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Abstract

We describe a neural network which enhances and completes salient
closed contours. Our work is different from all previous work in three
important ways. First, like the input provided to V1 by LGN, the in-
put to our computation is isotropic. That is, the input is composed of
spots not edges. Second, our network computes a well defined function
of the input based on a distribution of closed contours characterized by
a random process. Third, even though our computation is implemented
in a discrete network, its output is invariant to continuous rotations and
translations of the input pattern.

1 Introduction

There is a long history of research on neural networks inspired by the structure of visual
cortex whose functions have been described as contour completion, saliency enhancement,
orientation sharpening, or segmentation[6, 7, 8, 9, 12]. A similiar network has been pro-
posed as a model of visual hallucinations[1]. In this paper, we describe a neural network
which enhances and completes salient closed contours. Our work is different from all pre-
vious work in three important ways. First, like the input provided to V1 by LGN, the input
to our computation is isotropic. That is, the input is composed of spots not edges. Second,
our network computes a well defined function of the input based on a distribution of closed
contours characterized by a random process. Third, even though our computation is imple-
mented in a discrete network, its output is invariant to continuous rotations and translations
of the input pattern.

There are two important properties which a computation must possess if it is to be invariant
to rotations and translations, i.e., Euclidean invariant. First, the input, the output, and all
intermediate representations must be Euclidean invariant. Second, all transformations of
these representations must also be Euclidean invariant. The models described in [6, 7, 8,
9, 12] are not Euclidean invariant, first and foremost, because their input representations
are not Euclidean invariant. That is, not all rotations and translations of the input can be
represented equally well. This problem is often skirted by researchers by choosing input
patterns which match particular choices of sampling rate and phase. For example, Li [7]
used only six samples in orientation (including �Æ) and Heitger and von der Heydt[5] only
twelve (including �Æ, ��Æ and ���Æ). Li’s first test pattern was a dashed line of orientation,
�Æ, while Heitger and von der Heydt used a Kanizsa Triangle with sides of � Æ, ��Æ, and



���Æ orientation. There is no reason to believe that the experimental results they showed
would be similiar if the input patterns were rotated by as little as �Æ. To our knowledge, no
researcher in this area has ever commented on this problem before.

2 A continuum formulation of the saliency problem

The following section reviews the continuum formulation of the contour completion and
saliency problem as described in Williams and Thornber[11].

2.1 Shape distribution

Mumford[3] observed that the probability distribution of object boundary shapes could be
modeled by a Fokker-Planck equation of the following form:
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where ��	�
 � 
 �� is the probability that a particle is located at position, 	� � ��
 ��, and
is moving in direction, �, at time, �. This partial differential equation can be viewed as
a set of independent advection equations in � and � (the first and second terms) coupled
in the � dimension by the diffusion equation (the third term). The advection equations
translate probability mass in direction, �, with unit speed, while the diffusion term models
the Brownian motion in direction, with diffusion parameter, �. The combined effect of
these three terms is that particles tend to travel in straight lines, but over time they drift to
the left or right by an amount proportional to � �. Finally, the effect of the fourth term is
that particles decay over time, with a half-life given by the decay constant, � .

2.2 The propagators

The Green’s function,��	�
 � 
 �� � 	�
 
 
 ���, gives the probability that a particle observed at
position, 	�, and direction, 
, at time, ��, will later be observed at position, 	�, and direction,
�, at time, ��. It is the solution, ��	�
 � 
 ���, of the Fokker-Planck initial value problem with
initial value, ��	�
 � 
 ��� � Æ�	� � 	��Æ�� � 
� where Æ is the Dirac delta function. The
Green’s function is used to define two propagators. The long-time propagator:
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gives the probability that �	�
 �� and �	�
 
� are distinct edges from the boundary of a single
object. 1 The short-time propagator:
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gives the probability that �	�
 �� and �	�
 
� are from the boundary of a single object but are
really the same edge. In both of these propagators, ���� is a cut-off function with ���� � �
and �	���� ���� � �:
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The cut-off function is characterized by three parameters, �, �, and �. The parameter, �,
specifies where the cut-off is and � specifies how hard hard it is. The parameter, �, is the
scale of the edge detection process.

1We assume that the probability that two edges are the same depends only on the distance between
them, and that ������ ���� � ���� for particles travelling at unit speed.



2.3 Eigenfunctions

The integral linear operator,����, combines three sources of information: 1) the probability
that two edges belong to the same object; 2) the probability that the two edges are distinct;
and 3) the probability that the two edges exist. It is defined as follows:

��	�
 � � 	�
 
� � ��	�� �����	�
 � � 	�
 
���	�� �� (5)
where the input bias function, ��	��, gives the probability that an edge exists at 	�. As
described in Williams and Thornber[11], the right and left eigenfunctions, ���� and �����,
of ���� with largest positive real eigenvalue, �, play a central role in the computation of
saliency:
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Because ���� is invariant under a transformation which reverses the order and direction of
its arguments:
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the right and left eigenfunctions are related as follows:
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2.4 Stochastic completion field

The magnitude of the stochastic completion field, ��	�
 
�, equals the probability that a
closed contour satisfying a subset of the constraints exists at �	�
 
�. It is the sum of three
terms:
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where ���	�
 
� is a source field, and ����	�
 
� is a sink field:
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The purpose of writing ��	�
 
� in this way is to remove the contribution, � ��	�
 
�����	�
 
�,
of closed contours at scales smaller than � which would otherwise dominate the com-
pletion field. Given the above expression for the completion field, it is clear that the key
problem is computing the eigenfunction, ����, of���� with largest positive real eigenvalue.
To accomplish this, we can use the well known power method (see [4]). In this case, the
power method involves repeated application of the linear operator, ����, to the function,
����, followed by normalization:
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In the limit, as� gets very large, �������	�
 �� converges to the eigenfunction of����, with
largest positive real eigenvalue. We observe that the above computation can be considered
a continuous state, discrete time, recurrent neural network.

3 A discrete implementation of the continuum formulation

The continuous functions comprising the state of the computation are represented as
weighted sums of a finite set of shiftable-twistable basis functions. The weights form the
coefficient vectors for the functions. The computation we describe is biologically plausible
in the sense that all transformations of state are effected by linear transformations (or other
vector parallel operations) on the coefficient vectors.



3.1 Shiftable-twistable bases

The input and output of the above computation are functions defined on the continuous
space, �� � ��, of positions in the plane, ��, and directions in the circle, ��. For such
computations, the important symmetry is determined by those transformations, � ������ , of
�� � ��, which perform a shift in �� by 	��, followed by a twist in �� � �� through an
angle, ��. A twist through an angle, ��, consists of two parts: (1) a rotation, ��� , of ��

and (2) a translation in ��, both by ��. The symmetry, ������� , which is called a shift-twist
transformation, is given by the formula,
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A visual computation, �, on �� � �� is called shift-twist invariant if, for all �	��
 ��� �
�����, a shift-twist of the input by �	��
 ��� produces an identical shift-twist of the output.
This property can be depicted in the following commutative diagram:
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where ���� is the input, ����, is the output,
�� is the computation, and

	������� is the shift-
twist transformation. Correspondingly, we define a shiftable-twistable basis 2 of functions
on����� to be a set of functions on����� with the property that whenever a function,
��	�
 ��, is in their span, then so is ����������	�
 ���, for every choice of �	��
 ��� in�����.
As such, the notion of a shiftable-twistable basis on����� generalizes that of a shiftable-
steerable basis on��[2, 10].

Shiftable-twistable bases can be constructed as follows. Let ��	�
 �� be a function on� ��
�� which is periodic (with period �) in both spatial variables, 	�. In analogy with the
definition of a shiftable-steerable function on ��, we say that � is shiftable-twistable on
�� � �� if there are integers,  and ! , and interpolation functions, "�
���	��
 ���, such
that for each �	��
 ��� � �� � ��, the shift-twist of � by �	��
 ��� is a linear combination
of a finite number of basic shift-twists of � by amounts �	#�
����, i.e., if
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Here � � �$ is the basic shift amount and �� � ��$! is the basic twist amount.
The sum in equation (15) is taken over all pairs of integers, 	# � �#�
 #��, in the range,
� � #�
 #� %  , and all integers,�, in the range, � � � % ! .

The Gaussian-Fourier basis is the product of a shiftable-steerable basis of Gaussians in 	�
and a Fourier series basis in �. For the experiments in this paper, the standard deviation of
the Gaussian basis function, &�	�� � �

�'
����������

, equals the basic shift amount, �. We
regard &�	�� as a periodic function of period, � , which is chosen to be much larger than
�, so that &��$�
 �$�� and its derivatives are essentially zero. For each frequency, (, and
shift amount, � (where  � �$� is an integer), we define the Gaussian-Fourier basis
functions, ��
�
, by

��
�
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 �� � &�	�� 	#�� '�
�� (16)

Zweck and Williams[13] showed that the Gaussian-Fourier basis is shiftable-twistable.

2We use this terminology even though the basis functions need not be linearly independent.



3.2 Power method update formula

Suppose that �����	�
 �� can be represented in the Gaussian-Fourier basis as

�����	�
 �� �
�

�
�
 �
���
�
�


��
�
�	�
 ��� (17)

The vector, ����, with components, ����
�
�


, will be called the coefficient vector of �����	�
 ��.

In the next two sections, we demonstrate how the following integral linear transform:
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(i.e., the basic step in the power method) can be implemented as a discrete linear transform
in a Gaussian-Fourier shiftable-twistable basis:

������ � ������� (19)

3.3 The propagation operator P

In practice, we do not explicitly represent the matrix,�. Instead we compute the necessary
matrix-vector product using the advection-diffusion-decayoperator in the Gaussian-Fourier
shiftable-twistable basis, � Æ�, described in detail in Zweck and Williams[13]:
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where ������ � ������ � ����� and where:
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In the shiftable-twistable basis, the advection operator,�, is a discrete convolution:
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with the following kernel:
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where the "�
 are sinc functions. Let- be the number of Fourier series frequencies, (, used
in the shiftable-twistable basis, and let �� � ��$- . The diffusion-decay operator,�, is a
diagonal matrix:
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where � � ��

�
��

����� .

3.4 The bias operator�

In the continuum, the bias operator effects a multiplication of the function, ��	��, by the in-
put bias function, ��	��. Our aim is to identify an equivalent linear operator in the shiftable-
twistable basis. Suppose that both � and � are represented in a Gaussian basis, &�
�	��. Their
product is:
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Now, the product of two Gaussian basis functions, &�
 and &��, is a Gaussian of smaller vari-
ance which cannot be represented in the Gaussian basis, &�
. Because ��	����	�� is a linear



combination of the products of pairs of Gaussian basis functions, it cannot be represented
in the Gaussian basis either. However, we observe that the convolution of ��	����	�� and
a Gaussian, .�	�� 	 ���	�� ��	���, where .�	�� � �

��� '
�����������

, can be represented in the
Gaussian basis. It follows that there exists a matrix,�, such that:
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The formula for the matrix,�, is derived by first completing the square in the exponent of
the product of two Gaussians to obtain:
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This product is then convolved with . to obtain a function, ��	��, which is a shift of the
Gaussian basis function, &�	��. Finally we use the shiftability formula:
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where "�
 are the interpolation functions, &�
�	�� equals &�	� � �	#�, and � � �$ is the
shift amount, to express ��	�� in the Gaussian basis. The result is:
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4 Experimental results

In our experiments the Gaussian-Fourier basis consisted of  � ��� translates (in each
spatial dimension) of a Gaussian (of period, � � ����), and - � �� harmonic signals in
the orientation dimension. The standard deviation of the Gaussian was set equal to the shift
amount,� � �$ . For illustration purposes, all functions were rendered at a resolution of
���� ���. The diffusion parameter, �, equaled ������, and the decay constant, � , equaled
����. The time step, ��, used to solve the Fokker-Planck equation in the basis equaled
�$�. The parameters for the cut-off function used to eliminate self-loops were � � � and
� � ��.

In the first experiment, the input bias function, ��	��, consisted of twenty randomly posi-
tioned spots and twenty spots on the boundary of an avocado. The positions of the spots
are real valued, i.e., they do not lie on the grid of basis functions. See Fig. ?? (left). The
stochastic completion field computed using 32 iterations of the power method is shown in
Fig. ?? (right).

In the second experiment, the input bias function from the first experiment was rotated by
��Æ and translated by half the distance between the centers of adjacent basis functions,
����	Æ�	�� ��� 


�
� �

���. See Fig. ?? (left). The stochastic completion field is identical (up
to rotation and translation) to the one computed in the first experiment. This demonstrates
the Euclidean invariance of the computation. See Fig. ?? (right). The estimate of the
largest positive real eigenvalue, �, as a function of�, the power method iteration is shown
in Fig. ??.

5 Conclusion

We described a neural network which enhances and completes salient closed contours.
Even though the computation is implemented in a discrete network, its output is invariant
under continuous rotations and translations of the input pattern.
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