Skip to main content
Log in

Spontaneous symmetry breaking in self–organizing neural fields

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We extend the theory of self-organizing neural fields in order to analyze the joint emergence of topography and feature selectivity in primary visual cortex through spontaneous symmetry breaking. We first show how a binocular one-dimensional topographic map can undergo a pattern forming instability that breaks the underlying symmetry between left and right eyes. This leads to the spatial segregation of eye specific activity bumps consistent with the emergence of ocular dominance columns. We then show how a 2-dimensional isotropic topographic map can undergo a pattern forming instability that breaks the underlying rotation symmetry. This leads to the formation of elongated activity bumps consistent with the emergence of orientation preference columns. A particularly interesting property of the latter symmetry breaking mechanism is that the linear equations describing the growth of the orientation columns exhibits a rotational shift-twist symmetry, in which there is a coupling between orientation and topography. Such coupling has been found in experimentally generated orientation preference maps

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amari S-I. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27:77–87

    Article  PubMed  CAS  Google Scholar 

  • Amari S-I. (1980). Topographic organization of nerve fields. Bull Math Biol 42:339–364

    PubMed  CAS  Google Scholar 

  • Amari S-I. (1983). Field theory of self-organizing neural nets. IEEE Trans Man Cybern 13:741–748

    Google Scholar 

  • Amari S-I. (1989). Dynamical stability of formation of cortical maps. In: Arbib MA., Amari S-I (eds). Dynamical interactions in neural networks: models and data. Springer, Berlin

    Google Scholar 

  • Angelucci A., Levitt JB., Walton EJS., Hupe JM., Bullier J, Lund JS. (2002). Circuits for local and global signal integration in primary visual cortex. J Neurosci 22:8633–8646

    PubMed  CAS  Google Scholar 

  • Bartsch AP., van Hemmen JL. (2001). Combined Hebbian development of geniculocortical and lateral connectivity in a model of primary visual cortex. Biol Cybern 84:41–55

    Article  PubMed  CAS  Google Scholar 

  • Blasdel GG., Salama G. (1986). Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585

    Article  PubMed  CAS  Google Scholar 

  • Bonhoeffer T., Grinvald A. (1991). Orientation columns in cat are organized in pinwheel like patterns. Nature 364:166–146

    Google Scholar 

  • Bosking WH., Zhang Y., Schofield B., Fitzpatrick D. (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17:2112–2127

    PubMed  CAS  Google Scholar 

  • Bressloff PC., Cowan JD., Golubitsky M., Thomas PJ., Wiener M. (2001a). Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Phil Trans Roy Soc Lond B 356:299–330

    Article  CAS  Google Scholar 

  • Bressloff PC., Cowan JD., Golubitsky M., Thomas PJ. (2001b). Scalar and pseudoscalar bifurcations: pattern formation on the visual cortex. Nonlinearity 14:739–775

    Article  Google Scholar 

  • Bressloff PC., Cowan JD., Golubitsky M., Thomas PJ., Wiener M. (2002). What geometric visual hallucinations tell us about the visual cortex. Neural Comput 14:471–492

    Google Scholar 

  • Catalano SM., Shatz CJ. (1998). Activity-dependent cortical target selection by thalamic axons. Science 281:559–562

    Article  PubMed  CAS  Google Scholar 

  • Crowley JC., Katz LC. (2000). Early development of ocular dominance columns. Science 1271–1273

  • Elliott T., Shadbolt NR. (1999). A neurotrophic model for the development of the retinogeniculocortical pathway induced by spontaneous retinal waves. J Neurosci 19:7951–7970

    PubMed  CAS  Google Scholar 

  • Erwin E., Miller KD. (1998). Correlation-based development of ocularly matched orientation and ocular dominance maps: determination of required input activities. J Neurosci 18:9870–9895

    PubMed  CAS  Google Scholar 

  • Fellenz WA., Taylor JG. (2002). Establishing retinotopy by lateral–inhibition type homogeneous neural fields. Neurocomputing 48:313–322

    Article  Google Scholar 

  • Fitzpatrick D. (2000). Seeing beyond the receptive field in primary visual cortex. Curr Op Neurobiol 10:38–443

    Article  Google Scholar 

  • Folias SE., Bressloff PC. (2004). Breathing pulses in an excitatory neural network. SIAM J Appl Dyn Syst 3:378–407

    Article  Google Scholar 

  • Geman S. (1979). Some averaging and stability results for random differential equations. SIAM J Appl Math 36:86–105

    Article  Google Scholar 

  • Ghosh A., Shatz CJ. (1992). Pathfinding and target selection by developing geniculocortical axons. J Neurosci 12:39–55

    PubMed  CAS  Google Scholar 

  • Goodhill GJ. (1993). Topography and ocular dominance: a model exploring positive correlations. Biol Cybern 69:109–118

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH., Wiesel TN. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Neurosci 3:1116–1133

    Google Scholar 

  • Hubel DH., Wiesel TN. (1977). Functional architecture of macaque monkey visual cortex. Proc Roy Soc Lond B 198:1–59

    CAS  Google Scholar 

  • Hubel DH., Wiesel TN., LeVay S. (1977). Plasticity of ocular dominance columns in monkey striate cortex. Phil Trans Roy Soc Lond B 278:377–409

    Article  CAS  Google Scholar 

  • Kohonen T. (1982). Self–organized formation of topologically correct feature maps. Biol Cybern 43:59–69

    Article  Google Scholar 

  • Lee HY., Yahyanejad M., Kardar M. (2003). Symmetry considerations and development of pinwheels in visual maps. Proc Natl Acad Sci (USA)

  • LeVay S., Nelson SB. (1991). Columnar organization of the visual cortex. In: Leventhal AP (eds). The neural basis of visual function. CRC Press, Boca Raton, pp. 266–315

    Google Scholar 

  • LeVay S., Stryker MP., Shatz CJ. (1978). Ocular dominance columns and their development in layer IV of the cat’s visual cortex. J Comp Neurol 179:223–244

    Article  PubMed  CAS  Google Scholar 

  • Linsker R. (1986). From basic network principles to neural architecture: emergence of spatial-opponent cells. Proc Nat Acad Sci (USA) 83:7508–7512

    Article  CAS  Google Scholar 

  • Mackay D., Miller KD. (1990). Analysis of Linsker’s application of Hebbian rules to linear networks. Network: Comput Neural Syst 1: 257–297

    Article  Google Scholar 

  • Malach R., Amir Y., Harel M., Grinvald A. (1993). Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc Natl Acad Sci (USA) 90:10469–10473

    Article  CAS  Google Scholar 

  • Miller KD. (1994). A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity dependent competition between on- and off-center inputs. J Neurosci 14:409–441

    PubMed  CAS  Google Scholar 

  • Miller KD., MacKay DJC. (1994). The role of constraints in Hebbian learning. Neural Comput. 6:100–124

    Google Scholar 

  • Miller KD., Keller JB., Stryker MP. (1989). Ocular dominance column development: analysis and simulation. Science 245:605–614

    Article  PubMed  CAS  Google Scholar 

  • Obermayer K., Blasdel GG. (1993). Geometry of orientation and ocular dominance columns in monkey striate cortex. J Neurosci 13:4114–4129.

    PubMed  CAS  Google Scholar 

  • Penn AA., Shatz CJ. (1999). Brain waves and brain wiring: The role of endogenous and sensory-driven neural activity in development. Pedeatric Res 45:447–458

    Article  CAS  Google Scholar 

  • Piepenbrock C., Obermayer K. (1999). The role of lateral cortical competition in ocular dominance development. Proc Adv Neural Inf Proc Syst

  • Pinto D., Ermentrout GB. (2001). Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses. SIAM J Appl Math 62:226–243

    Google Scholar 

  • Shmuel A., Korman M., Harel M., Grinvald A., Malach R. (1998). Relationship of feedback connections from area V2 to orientation domains in area V1 of the primate. Soc Neurosci Abstr 24:767

    Google Scholar 

  • Sincich LC., Blasdel GG. (2001). Oriented axon projections in primary visual cortex of the monkey. J Neurosci 21:4416–4426

    PubMed  CAS  Google Scholar 

  • Stryker MP., Harris WA. (1986). Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J Neurosci 6:2117–2133

    PubMed  CAS  Google Scholar 

  • Swindale NV. (1996). The development of topography in visual cortex: a review of models. Network 7:161–247

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi A., Amari S-I. (1979). Formation of topographic maps and columnar microstructures in nerve fields. Biol Cybern 35:63–72

    Article  PubMed  CAS  Google Scholar 

  • Taylor JG. (1999). Neural ‘bubble’ dynamics in two dimensions: foundations. Biol Cybern 80:393–409

    Article  Google Scholar 

  • Thomas PJ., Cowan JD. (2004). Symmetry induced coupling of cortical feature maps. Phys Rev Lett 92:188101

    Article  PubMed  CAS  Google Scholar 

  • Werner H., Richter T. (2001). Circular stationary solutions in two–dimensional neural fields. Biol Cybern 85:211–217

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw VA., Cowan JD. (1981). Specificity and plasticity of retinotectal connections: a computational model. J Neurosci 1:1369–1387

    PubMed  CAS  Google Scholar 

  • Willshaw D., Price D. (2003). Models for topographic map formation. In: van Ooyen A (eds). Modeling Neural Development. MIT Press, Cambridge MA, pp. 213–244

    Google Scholar 

  • Willshaw DJ., von der Malsburg C. (1976). How patterned neural connections can be set up by self-organization. Proc Roy Soc Lond B 194:431–445

    Article  CAS  Google Scholar 

  • Wimbauer S., Gerstner W., van Hemmen JL. (1998). Analysis of a correlation–based model for the development of orientation–selective fields in the visual cortex. Network: Comp Neural Syst 9:449–466

    Article  CAS  Google Scholar 

  • Wolf F., Geisel T. (1998). Spontaneous pinwheel annihilation during visual development. Nature 395:73–78

    Article  PubMed  CAS  Google Scholar 

  • Wong ROL., Meister M., Shatz CJ. (1993). Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11:923–938

    Article  PubMed  CAS  Google Scholar 

  • Woodbury GA., van der Zwan R., Gibson WG. (2002). Correlation model for joint development of refined retinotopic map and ocular dominance columns. Vis Res 42:2295–2310

    Article  PubMed  Google Scholar 

  • Yoshioka T., Blasdel GG., Levitt JB., Lund JS. (1996). Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase–reactive regions in macaque monkey striate cortex. Cerebral Cortex 6:297–310

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressloff, P.C. Spontaneous symmetry breaking in self–organizing neural fields. Biol Cybern 93, 256–274 (2005). https://doi.org/10.1007/s00422-005-0002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0002-3

Keywords

Navigation