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Abstract

In 1972, Mader proved that every undirected graph has a good pair, that is, an or-
dered pair (u,v) of nodes such that the star of v is a minimum cut separating u and v.
In 1992, Nagamochi and Ibaraki gave a simple procedure to find a good pair as the basis
of an elegant and very efficient algorithm to find minimum cuts in graphs. This paper
rules out the simple good pair approach for the problem of finding a minimum directed
cut in a digraph and for the more general problem of minimizing submodular functions.
In fact, we construct a digraph with no good pair. Note that if a graph has no good pair,
then it may not possess a so-called cut-equivalent tree. Benczdr constructed a digraph
with no cut-equivalent tree; our counterexample thus extends Benczir’s one.
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1 Introduction

Let G(V, E) be an undirected graph. Given a node set S C V with ) # S # V, the cut 6(S5)
is the set of those edges in F with precisely one endnode in S. Every edge e € E is also
given a non-negative cost c.. The cost of a cut §(S) is the value 3 c4g) ce- The minimum
cut problem asks for a cut of minimum cost in (G, ¢).

A cut 6(S) is called an s,t-cut when precisely one of s and ¢ belongs to S. An ordered
pair of nodes (s,t) is called good if 6(¢) is an s, t-cut of minimum cost. When (s, 1) is a good
pair two cases are possible: either no cut of minimum cost is an s,¢-cut or §(¢) is a cut of
minimum cost. So, if there exists a good pair (s,t) in G, then we can reduce the minimum cut
problem by identifying nodes s and ¢. In 1972, Mader [7] proved that, when G is undirected,
then a good pair always exists. In 1992, Nagamochi and Ibaraki [8] gave a simple procedure
to find a good pair as the basis of an elegant and very efficient algorithm to find minimum
cuts in graphs. This approach was subsequently generalized to hypergraphs [6], symmetric
submodular functions [10] and more general symmetric set functions [9, 11].

We address the following question:

Is there any possibility that the simple good pair approach can be extended to
the problem of finding a minimum dicut in a directed graph, or even to the more
general problem of minimizing submodular functions?
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Let D(V,A) be a directed graph. Given a node set S C V with § # S # V, the dicut
67 (S) is the set of those arcs ub € A with u € S and v ¢ S. Every arc a € A is also
given a non-negative cost c,. Define the cost of a dicut 67 (S) as c(67(S5)) = Xoest(s) Ca-
The minimum dicut problem asks for a dicut of minimum cost in (D,c). A dicut §7(S) is
called a u, v-dicut when precisely one of u and v belongs to S. We denote by §~(S) the dicut
0t (V' \ S). A pair of nodes (u,v) is called good if at least one of the following dicuts is a
u, v-dicut of minimum cost: §*(u), 6 (v),d (u),d (v). When (u,v) is a good pair two cases
are possible: either no dicut of minimum cost is a u, v-dicut or at least one of the four dicuts
listed above is a dicut of minimum cost. So, if there exists a good pair (u,v) in D, then
we can reduce the minimum dicut problem by identifying nodes u and v. Hao and Orlin [5]
gave an algorithm with low time complexity bound for the minimum dicut problem. Their
approach bases however on flows and no good-pair-type algorithm is known at present.

In the next section, a digraph with no good pair is constructed. In [1], Benczir had
given a digraph with no cut-equivalent tree (definitions in Section 3). The counterexample
of Benczir was meant to point out an invalidating error in constructions proposed in the
literature to obtain such trees. Our counterexample is stronger than the one of Benczir in
the sense that, having no good pair, our digraph does not admit any cut-equivalent tree also.

2 The construction

The digraph D given in Figure 1 has no good pair.

Figure 1: A digraph D having no good pair. A block of D.

In D, min{c(6~(v)) : v € V(D)} = 3 and min{c(6 (v)) : v € V(D)} = 3. However, for
any two nodes u,v € V(D), a minimum u, v-dicut has cost at most 2. To convince ourselves
that this is indeed the case consider a single block of D. (Figure 1 on the right). Here
(0~ ({z,y})) = 2 and (6~ ({#,9})) = 2. So, if u and v belong to a same block, then either
0~ ({z,y}) or 6~ ({z,y}) is a u,v-dicut of cost 2. If otherwise u and v belong to different
blocks then consider 4 and w. Since u and w belong to a same block, then in D there exists
a u, w-dicut of cost at most 2. Moreover in D every minimum u,w-dicut is also a u, v-dicut.



3 Cut-equivalent tree

In [3], Gomory and Hu introduced the fundamental notion of cut-equivalent tree of an undi-
rected graph. In this section, we define cut-equivalent trees for digraphs and observe that the
digraph D given in Figure 1 does not admit any cut-equivalent tree also. An incorrect result
of Schnorr [12], which also lead to the derivation of further incorrect results in [4], stated
that every digraph has a cut-equivalent tree. The error was pointed out by Benczur [1], who
first gave a digraph with no cut-equivalent tree.

Let D(V, A) be a digraph and ¢, be a non-negative cost assigned to every a € A. Let T
be an undirected tree with V(T') = V and w, be a non-negative weight assigned to every edge
e € E(T). The pair (T,w) is a cut equivalent tree of (D,c) if for every two nodes u,v € V
the following property holds: if e is any edge of minimum weight in the unique path between
u and v in T" and S and S» are the two connected components in the graph obtained from
T by deleting e, then 67 (S1) or §1(S3) is a minimum u, v-dicut for (D, ¢).

It is well known that every tree has a leaf. Let v be a leaf of T' and let u be the neighbour
of v in T. Since uv is an edge of minimum weight in the unique path between u and v in
T, then 6% (v) or 6 (v) is a minimum u,v-dicut for (D, ¢), once (T,w) is a cut equivalent
tree. This means that (u,v) is a good pair. Hence, our counterexample is stronger than
the one of Benczir in the sense that, having no good pair, our digraph does not admit any
cut-equivalent tree either.
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