Skip to main content
Log in

Adjustment of the human arm viscoelastic properties to the direction of reaching

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The viscoelastic properties of the human arm were measured by means of short force perturbations during fast reaching movements in two orthogonal directions. A linear spring model with time delay described the neuromuscular system of the human arm. The obtained viscoelastic parameters ensured movement stability in spite of the time delay of 50 ms. The stiffness and viscosity ellipses appeared to be predominantly orthogonal to the movement direction, which reduced the effect of force perturbation in the direction orthogonal to the reaching movement. Thus, it can be argued that the viscoelastic properties of the neuromuscular system of the human arm are adjusted to the direction of movement according to a “path preserving” strategy, which minimizes the deviation of the movement path from a straight line, when exposed to an unexpected external force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bennett DJ (1994) Stretch responses in the human elbow joint during a voluntary movement. J Physiol (Lond) 474:339–351

    CAS  Google Scholar 

  • Bennett DJ, Hollerbach JM, Xu Y, Hunter IW (1992) Time varying stiffness of human elbow joint during cyclic voluntary movement. Exp Brain Res 88:433–422

    Article  PubMed  CAS  Google Scholar 

  • Biryukova EV, Roschin VY, Frolov AA, Ioffe ME, Massion J, Dufosse M (1999) Forearm postural control during unloading: anticipatory changes in elbow stiffness Exp Brain Res 124:107–117

    Article  PubMed  CAS  Google Scholar 

  • Biryukova EV, Roby-Brami A, Frolov AA, Mokhtari M (2000) Kinematics of human arm reconstructed from spatial tracking system recordings. J Biomech 33:985–995

    Article  PubMed  CAS  Google Scholar 

  • Burdet E, Osu R, Franklin DW, Milner TE, Kawato M (2001) The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414:446–449

    Article  PubMed  CAS  Google Scholar 

  • Cesari P, Shiratori T, Olivato P, Duarte M (2001) Analysis of kinematically redundant reaching movements using the equilibrium-point hypothesis. Biol Cybern 84:217–226

    Article  PubMed  CAS  Google Scholar 

  • Domen K, Latash ML, Zatsiorsky VM (1999) Reconstruction of equilibrium trajectories during whole-body movements. Biol Cybern 80:195–204

    Article  PubMed  CAS  Google Scholar 

  • Feldman AG (1979) Central and reflex mechanisms of motor control (in Russian). Nauka, Moscow

    Google Scholar 

  • Feldman AG, Levin MF (1995) The origin and use of positional frames of reference in motor control. Behav Brain Sci 18:723–806

    Article  Google Scholar 

  • Flanagan AG, Ostry DJ, Feldman AG (1993) Control of trajectory modification in target-directed reaching. J Mot Behav 25:140–152

    Article  PubMed  Google Scholar 

  • Flash T (1987) The control of hand equilibrium trajectories in multi-joint arm movements. Biol Cybern 57:257–274

    Article  PubMed  CAS  Google Scholar 

  • Flash T, Mussa-Ivaldi FA (1990) Human arm stiffness characteristics during the maintenance of posture. Exp Brain Res 82: 315–326

    Article  PubMed  CAS  Google Scholar 

  • Franklin DW, Burdet E, Osu R, Kawato M, Milner TE (2003) Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics. Exp Brain Res 151(2):145–157

    Article  PubMed  Google Scholar 

  • Frolov AA, Dufossé M, Řízek S, Kaladjian A (2000) On the possibility of linear modelling the human arm neuromuscular apparatus. Biol Cybern 82:499–515

    Article  PubMed  CAS  Google Scholar 

  • Gomi H, Kawato M (1997) Human arm stiffness and equilibrium-point trajectory during multi-joint movement. Biol Cybern 76(3):163–171

    Article  PubMed  CAS  Google Scholar 

  • Gomi H, Osu R (1998) Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. J Neurosci 18(21):8965–8978

    PubMed  CAS  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C (1994) Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp Brain Res 99(1):97–111

    Article  PubMed  CAS  Google Scholar 

  • Gribble PL, Ostry DJ, Sanguineti V, Laboissiére R (1998) Are complex control signals required for human arm movement? J Neurophysiol 79:1409–1424

    PubMed  CAS  Google Scholar 

  • Hasan Z (1983) A model of spindle afferent response to muscle stretch. J Neurophysiol 49(4):989–1006

    PubMed  CAS  Google Scholar 

  • Hogan N (1985) The mechanics of multi-joint posture and movement control. Biol Cybern 52:315–331

    Article  PubMed  CAS  Google Scholar 

  • Katayama M, Kawato M (1993) Virtual trajectory and stiffness ellipse during multi-joint arm movement predicted by neural inverse models. Biol Cybern 69:353–362

    PubMed  CAS  Google Scholar 

  • Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57:169–185

    Article  PubMed  CAS  Google Scholar 

  • Koshland GF, Hasan Z (2000) Electromyographic responses to a mechanical perturbation applied during impending arm movements in different directions: one-joint and two-joint conditions. Exp Brain Res 132(4):485–499

    Article  PubMed  CAS  Google Scholar 

  • Lacquaniti F, Carrozo M, Borghese NA (1993) Time-varying mechanical behavior of multijointed arm in man. J Neurophysiol 69:1443–1463

    PubMed  CAS  Google Scholar 

  • Mah CD (2001) Spatial and temporal modulation of joint stiffness during multijoint movement. Exp Brain Res 136:492–506

    Article  PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi FA, Hogan N, Bizzi E (1985) Neural, mechanical, and geometric factors subserving arm posture in humans. J Neurosci 5:2732–2743

    PubMed  CAS  Google Scholar 

  • Perreault EJ, Kirsch RF, Crago PE (2002) Voluntary control of static endpoint stiffness. J Neurophysiol 87:2808–2816

    PubMed  Google Scholar 

  • Prokopenko RA, Frolov AA, Biryukova EV, Roby-Brami A (2001) Assessment of the accuracy of a human arm model with seven degrees of freedom. J Biomech 34:177–185

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R (1993) Control of equilibrium position and stiffness through postural modules. J Mot Behav 25:228–241

    Article  PubMed  Google Scholar 

  • Shadmehr R, Arbib MA (1992) A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system. Biol Cybern 66:463–477

    Article  PubMed  CAS  Google Scholar 

  • Stein RB, Kearney RE (1995) Nonlinear behavior of muscle reflexes at the human ankle joint. J Neurophysiol 73: 65–72

    PubMed  CAS  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci. 5(11):1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Tsuji T, Morasso P, Goto K, Ito K (1995) Human hand impedance characteristics during maintained posture in multi-joint arm movements. Biol Cybern 72:475–485

    Article  PubMed  CAS  Google Scholar 

  • Winters JM, Stark L (1987) Muscle models: what is gained and what is lost by varying model complexity. Biol Cybern 55:403–420

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Prokopenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frolov, A.A., Prokopenko, R.A., Dufossè, M. et al. Adjustment of the human arm viscoelastic properties to the direction of reaching. Biol Cybern 94, 97–109 (2006). https://doi.org/10.1007/s00422-005-0018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0018-8

Keywords

Navigation