Skip to main content
Log in

Learning invariant object recognition in the visual system with continuous transformations

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The cerebral cortex utilizes spatiotemporal continuity in the world to help build invariant representations. In vision, these might be representations of objects. The temporal continuity typical of objects has been used in an associative learning rule with a short-term memory trace to help build invariant object representations. In this paper, we show that spatial continuity can also provide a basis for helping a system to self-organize invariant representations. We introduce a new learning paradigm “continuous transformation learning” which operates by mapping spatially similar input patterns to the same postsynaptic neurons in a competitive learning system. As the inputs move through the space of possible continuous transforms (e.g. translation, rotation, etc.), the active synapses are modified onto the set of postsynaptic neurons. Because other transforms of the same stimulus overlap with previously learned exemplars, a common set of postsynaptic neurons is activated by the new transforms, and learning of the new active inputs onto the same postsynaptic neurons is facilitated. We demonstrate that a hierarchical model of cortical processing in the ventral visual system can be trained with continuous transform learning, and highlight differences in the learning of invariant representations to those achieved by trace learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almassy N, Edelman GM, Sporns O (1998) Behavioral constraints in the development of neuronal properties: a cortical model embedded in a real-world device. Cereb Cortex 8:346–361

    Article  PubMed  CAS  Google Scholar 

  • Artola A, Singer W (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 16:480–487

    Article  PubMed  CAS  Google Scholar 

  • Bartlett MS, Sejnowski TJ (1998) Learning viewpoint-invariant face representations from visual experience in an attractor network. Netw Comput Neural Syst 9:399–417

    Article  CAS  Google Scholar 

  • Becker S (1999) Implicit learning in 3D object recognition: the importance of temporal context. Neural Comput 11:347–374

    Article  PubMed  CAS  Google Scholar 

  • Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94:115–147

    Article  PubMed  CAS  Google Scholar 

  • Booth MCA, Rolls ET (1998) View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cerebral Cortex 8:510–523

    Article  PubMed  CAS  Google Scholar 

  • Desimone R (1991) Face-selective cells in the temporal cortex of monkeys. J Cognit Neurosci 3:1–8

    Google Scholar 

  • Elliffe MCM, Rolls ET, Stringer SM (2002) Invariant recognition of feature combinations in the visual system. Biol Cybern 86:59–71

    Article  PubMed  CAS  Google Scholar 

  • Földiák P (1991) Learning invariance from transformation sequences. Neural Comput 3:194–200

    Google Scholar 

  • Frégnac Y (1996) Dynamics of cortical connectivity in visual cortical networks: an overview. J Physiol Paris 90:113–139

    Article  PubMed  Google Scholar 

  • Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36:193–202

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K (2003) Neocognitron for handwritten digit recognition. Neurocomputing 51:161–180

    Article  Google Scholar 

  • Fukushima K, Tanigawa M (1996) Use of different thresholds in learning and recognition. Neurocomputing 11:1–17

    Article  Google Scholar 

  • Hasselmo ME, Rolls ET, Baylis GC, Nalwa V (1989) Object-centered encoding by face-selective neurons in the cortex in the superior temporal sulcus of the monkey. Exp Brain Res 75:417–429

    Article  PubMed  CAS  Google Scholar 

  • Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Addison Wesley, Wokingham, UK

    Google Scholar 

  • Ito M, Tamura H, Fujita I, Tanaka K (1995) Size and position invariance of neuronal response in monkey inferotemporal cortex. J Neurophysiol 73:218–226

    PubMed  CAS  Google Scholar 

  • Kobotake E, Tanaka K (1994). Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J Neurophysiol 71:856–867

    Google Scholar 

  • Koenderink JJ (1990) Solid shape. MIT, Cambridge

    Google Scholar 

  • Op de Beeck H, Vogels R (2000) Spatial sensitivity of macaque inferior temporal neurons. J Comp Neurol 426:505–518

    Article  CAS  Google Scholar 

  • Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET (1992) Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Phil Trans Roy Soc 335:11–21

    Article  CAS  Google Scholar 

  • Rolls ET (2000) Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron 27:205–218

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET (2005) Emotion explained. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET, Baylis GC (1986) Size and contrast have only small effects on the responses to faces of neurons in the cortex of the superior temporal sulcus of the monkey. Exp Brain Res 65:38–48

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Cowey A (1970) Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys. Exp Brain Res 10:298–310

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Baylis GC, Hasselmo ME (1987) The responses of neurons in the cortex in the superior temporal sulcus of the monkey to band-pass spatial frequency filtered faces. Vis Res 27:311–326

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Baylis GC, Leonard CM (1985) Role of low and high spatial frequencies in the face-selective responses of neurons in the cortex in the superior temporal sulcus. Vis Res 25:1021–1035

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Deco G (2002) Computational neuroscience of vision. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET, Milward T (2000) A model of invariant object recognition in the visual system: learning rules, activation functions, lateral inhibition, and information-based performance measures. Neural Comput 12:2547–2572

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Stringer SM (2001) Invariant object recognition in the visual system with error correction and temporal difference learning. Netw Comput Neural Syst 12:111–129

    Article  CAS  Google Scholar 

  • Rolls ET, Treves A, Tovee MJ (1997a) The representational capacity of the distributed encoding of information provided by populations of neurons in the primate temporal visual cortex. Exp Brain Res 114:149–162

    Article  CAS  Google Scholar 

  • Rolls ET, Treves A, Tovee M, Panzeri S (1997b) Information in the neuronal representation of individual stimuli in the primate temporal visual cortex. J Comput Neurosci 4:309–333

    Article  CAS  Google Scholar 

  • Singer W (1995) Development and plasticity of cortical processing architectures. Science 270:758–764

    Article  PubMed  CAS  Google Scholar 

  • Stringer SM, Rolls ET (2002) Invariant object recognition in the visual system with novel views of 3D objects. Neural Comput 14:2585–2596

    Article  PubMed  Google Scholar 

  • Tanaka K, Saito H, Fukada Y, Moriya M (1991) Coding visual images of objects in the inferotemporal cortex of the macaque monkey. JNeurophysiol 66:170–189

    CAS  Google Scholar 

  • Tovee MJ, Rolls ET, Azzopardi P (1994) Translation invariance and the responses of neurons in the temporal visual cortical areas of primates. J Neurophysiol 72:1049–1060

    PubMed  CAS  Google Scholar 

  • Ullman S (1996) High-level vision. MIT, Cambridge

    Google Scholar 

  • Vogels R, Biederman I (2002) Effects of illumination intensity and direction on object coding in macaque inferior temporal cortex. Cereb Cortex 12:756–766

    Article  PubMed  Google Scholar 

  • Wallis G, Rolls ET (1997) Invariant face and object recognition in the visual system. Progr Neurobiol 51:167–194

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. T. Rolls.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stringer, S.M., Perry, G., Rolls, E.T. et al. Learning invariant object recognition in the visual system with continuous transformations. Biol Cybern 94, 128–142 (2006). https://doi.org/10.1007/s00422-005-0030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0030-z

Keywords

Navigation