Skip to main content

Advertisement

Log in

Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology

  • Review
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In the present review, signal-processing capabilities of the canal lateral line organ imposed by its peripheral architecture are quantified in terms of a limited set of measurable physical parameters. It is demonstrated that cupulae in the lateral line canal organ can only partly be described as canal fluid velocity detectors. Deviation from velocity detection may result from resonance, and can be characterized by the extent to which a single dimensionless resonance number, N r , exceeds 1. This number depends on four physical parameters: it is proportional to cupular size, cupular sliding stiffness and canal fluid density, and inversely proportional to the square of fluid viscosity. Situated in a canal, a cupula may benefit from its resonance by compensating for the limited frequency range of water motion that is efficiently transferred into the lateral line canal. The peripheral transfer of hydrodynamic signals, via canal and cupula, leads to a nearly constant sensitivity to outside water acceleration in a bandwidth that ranges from d.c. to a cut-off frequency of up to several hundreds of Hertz, significantly exceeding the cut-off frequency of the lateral line canal. Threshold values of hydrodynamic detection by the canal lateral line organ are derived in terms of water displacement, water velocity, water acceleration and water pressure gradients and are shown to be close to the detection limits imposed by hair cell mechano-transduction in combination with the physical constraints of peripheral lateral line signal transfer. The notion that the combination of canal- and cupular hydrodynamics effectively provides the lateral line canal organ with a constant sensitivity to water acceleration at low frequencies so that it consequently functions as a low-pass detector of pressure gradients, supports the appropriateness of describing it as a sense organ that “feels at a distance” (Dijkgraaf in Biol Rev 38:51–105, 1963)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Latif H, Hassan ES, von Campenhausen C (1990) Sensory performance of blind Mexican cave fish after destruction of the canal neuromasts. Naturwissenschaften 77:237–239

    Article  PubMed  CAS  Google Scholar 

  • Batchelor GK (1967) An introduction to fluid mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • von Békésy G (1960) Experiments in hearing. ASA AIP report, McGraw-Hill, New York

    Google Scholar 

  • Bleckmann H (1980) Reaction time and stimulus frequency in prey localization in the surface-feeding fish Aplocheilus lineatus. J Comp Physiol A 140:163–172

    Article  Google Scholar 

  • Bleckmann H (1993) Role of the lateral line in fish behaviour. In: Pitcher TJ (eds). Behaviour of Teleost fishes 2nd edn. Chapman & Hall, London, pp 201–246

    Google Scholar 

  • Bleckmann H, Breithaupt T Blickhan R, Tautz J (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs and crustaceans. J Comp Physiol A 168:749–757

    PubMed  CAS  Google Scholar 

  • de Boer E (1980) Auditory physics. Physical principles in hearing theory. I Phys reports 62:87–174

    Google Scholar 

  • Cahn PH (1967) Lateral line detectors. Indiana University Press, Bloomington

    Google Scholar 

  • Ćurčić-Blake B, van Netten SM (2005) Rapid responses of the cupula in the lateral line of ruffe (Gymnocephalus cernuus). J Comp Physiol A, 191:393–401

    Article  Google Scholar 

  • Coombs S, Görner P, Münz H (1989) The mechanosensory lateral line: neurobiology and evolution. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Coombs, S, Hastings, M, Finneran, JJ (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178:359–371

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Janssen J (1990) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol A 167:557–567

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds). Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 553–593

    Google Scholar 

  • Coombs S, Janssen J, Montgomery JC (1992) Functional and evolutionary implications of peripheral diversity in lateral line systems. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, Berlin Heidelberg New York, pp 267–294

    Google Scholar 

  • Coombs S, Montgomery JC (1992) Fibers innervating different parts of the lateral line system of an Antarctic Notothenioid, Trematomus bernacchii, have similar frequency responses, despite large variations in the peripheral morphology. Brain Behav Evol 40:217–233

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, Berlin Heidelberg New York, pp 319–362

    Google Scholar 

  • Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730

    Article  PubMed  CAS  Google Scholar 

  • Denton EJ, Blaxter, JHS (1976) The mechanical relationships between the clupeid swimbladder, inner ear and the lateral line. J Mar Biol Assoc UK 56:787–807

    Article  Google Scholar 

  • Denton EJ, Gray JAB (1982) The rigidity of fish and patterns of lateral line stimulation. Nature 297:679–681

    Article  PubMed  CAS  Google Scholar 

  • Denton EJ, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc R Soc Lond B 218:1–26

    PubMed  CAS  Google Scholar 

  • Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral line of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 595–617

    Google Scholar 

  • Denton EJ, Gray JAB (1989) Some observations on the forces acting on neuromasts in fish lateral line canals. In: Coombs S, Görner P, Münz H (eds). The mechanosensory lateral line: neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 229–246

    Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral-line organs. Biol Rev 38:51–105

    Article  PubMed  CAS  Google Scholar 

  • Elepfandt A (1982) Accuracy of taxis response to water waves in the clawed toad (Xenopus laevis Daudin) with intact or with lesioned lateral line system. J Comp Physiol 148:535–545

    Article  Google Scholar 

  • Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Hydrodynamic stimuli and the fish lateral line. Nature 408:51–52

    Article  PubMed  CAS  Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still- and running water. J Comp Physiol A 188:513–526

    Article  CAS  Google Scholar 

  • Enger PS, Kalmijn AJ, Sand O (1989) Behavioral investigations on the functions of the lateral line and inner ear in predation. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 575–587

    Google Scholar 

  • Flock Å (1965) Electron microscopic and electro-physiological studies on the lateral line organ. Acta Oto-Laryngol Suppl 199:1–90

    Google Scholar 

  • Géléoc GS, Lennan GW, Richardson GP, Kros CJ (1997) A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc R Soc Lond B 1997 264:611–621

    Article  Google Scholar 

  • Görner P (1963) Untersuchungen zur Morphologie und Electrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). Z Vergl Physiol 47:316–338

    Article  Google Scholar 

  • Harris GG, van Bergeijk WA (1962) Evidence that the lateral line organ responds to near field displacements of sound sources in water. J Acoust Soc Am 34:1831–1841

    Article  Google Scholar 

  • Harris GG, Frishkopf LS, Flock Å (1970) Receptor potentials from hair cells of the lateral line. Science 167:76–79

    Article  PubMed  CAS  Google Scholar 

  • Hassan ES (1986) On the discrimination of spatial intervals by the blind cave fish (Anoptichthys jordani). J Comp Physiol A 159:701–710

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra D, Janssen J (1985) Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Env Biol Fishes 12:111–117

    Article  Google Scholar 

  • Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1:189–199

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth AJ, ChoeY, Mehta AD, Martin P (2000) Putting ion channels to work: Mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci USA 97:11765–11772

    Article  PubMed  CAS  Google Scholar 

  • Jielof R, Spoor A, de Vries H (1952) The microphonic activity of the lateral line. J Physiol 116:137–157

    PubMed  CAS  Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 83–130

    Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: Neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 187–215

    Google Scholar 

  • Karlsen HE, Sand O (1987) Selective and reversible blocking of the lateral line in freshwater fish. J Exp Biol 133:249–263

    Google Scholar 

  • Kelly JP, van Netten SM (1991) Topography and mechanics of the cupula in the fish lateral line. Variations of cupular structure and composition in three dimensions. J Morph 207:23–36

    CAS  Google Scholar 

  • Kroese ABA, van der Zalm JM, van den Bercken J (1978) Frequency response of the lateral line organ of Xenopus laevis. Pfluegers Arch 375:167–175

    Article  CAS  Google Scholar 

  • Kroese ABA, van den Bercken J. (1980) Dual action of ototoxic antibiotics on sensory hair cells. Nature 283:395–397

    Article  PubMed  CAS  Google Scholar 

  • Kroese ABA, van den Bercken J (1982) Effects of ototoxic antibiotics on sensory hair cell functioning. Hearing Res 6:183–97

    Article  CAS  Google Scholar 

  • Kroese ABA, van Netten SM (1989) Sensory transduction in lateral line sensory hair cells. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: Neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 265–284

    Google Scholar 

  • Kroese ABA, Schellart NAM (1992) Velocity- and acceleration sensitive units in the trunk lateral line of the trout. J Neurophysiol 68:2212–2221

    PubMed  CAS  Google Scholar 

  • Kuiper JW (1956) The microphonic effect of the lateral line organ. PhD thesis, University of Groningen, The Netherlands

    Google Scholar 

  • Lamb H (1932) Hydrodynamics. Reprint 6th edn. Dover, New- York

    Google Scholar 

  • Landau LD, Lifshitz EM (1980) Statistical physics, Part 1 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Landau LD, Lifshitz EM (1987) Fluid mechanics 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Leydig F (1850) Ueber die Schleimkanäle der Knochenfische. Müll Arch Anat Physiol 170–181

  • Liff HJ, Shamres S (1972) Structure and motion of cupulae of lateral line organs in Necturus maculosus III. A technique for measuring the motion of free-standing lateral line cupulae.Q Progr Rep Res Lab Electr MIT 104:332–336

    Google Scholar 

  • van Maarseveen JThPW (1994) Mechanophysiological investigation on the lateral line of the ruffe. PhD Thesis University of Groningen, The Netherlands

    Google Scholar 

  • Markin VS, Hudspeth AJ (1995) Gating-spring models of mechanoelectrical transduction by hair cells of the internal ear. Annu Rev Biophys Biomol Struct 24:59–83

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Jülicher F, Hudspeth AJ (2003) The contribution of transduction channels and adaptation motors to the the hair cell’s active process. In: Gummer AW (eds) Biophysics of the cochlea: From molecules to models. World Scientific, Singapore, pp 3–15

    Chapter  Google Scholar 

  • Mathews J, Walker RL (1970) Mathematical methods of physics. Benjamin, New York

    Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963

    Article  CAS  Google Scholar 

  • Montgomery JC, Coombs S, Janssen J (1994) Form and function relationships in lateral line systems: Comparative data from six species of Antarctic notothenioid fish. Brain Behav Evol 44:299–306

    Article  PubMed  CAS  Google Scholar 

  • Montgomery JC, Macdonald JA (1987) Sensory tuning of lateral line receptors in Antartic fish to the movements of planktonic prey. Science 235:195–196

    Article  PubMed  Google Scholar 

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157:555–568

    Article  Google Scholar 

  • Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: Neurobiology and evolution. Springer, Berlin Heidelberg New York New York, pp. 285–297

    Google Scholar 

  • van Netten SM (1988) Laser interferometer microscope for the measurement of nanometer vibrational displacements of a light scattering microscopic object. J Acoust Soc Am 83:1667–1674

    Article  Google Scholar 

  • van Netten SM (1991) Hydrodynamics of the excitation of the cupula in the fish canal lateral line. J Acoust Soc Am 89:310–319

    Article  Google Scholar 

  • van Netten SM, Dinklo T, Marcotti W, Kros CJ (2003) Channel gating forces govern accuracy of mechano-electrical transduction in hair cells. Proc Natl Acad Sci USA 100:15510–15515

    Article  PubMed  CAS  Google Scholar 

  • van Netten SM, Karlsson KJ, Khanna SM and Flock Å (1994) Effects of quinine on the mechanical frequency response of the cupula in the fish lateral line. Hearing Res 73:223–230

    Article  Google Scholar 

  • van Netten SM, Khanna SM (1994) Stiffness changes of the cupula associated with the mechanics of hair cells in the fish lateral line. Proc Natl Acad Sci USA 91:1549–1553

    Article  PubMed  Google Scholar 

  • van Netten SM, Kroese ABA (1987) Laser interferometric measurements on the dynamic behavior of the cupula in the fish lateral line. Hearing Res 29: 55–61

    Article  Google Scholar 

  • van Netten SM, Kroese ABA (1989) Dynamic behavior and micromechanical properties of the cupula. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: Neurobiology and evolution. Springer, Berlin Heidelberg New York New York, pp 247–263

    Google Scholar 

  • van Netten SM., Kros CJ (2000). Gating energies and forces of the mammalian hair cell transducer channel and related hair bundle mechanics. Proc R Soc Lond B Biol Sci 267:1915–1923

    Article  Google Scholar 

  • van Netten SM, van Maarseveen JThPW (1994) Mechanophysiological properties of the supraorbital lateral line canal in ruffe (Acerina Cernua L.) Proc R Soc Lond B 256:239–246

    Article  Google Scholar 

  • van Netten SM (1997) Hair cell mechano-transduction: Its influence on the gross mechanical characteristics of a hair cell organ. Biophys Chem 68:43–52

    Article  PubMed  Google Scholar 

  • Nicolson T, Rusch A, Friedrich RW, Granato M, Ruppersberg JP, Nusslein-Volhard C (1998) Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron 20:271–83

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: Neurobiology and evolution. Springer, Berlin Heidelberg New York New York, pp 17–78

    Google Scholar 

  • Olson ES (1998) Observing middle and inner ear mechanics with novel intracochlear pressure sensors. J Acoust Soc Am 103:3445–3463

    Article  PubMed  CAS  Google Scholar 

  • Partridge BL, Pitcher TJ (1980) The sensory basis of fish schools: relative roles of lateral line and vision. J Comp Phys 135:315–325

    Article  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R. (2002) Mechanisms of active hair bundle motion in auditory hair cells. J Neurosci. 22:44–52

    PubMed  CAS  Google Scholar 

  • Russell IJ (1976) Amphibian lateral line receptors. In: Llinas R, Precht W (eds) Frog Neurobiology. Springer, Berlin Heidelberg New York, pp 513–550

    Google Scholar 

  • Russell IJ, Kossl M, Richardson GP (1992). Nonlinear mechanical responses of mouse cochlear hair bundles. Proc R Soc Lond B Biol Sci 250:217–27

    Article  CAS  Google Scholar 

  • Sand O (1984) Lateral-line systems. In: BolisL, Keynes RD, Maddrell SHP (eds) Comparative physiology of sensory systems. Cambridge University Press, London pp 3–32

    Google Scholar 

  • Schlichting H (1979) Boundary layer theory 7th edn. McGraw-Hill, New York

    Google Scholar 

  • Schulze FE (1861) Über die Nervenendigung in den sogenannten Schleimkanälen der Fische und über entsprechende Organe der durch Kiemen athmenden Amphibien. Arch Anat Physiol Lpz 759–769

  • Sexl T (1930) Über den von E.G. Richardson entdeckten “Annulareffekt”. Z Phys 61:349–362

    Article  Google Scholar 

  • Sidi S, Friedrich RW, Nicolson T (2003). NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99

    Article  PubMed  CAS  Google Scholar 

  • Söllner C, Rauch GJ, Siemens J, Geisler R, Schuster SC, The Tübingen (2000) Screen Consortium, Müller U, Nicolson T (2004) Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428:955–959

    Google Scholar 

  • Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Camb Phil Soc 9:6–106

    Google Scholar 

  • Strelioff D, Honrubia V (1978) Neural transduction in Xenopus Laevis lateral line system. J Neurophysiol 41:432–444

    PubMed  CAS  Google Scholar 

  • Tsang PTSK (1997) Laser interferometric flow measurements in the lateral line organ. PhD thesis, University of Groningen, The Netherlands

    Google Scholar 

  • Tsang PTSK, van Netten SM (1997) Fluid flow profiles measured in the supraorbital lateral line canal of the ruff. In: Lewis ER, Long GR, Lyon RF, Narris PM, C.R. Steele CR, Hecht-Poinar E (eds) Diversity in auditory mechanics. World Scientific, Singapore, pp. 25–31

    Google Scholar 

  • Webb JF (1989) Developmental constraints and evolution of the lateral line system in teleost fishes. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: Neurobiology and evolution. Springer, Berlin Heidelberg New York New York, pp 79–97

    Google Scholar 

  • Wiersinga-Post JEC, van Netten SM (1998) Amiloride causes changes in the mechanical properties of hair cell bundles in the fish lateral line similar to those induced by dihydrostreptomycin. Proc R Soc Lond B 265:615–623

    Article  Google Scholar 

  • Wiersinga-Post JEC, van Netten SM (2000) Temperature dependency of cupular mechanics and hair cell frequency selectivity in the fish canal lateral line organ. J Comp Physiol 186: 949–956

    Article  Google Scholar 

  • Womersley JR (1955) Method for the calculation of velocity, rate of flow and drag in arteries when the pressure gradient is known. J Physiol 127:553–563

    PubMed  CAS  Google Scholar 

  • Wubbels RJ (1992) Afferent respons of a head canal neuromast of the Ruff (Acerina cernua) lateral line. Comp Biochem Physiol 102A:19–26

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sietse M. van Netten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Netten, S.M. Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology. Biol Cybern 94, 67–85 (2006). https://doi.org/10.1007/s00422-005-0032-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0032-x

Keywords

Navigation