m-subset of $L^{\prime \prime}\left(v_{9}\right)-N_{H}\left(\varphi_{1}\left(v_{2}\right) \cup \varphi_{2}\left(v_{5}\right)\right)$ to $\varphi\left(v_{9}\right)$, and then for $i=7,8$, color v_{i} by $2 m$-colors from $L\left(v_{i}\right)-N_{H}\left(\varphi\left(v_{9}\right)\right)$, we obtain an $\left(\mathcal{H}^{\prime}, 2 m\right)$-coloring of G^{\prime}.

Figure 9: weak 4-vertices in (4, 4, 4, 4)-face

Assume G^{\prime} is the graph in Figure 9 (b). Let $\mathcal{H}^{\prime \prime}=\mathcal{H}^{\prime}-N_{H^{\prime}}\left(v_{1}\right)$ be an $f^{\prime \prime}$-cover of $G\left[\left\{v_{5}, v_{6}, v_{7}\right\}\right]$. Thus $f^{\prime \prime}\left(v_{6}\right)=\left|L^{\prime}\left(v_{6}\right)-N_{H^{\prime}}\left(L^{\prime}\left(v_{1}\right)\right)\right|=4 m$. By Corollary 2.8, the 3-path $v_{5} v_{6} v_{7}$ has an ($\left.\mathcal{H}^{\prime \prime}, 2 m\right)$-coloring φ_{1}.

Let $\mathcal{H}^{\prime \prime \prime}=\mathcal{H}^{\prime \prime}-N_{H^{\prime \prime}}\left(\varphi_{1}\left(v_{6}\right)\right)$ be an $f^{\prime \prime \prime}$-cover of $G\left[\left\{v_{8}, v_{9}, v_{10}\right\}\right]$. By Corollary 2.8, the 3path $v_{8} v_{9} v_{10}$ has an $\left(\mathcal{H}^{\prime \prime \prime}, 2 m\right)$-coloring φ_{2}. Then $\mathcal{H}^{\prime \prime \prime}$ is an $f^{\prime \prime \prime}$-cover of $G^{\prime \prime}=G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]$, where $f^{\prime \prime \prime}=(3 m, 3 m, 3 m, 5 m)$. It follows from Lemma 3.3 that $G^{\prime \prime}$ is $\left(f^{\prime \prime \prime}, 2 m\right)$-DP-colorable.

Cases (c) and (d) follow from Corollary 3.8.
Assume $G^{\prime}=G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}\right]$ in Figure 9 (e). Let $G_{1}^{\prime}=G\left\{v_{1}, v_{6}, v_{7}, v_{2}, v_{8}, v_{9}\right\}$. By lemma 2.6. $\left(f^{\prime}, m\right)_{\left\{v_{1}, v_{2}\right\}} \preceq\left(f^{\prime}, 2 m\right)_{G_{1}^{\prime}}$. Apply Lemma 2.3 to G^{\prime}, it suffices to show that $G_{2}^{\prime}=G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\right]$ is $\left(f_{2}^{\prime}, g_{2}^{\prime}\right)$-DP-colorable, where $f_{2}^{\prime}=(2 m, 2 m, 3 m, 3 m, 5 m)$, $g_{2}^{\prime}=(m, m, 2 m, 2 m, 2 m)$. Apply Corollary 2.7 to the 3 -path $v_{3} v_{5} v_{4}$ with $k=m$, it suf-
fices to show that G_{2}^{\prime} is $\left(f_{2}^{\prime \prime}, g_{2}^{\prime \prime}\right)$-DP-colorable, where $f_{2}^{\prime \prime}=(2 m, 2 m, 2 m, 2 m, 4 m)$ and $g_{2}^{\prime \prime}=$ ($m, m, m, m, 2 m$). This follows from Lemma 3.4.

We shall use discharging method to derive a contradiction. Set the initial charge ch $(v)=$ $2 d(v)-6$ for every $v \in G, \operatorname{ch}(f)=d(f)-6$ for every face f. By Euler formula,

$$
\sum_{x \in V(G) \cup F(G)} \operatorname{ch}(x)<0 .
$$

Denote by $\omega(v \rightarrow f)$ the charge transferred from a vertex v to an incident face f. Below are the discharging rules:

R1 Each strong 4-vertex sends $\frac{2}{3}$ to each incident 4 -face and $\frac{1}{3}$ to each incident 5 -face.
R2 Each normal 4-vertex sends 1 to the incident light 4 -face and $\frac{1}{3}$ to each incident 5 -face.
R3 If v is a weak 4 -vertex and f is 4 -face or 5 -face incident to v, then
$\omega(v \rightarrow f)= \begin{cases}1, & \text { if } f \text { is a light 4-face, } \\ \frac{1}{2}, & \text { if } f \text { is a non-light } 4 \text {-face and } v \text { is incident to at most one special } 5 \text {-faces, } \\ \frac{1}{3}, & \text { if } f \text { is a special } 5 \text {-face of } v ; \text { or } f \text { is a non-light 4-face } \\ \text { and } v \text { is incident to two special } 5 \text {-faces, } \\ \frac{1}{6}, & \text { if } f \text { is a non-special } 5 \text {-face. }\end{cases}$
R4 Assume v is a very weak 4 -vertex and f is 4 -face or 5 -face incident to v.

- (i) If v incident to a $(4,4,4,3)$-face, then

$$
\omega(v \rightarrow f)= \begin{cases}1, & \text { if } f \text { is a light 4-face, } \\ \frac{2}{3}, & \text { if } f \text { is a }(4,4,4,3) \text {-face } \\ \frac{1}{3}, & \text { if } f \text { is a special } 5 \text {-face of } v \\ 0, & \text { if } f \text { is a non-special } 5 \text {-face of } v\end{cases}
$$

- (ii) Otherwise,

$$
\omega(v \rightarrow f)= \begin{cases}1, & \text { if } f \text { is a light 4-face, } \\ \frac{1}{3}, & \text { if } f \text { is a } 5 \text {-face, or a non-light } 4 \text {-face. }\end{cases}
$$

R5 Each 5 -vertex sends 1 to each incident 4-face and sends $\frac{2}{3}$ to each incident 5 -face.

R6 Each 6^{+}-vertex sends $\frac{4}{3}$ to each incident 4 -face and sends $\frac{2}{3}$ to each incident 5 -face.
Observation 4.9. If v is a very weak 4-vertex incident to a 5-face f and $w(v \rightarrow f)=0$, then v has a 5-neighbor in f.

Proof. Since v is very weak and $w(v \rightarrow f)=0, v$ is incident to a light face and a $(4,4,4,3)$ face. By Lemmas 4.5 and 4.6, the light face is a $(4,5,3,3)$-face. Since $w(v \rightarrow f)=0, f$ is not special, hence the neighbor of v shared by f and the light face is a 5 -vertex.

Let $c h^{*}$ denote the final charge after performing the discharging process. It suffices to show that the final charge of each vertex and each face is non-negative.

We first check the final charge of vertices in G.
If $d(v)=3, c h^{*}(v)=c h(v)=0$.
If v is a strong 4 -vertex, then since v is incident to at most two 4 -faces, by R1, $c h^{*}(v) \geq$ $\operatorname{ch}(v)-2 \times \frac{2}{3}-2 \times \frac{1}{3}=0$.

If v is a normal 4 -vertex, then by R2, $\operatorname{ch}^{*}(v) \geq \operatorname{ch}(v)-1-3 \times \frac{1}{3}=0$.
Assume v is a weak 4 -vertex. If v is incident to two special 5 -faces, then by R3, $\operatorname{ch}^{*}(v) \geq$ $\operatorname{ch}(v)-1-3 \times \frac{1}{3}=0$.

If v is incident to at most one special 5 -faces, $\operatorname{ch}^{*}(v) \geq \operatorname{ch}(v)-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{6}=0$.
Assume that v is a very weak 4 -vertex. If v is incident to a $(4,4,4,3)$-face, then by Lemmas 4.5 and 4.6, v is incident to a $(4,5,3,3)$-face. Thus there is at most one special 5 -face of v. By R4 (i), $c h^{*}(v) \geq c h(v)-1-\frac{2}{3}-\frac{1}{3}=0$. Otherwise, by R4 (ii), $c h^{*}(v) \geq$ $\operatorname{ch}(v)-1-3 \times \frac{1}{3}=0$.

If $d(v)=5$, then v is incident at most two 4-faces and by R5, $\operatorname{ch}^{*}(v) \geq \operatorname{ch}(v)-2 \times 1-$ $3 \times \frac{2}{3}=0$.

If $d(v)=k \geq 6$, then v is incident at most $\left\lfloor\frac{k}{2}\right\rfloor 4$-faces. Thus by R6, $\operatorname{ch}^{*}(v) \geq \operatorname{ch}(v)-$ $\frac{4}{3} \times\left\lfloor\frac{k}{2}\right\rfloor-\left(k-\left\lfloor\frac{k}{2}\right\rfloor\right) \times \frac{2}{3} \geq 0$.

Now we check the final charge of faces. If f is a 6^{+}-face, no charge is discharged from or to f. Thus $c h^{*}(f)=c h(f)=d(f)-6 \geq 0$.

Assume f is a 4 -face. By Corollary 4.3 (a), f contains at most two 3 -vertices.
Case $1 f$ contains two 3-vertices.
Assume f contains a 6^{+}-vertex. If f contains a 4 -vertex v, then by Lemma 4.4, v is a strong 4 -vertex. Hence f receives $\frac{4}{3}$ from the 6^{+}-vertex by R5 and at least $\frac{2}{3}$ from the other 4^{+}-vertex by R1, R5 and R6. So $c h^{*}(f) \geq 0$.

If f contains two 5 -vertices, then f receives 1 from each incident 5 -vertex by $R 5$, and hence $c h^{*}(f) \geq 0$.

Otherwise, f is a light 4 -face, and receives 1 from each incident 4^{+}-vertex by R2-R5, and hence $c h^{*}(f) \geq 0$.
Case $2 f$ contains one 3-vertex.
If f contains no very weak 4 -vertex, then every 4^{+}-vertex in f sends at least $\frac{2}{3}$ to f by R1, R5 and R6. Thus $c h^{*}(f) \geq c h(f)+3 \times \frac{2}{3}=0$.

Assume that f contains a very weak 4 -vertex. If f is $(4,4,4,3)$-face, $c h^{*}(f) \geq c h(f)+3 \times$ $\frac{2}{3}=0$ by R1 and R4 (i). Assume that f is not a $(4,4,4,3)$-face. Then f contains a 5^{+}-vertex. By Lemma 4.7, f contains at most one very weak 4 -vertex. Thus $c h^{*}(f) \geq c h(f)+1+\frac{2}{3}+\frac{1}{3}=0$ by R1, R4 (ii) and R5.

Case $3 f$ contains no 3 -vertex.
Assume f is $(4,4,4,4)$-face. If no vertex of f is incident to $(4,3,5,3)$-face, then each vertex v of f has at most one 3 -neighbor and hence has at most one special 5 -face. So $c h^{*}(f) \geq c h(f)+4 \times \frac{1}{2}=0$ by R3.

If f has a vertex v incident to a $(4,3,5,3)$-face, then f contains at most two weak vertices by Lemma 4.8. Thus $c h^{*}(f) \geq c h(f)+2 \times \frac{1}{3}+2 \times \frac{2}{3}=0$ by R1 and R3.

Assume f is $\left(4^{+}, 4^{+}, 4^{+}, 5^{+}\right)$-face. Then $c h^{*}(f) \geq \operatorname{ch}(f)+1+3 \times \frac{1}{3}=0$ by R3 and R5.
This completes the check for 4 -faces.
Finally, we check the 5 -faces.
Assume $f=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ is a 5 -face, and for $i=1,2,3,4,5$, let f_{i} be the face sharing the edge $v_{i} v_{i+1}$ with f (the indices are modulo 6).

By Corollary 4.3, either f contains at least three 4^{+}-vertices or f contains two 4^{+}-vertices and one of them is a 5^{+}-vertex.

If f contains no weak and no very weak 4 -vertex, or f is a special 5 -face, then f receives at least $\frac{1}{3}$ from each incident 4 -vertex and $\frac{2}{3}$ from each incident 5^{+}-vertex by R1-R5. Hence $c h^{*}(f) \geq \operatorname{ch}(f)+1=0$.

Assume f is a non-special 5 -face and f contains a weak or a very weak 4 -vertex.
Case $1 f$ contains a weak 4-vertex.
Assume v_{1} is a weak 4 -vertex. By symmetry, we may assume that f_{5} is a light 4 -face and f_{1} is a 4 -face with no 3 -vertex. Thus v_{2} is a 4^{+}-vertex.

If f_{5} is a $(4,5,3,3)$-face, then since f is non-special, v_{5} is a 5 -vertex. Then $w\left(v_{5} \rightarrow f\right)=$ $2 / 3$ and $w\left(v_{i} \rightarrow f\right) \geq 1 / 6$ for $i=1,2$. So $c h^{*}(f) \geq \operatorname{ch}(f)+1=0$.

Assume f_{5} is a $(4,4,3,3)$-face. Each of v_{1}, v_{5} sends at least $1 / 6$ to f. If f contains a 5^{+}-vertex, then $c h^{*}(f) \geq c h(f)+1=0$. Assume f contains no 5^{+}-vertex. So by Corollary 4.3, v_{2} and v_{4} are 4 -vertices.

By Lemma 4.4, none of f_{1} and f_{4} is a light 4 -face. If v_{3} is a 3 -vertex, then each of v_{2} and v_{4} sends $1 / 3$ by R1-R4. Hence $c h^{*}(f) \geq c h(f)+1=0$.

Assume v_{4} is a 4 -vertex. Then f is a $(4,4,4,4,4)$-face. By Observation 4.9, each 4 -vertex sends at least $1 / 6$ to f. As f is adjacent to at most two light 4 -faces, at least one of the 4 -vertex sends $1 / 3$ to f. Hence $c h^{*}(f) \geq c h(f)+1=0$.
Case $2 f$ contains no weak vertex and contains a very weak 4 -vertex.
Assume v_{1} is a very weak vertex, f_{5} is a light 4 -face and f_{1} is a 4 -face containing one 3 -vertex. Note that f_{5} is not a $(4,3,5,3)$-face, for otherwise, f is a special 5 -face of v_{1}.

Assume first that f_{1} is a $(4,4,4,3)$-face. By Lemma 4.5, f_{5} is a $(4,5,3,3)$-face. Hence v_{5} is a 5 -vertex. If v_{2} is a 4 -vertex, then $w\left(v_{5} \rightarrow f\right)=2 / 3$ and $w\left(v_{2} \rightarrow f\right)=1 / 3$. Hence $c h^{*}(f) \geq \operatorname{ch}(f)+1=0$. If v_{2} is a 3 -vertex, then f_{2} is not a 4 -face. If v_{3} is a 3 -vertex, then
G contains a $(3,3,4,3,3)$-path, which is reducible. Thus v_{3} is a 4^{+}-vertex and is not weak or very weak. So $w\left(v_{3} \rightarrow f\right) \geq 1 / 3$ and $c h^{*}(f) \geq c h(f)+1=0$.

Assume f_{1} is not a $(4,4,4,3)$-face. Since f contains no weak 4 -vertex, each 4 -vertex of f sends at least $1 / 3$ to f and each 5^{+}-vertex sends at least $2 / 3$ to f. Hence $c h^{*}(f) \geq$ $\operatorname{ch}(f)+1=0$.

This completes the proof of Theorem 1.8 .

References

[1] N. Alon, Zs. Tuza and M. Voigt, Choosability and fractional chromatic numbers, Discrete Mathmatics 165/166 (1997) 31 - 38.
[2] A. Bernshteyn, A. Kostochka, and X. Zhu, Fractional DP-colorings of sparse graphs, Journal of Graph Theory 93:2 (2020), 203-221.
[3] D. Cranston and L. Rabern, Planar graphs are 9/2-colorable, J. Combin. Theory Ser. B 133 (2018), 32-45.
[4] Z. Dvořák and L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, J. Combin. Theory Ser. B 129 (2018), 38 -54 .
[5] Z. Dvořák, X. Hu, and J. Sereni, A 4-choosable graph that is not (8:2)-choosable, https://arxiv.org/abs/1806.03880.
[6] P. Erdős, A. L. Rubin, and H. Taylor, Choosability in graphs, Congress. Number. 26 (1979) $125-157$.
[7] M. Han, H. A. Kierstead and X. Zhu, Every planar graph is 1-defective (9,2)-paintable, Discrete Appl. Math. 294 (2021), 257-264.
[8] Y. Jiang, and X. Zhu, Multiple list colouring triangle free planar graphs, J. Combin. Theory Ser. B 137 (2019) 112 - 117.
[9] X. Li, and X. Zhu, The strong fractional choice number of series-parallel graphs, Discrete Mathmatics 343 (2020) no 5.
[10] R. Xu, X. Zhu, The strong fractional choice number and the strong fractional paint number of graphs, arxiv.
[11] X. Zhu, Multiple list colouring of planar graphs, J. Combin. Theory Ser. B 122 (2017) $794-799$.

[^0]: *Department of Mathematics, Zhejiang Normal University, China. E-mail: huanzhou@zjnu.edu.cn.
 ${ }^{\dagger}$ Department of Mathematics, Zhejiang Normal University, China. E-mail: xdzhu@zjnu.edu.cn. Grant Numbers: NSFC 11971438,12026248, U20A2068.

