Skip to main content
Log in

Threading neural feedforward into a mechanical spring: How biology exploits physics in limb control

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract.

A solution is proposed of the hitherto unsolved problem as to how neural feedforward through inverse modelling and negative feedback realised by a mechanical spring can be combined to achieve a highly effective control of limb movement. The revised spring approach that we suggest does not require forward modelling and produces simulated data which are as close as possible to experimental human data. Control models based on peripheral sensing with forward modelling, which are favoured in the current literature, fail to create such data. Our approach suggests that current views on motor control and learning should be revisited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • DG Asatryan AG Feldman (1965) ArticleTitleBiophysics of complex systems and mathematical models: functional tuning of nervous system with control of movement or maintenance of a steady posture: I. Mechanographic analysis of the work of the joint on execution of a postural task Biofizika 10 837–846

    Google Scholar 

  • DJ Bennett JM Hollerbach Y Xu IW Hunter (1992) ArticleTitleTime-varying stiffness of human elbow joint during cyclic voluntary movement Exp Brain Res 88 433–442

    Google Scholar 

  • N Bhushan R Shadmehr (1999) ArticleTitleComputational nature of human adaptive control during learning of reaching movements in force fields Biol Cybern 81 39–60

    Google Scholar 

  • E Bizzi N Hogan FA Mussa-Ivaldi S Giszter (1992) ArticleTitleThe equilibrium-point framework: a point of departure Behav Brain Sci 15 808–844

    Google Scholar 

  • E Bizzi A Polit P Morasso (1976) ArticleTitleMechanisms underlying achievement of final head position J Neurophysiol 39 435–444

    Google Scholar 

  • M Desmurget S Grafton (2000) ArticleTitleForward modelling allows feedback control for fast reaching movements Trends Cogn Sci 4 423–431

    Google Scholar 

  • I Eibl-Eibesfeld (1987) Grundriss der vergleichenden Verhaltensforschung Piper München

    Google Scholar 

  • AG Feldman (1966) ArticleTitleFunctional tuning of the nervous system during control of movement or maintenance of a steady posture: III. Mechanographic analysis of the execution by man of the simplest motor tasks Biofizika 11 667–675

    Google Scholar 

  • JR Flanagan P Vetter RS Johansson DM Wolpert (2003) ArticleTitlePrediction precedes control in motor learning Curr Biol 13 146–150

    Google Scholar 

  • H Forssberg S Grillner J Halbertsma (1980) ArticleTitleThe locomotion of the low spinal cat: I. Coordination within a hindlimb Acta Physiol Scand 108 269–281

    Google Scholar 

  • H Gomi M Kawato (1997) ArticleTitleHuman arm stiffness and equilibrium-point trajectory during multi-joint movement Biol Cybern 76 163–171

    Google Scholar 

  • AV Hill (1938) ArticleTitleThe heat of shortening and the dynamic constants of muscles Proc R Soc 126B 136–195

    Google Scholar 

  • N Hogan (1985) ArticleTitleThe mechanics of posture and movement Biol Cybern 52 315–331

    Google Scholar 

  • Ev Holst (1939) ArticleTitleDie relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse Ergebnisse der Physiologie 42 228–306

    Google Scholar 

  • L Jordan (1988) ArticleTitleSupervised learning and systems with excess degrees of freedom COINS Technical Report 88/27 1–41

    Google Scholar 

  • KT Kalveram (1981) Erwerb sensumotorischer Koordinationen unter störenden Um-welteinflüssen: Ein Beitrag zum Problem des Erlernens von Werkzeuggebrauch (English title: Acquisition of sensorimotor co-ordinations under environmental disturbances. A contribution to the problem of learning to use a tool) L Tent (Eds) Erkennen, Wollen, Handeln. Festschrift für Heinrich Düker Hogrefe Göttingen 336–348

    Google Scholar 

  • KT Kalveram (1991) ArticleTitlePattern generating and reflex-like processes controlling aiming movements in the presence of inertia, damping and gravity. A theoretical note Biol Cybern 64 416–419

    Google Scholar 

  • KT Kalveram (1992) ArticleTitleA neural network model rapidly learning gains and gating of reflexes necessary to adapt to an arm’s dynamics Biol Cybern 68 183–191

    Google Scholar 

  • Kalveram KT(1998) Wie das Individuum mit seiner Umwelt interagiert. Psychologische, biologische und kybernetische Betrachtungen über die Funktion von Verhalten. Pabst, Lengerich

  • KT Kalveram (2000) Sensorimotor sequential learning by a neural network based on redefined Hebbian Learning L Niklasson (Eds) Artificial neural networks in medicine and biology Springer Berlin Heidelberg New York 271–276

    Google Scholar 

  • KT Kalveram (2004) ArticleTitleThe inverse problem in cognitive, perceptual and proprioceptive control of sensorimotor behaviour: towards a biologically plausible model of the control of aiming movements Int J Sport Exercise Psychol 2 255–273

    Google Scholar 

  • KT Kalveram T Schinauer (2002) The problem of adaptive control in a living system or how to acquire an inverse model without external help M Verleysen (Eds) ESANN’2002 – European symposium on artificial neural networks Evere: DeFacto Bruges, Belgium 89–95

    Google Scholar 

  • Kawato M (1990) Feedback-error-learning neural network for supervised learning. In: Eckmiller R (ed) Advanced neural computers. North-Holland, Amsterdam, pp 365–372

  • M Kawato (1999) ArticleTitleInternal models for motor control and trajectory planning Curr Opin Neurobiol 9 718–727

    Google Scholar 

  • J Konczak K Brommann KT Kalveram (1999) ArticleTitleIdentification of time-varying stiffness, damping, and equilibrium position in human forearm movements Motor Control 3 394–413

    Google Scholar 

  • ML Latash (1992) ArticleTitleIndependent control of joint stiffness in the framework of the equilibrium-point hypothesis Biol Cybern 67 377–384

    Google Scholar 

  • GA Lienert (1961) Die Drahtbiegeprobe als standardisierter Test. Handanweisung für die Durchführung und Auswertung Hogrefe Göttingen

    Google Scholar 

  • CD Marsden PA Merton HB Morton (1972) ArticleTitleServo action in human voluntary movement Nature 238 140–143

    Google Scholar 

  • RC Miall DJ Weir DM Wolpert JF Stein (1993) ArticleTitleIs the cerebellum a Smith Predictor? J Motor Behav 25 203–216

    Google Scholar 

  • RC Miall DM Wolpert (1996) ArticleTitleForward models for physiological motor control Neural Netw 9 1265–1279

    Google Scholar 

  • JP Miller AI Selverston (1985) Neural mechanisms for the production of the lobster pyloric motor pattern AI Selverston (Eds) Model neural networks and behavior Plenum New York

    Google Scholar 

  • FA Mussa-Ivaldi E Bizzi (2000) ArticleTitleMotor learning through the combination of primitives Phil Trans R Soc Lond B 355 1755–1769

    Google Scholar 

  • PD Neilson MD Neilson NJ O’Dwyer (1997) Adaptive model theory: central processing in acquisition of skill H Forssberg (Eds) Neurophysiology and neuropsychology of motor development McKeith London

    Google Scholar 

  • TR Nichols JC Houk (1976) ArticleTitleThe improvement in linearity and the regulation of stiffness that results from the actions of the stretch reflex J Neurophysiol 39 119–142

    Google Scholar 

  • DJ Ostry AG Feldman (2003) ArticleTitleA critical evaluation of the force control hypothesis in motor control Exp Brain Res 153 275–288

    Google Scholar 

  • A Polit E Bizzi (1979) ArticleTitleCharacteristics of motor programs underlying arm movements in monkeys J Neurophysiol 42 183–194

    Google Scholar 

  • PN Sabes (2000) ArticleTitleThe planning and control of reaching movements Curr Opin Neurobiol 10 740–746

    Google Scholar 

  • RL Sainburg JE Lateiner ML Latash LB Bagesteiro (2003) ArticleTitleEffects of altering initial position on movement direction and extent J Neurophysiol 89 401–415

    Google Scholar 

  • E Saltzman JAS Kelso (1987) ArticleTitleSkilled actions: a task-dynamic approach Psychol Rev 94 84–106

    Google Scholar 

  • A Seyfarth R Blickhan JL Leeuwen ParticleVan (2000) ArticleTitleOptimum take-off techniques and muscle design for long jump J Exp Biol 203 741–750

    Google Scholar 

  • CS Sherrington (1906) The integrative action of the nervous system Yale University Press New Haven, CT

    Google Scholar 

  • O Smith (1957) ArticleTitleCloser control of loops with dead time Chem Eng Prog 53 217–219

    Google Scholar 

  • J Spoelstra N Schweighofer MA Arbib (2000) ArticleTitleCerebellar learning of accurate predictive control for fast-reaching movements Biol Cybern 82 321–333

    Google Scholar 

  • D Sternad (2002) ArticleTitleWacholder and Altenburger 1927: Foundational experiments for current hypotheses on equilibrium point control in voluntary movements Motor Control 6 299–318

    Google Scholar 

  • S Stroeve (1997) ArticleTitleA learning feedback and feedforward neuromuscular control model for two degrees of freedom human arm movements Hum Mov Sci 16 621–651

    Google Scholar 

  • D Timmann S Richter S Bestmann KT Kalveram J Konczak (2000) ArticleTitlePredictive control of muscle responses to arm perturbations in cerebellar patients J Neurol Neurosurg Psychiatry 69 345–352

    Google Scholar 

  • MT Turvey K Shockley C Carello (1999) ArticleTitleAffordance, proper function, and the physical basis of perceived heaviness Cognition 17 B17–B26

    Google Scholar 

  • AB Vallbo (1974) ArticleTitleHuman muscle spindle discharge during isometric voluntary contractions. Amplitude relations between spindle frequency and torque Acta Physiol Scand 90 319–336

    Google Scholar 

  • B Widrow E Walach (1996) Adaptive inverse control Prentice-Hall London

    Google Scholar 

  • JM Winters (1995) ArticleTitleAn improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models Ann Biomed Eng 23 359–374

    Google Scholar 

  • DM Wolpert Z Ghahramani MI Jordan (1995) ArticleTitleAn internal model for sensorimotor integration Science 269 1880–1882

    Google Scholar 

  • DM Wolpert M Kawato (1998) ArticleTitleMultiple paired forward and inverse models for motor control Neural Netw 11 1317–1329

    Google Scholar 

  • DM Wolpert RC Miall M Kawato (1998) ArticleTitleInternal models in the cerebellum Trends Cogn Sci 2 338–347

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl T. Kalveram.

Additional information

Acknowledgement This article is dedicated in memoriam to Gustav A. Lienert, who edited the ‘Draht-Biege-Probe’ (Lienert 1961), a wire-bending test measuring complex sensorimotor skills in a genially simple manner. We thank Nicole Pledger for language assistance. This work was supported by Grants Ka 417/18 and Ka 417/24 from Deutsche Forschungsgemeinschaft (DFG).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalveram, K., Schinauer, T., Beirle, S. et al. Threading neural feedforward into a mechanical spring: How biology exploits physics in limb control. Biol Cybern 92, 229–240 (2005). https://doi.org/10.1007/s00422-005-0542-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0542-6

Keywords

Navigation