Skip to main content
Log in

The physical basis of alpha waves in the electroencephalogram and the origin of the “Berger effect”

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract.

Synchronised activity, differing in phase in different populations of neurons, plays an important role in existing theories on the function of brain oscillations (e.g., temporal correlation hypothesis). A prerequisite for this synchronisation is that stimuli are capable of affecting (resetting) the phase of brain oscillations. Such a change in the phase of brain waves is also assumed to underlie the “Berger effect”: when observers open their eyes, the amplitude of EEG oscillations in the alpha band (8–13 Hz) decreases significantly. This finding is usually thought to involve a desynchronisation of activity in different neurons. For functional interpretations of brain oscillations in the visual system, it therefore seems to be crucial to find out whether or not the phase of brain oscillations can be affected by visual stimuli. To answer this question, we investigated whether alpha waves are generated by a linear or a nonlinear mechanism. If the mechanism is linear – in contrast to nonlinear ones – phases cannot be reset by a stimulus. It is shown that alpha-wave activity in the EEG comprises both linear and nonlinear components. The generation of alpha waves basically is a linear process and flash-evoked potentials are superimposed on ongoing alpha waves without resetting their phase. One nonlinear component is due to light adaptation, which contributes to the Berger effect. The results call into question theories about brain-wave function based on temporal correlation or event-related desynchronisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • LF Abbott P Dayan (1999) ArticleTitleThe effect of correlated variability on the accuracy of a population code Neural Comp 11 91–101

    Google Scholar 

  • E Basar (1998a) Brain function and oscillations NumberInSeriesI Springer Berlin Heidelberg New York

    Google Scholar 

  • E Basar E Rahn T Demiralp M Schürman (1998b) ArticleTitleSpontaneous EEG theta activity controls frontal evoked potential amplitudes Electroenceph Clin Neurophys/Ev Pot Sect 108 101–109

    Google Scholar 

  • H Berger (1933) ArticleTitleÜber das Elektroenzephalogramm des Menschen. Sechste Mitteilung Arch Psychiatr Nervenkr 99 555–574

    Google Scholar 

  • ME Brandt (1997) ArticleTitleVisual and auditory evoked phase resetting of the alpha EEG Int J Psychophys 26 285–298

    Google Scholar 

  • S Cardoso de Oliveira A Thiele K-P Hoffmann (1997) ArticleTitleSynchronization of neuronal activity during stimulus expectation in a direction discrimination task J Neurosci 17 9248–9260

    Google Scholar 

  • R Eckhorn R Bauer W Jordan M Brosch W Kruse M Munk HJ Reitboeck (1988) ArticleTitleCoherent oscillations – a mechanism of feature linking in the visual cortex – multiple electrode and correlation analyses in the cat Biol Cybern 60 121–130

    Google Scholar 

  • AK Engel P Fries W Singer (2001) ArticleTitleDynamic predictions: oscillations and synchrony in top-down processing Nature Rev Neurosci 2 704–716

    Google Scholar 

  • P Fries JH Reynolds AE Rorie R Desimone (2001) ArticleTitleModulation of oscillatory neuronal synchronization by selective visual attention Science 291 1560–1563

    Google Scholar 

  • GL Gebber S Zhong C Lewis SM Barman (1999) ArticleTitleHuman brain alpha rhythm: nonlinear oscillation or filtered noise? Brain Res 818 IssueID2 556–560

    Google Scholar 

  • CM Gray P König AK Engel W Singer (1989) ArticleTitleOscillatory responses in cat visual-cortex exhibit inter-columnar synchronisation which reflects stimulus properties Nature 338 334–337

    Google Scholar 

  • DO Hebb (1949) The organization of behaviour Wiley New York

    Google Scholar 

  • SA Hillyard EK Vogel SJ Luck (1998) ArticleTitleSensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence Phil Trans R Soc Lond B 353 1257–1270

    Google Scholar 

  • K Kirschfeld (1991) ArticleTitleAn optomotor control system with automatic compensation for contrast and texture Proc R Soc Lond B 246 261–268

    Google Scholar 

  • RW Lansing JS Barlow (1972) ArticleTitleRhythmic after-activity to flashes in relation to background alpha which precedes and follows protic stimuli Electroenceph. Clin Neurophys 32 149–160

    Google Scholar 

  • NK Logothetis J Pauls MA Augath T Trinath A Oeltermann (2001) ArticleTitleNeurophysiological investigation of the basis of the fMRI signal Nature 412 150–157 Occurrence Handle10.1038/35084005

    Article  Google Scholar 

  • da Silva FH Lopes A Hoecks A Smits LH Zitterberg (1974) ArticleTitleModel of brain rhythmic activity Kybernetik 15 27–37

    Google Scholar 

  • S Makeig M Westerfield T-P Jung S Engelhoff J Townsend E Courchesne TJ Sejnowski (2002) ArticleTitleDynamic brain sources of visual evoked responses Science 295 690–694

    Google Scholar 

  • AD Patel E Balban (2000) ArticleTitleTemporal patterns of human cortical activity reflect tone sequences structure Nature 404 80–84 Occurrence Handle10.1038/35003577 Occurrence Handle1:CAS:528:DC%2BD3cXhvVyqs7o%3D Occurrence Handle10716446

    Article  CAS  PubMed  Google Scholar 

  • E Rodriguez N George J-P Lachaux J Martinerie B Renault FJ Varela (1999) ArticleTitlePerception’s shadow: long-distance synchronization of human brain activity Nature 397 430–433

    Google Scholar 

  • PM Rossini MT Desiato F Lavaroni MD Caramia (1991) ArticleTitleBrain excitability and electroencephalographic activation: non-invasive evaluation in healthy humans via transcranial magnetic stimulation Brain Res 567 111–119

    Google Scholar 

  • MN Shadlen JA Movshon (1999) ArticleTitleSynchrony unbound: a critical evaluation of the temporal binding hypothesis Neuron 24 67–77

    Google Scholar 

  • H Spekreijse (1966) Analysis of EEG responses in man Thesis Junk The Hague

    Google Scholar 

  • CJ Stam JP Pijn P Suffczynski da Silva FH Lopes (1999) ArticleTitleDynamics of the human alpha rhythm: evidence for nonlinearity? Clin Neurophysiol 110 IssueID10 1801–1813

    Google Scholar 

  • PN Steinmetz A Roy PJ Fitzgerald SS Hsaio KO Johnson E Niebur (2000) ArticleTitleAttention modulates synchronized neuronal firing in primate somatosensory cortex Nature 404 187–190

    Google Scholar 

  • B Pol Particlevan der (1926) ArticleTitleOn relaxation oscillations Philos Mag 7 978–992

    Google Scholar 

  • LH Tweel Particlevan der (1964) Relation between the psychophysics and electrophysiology of flicker HE Henkes LH Tweel Particlevan der (Eds) Flicker Junk The Hague 287–304

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuno Kirschfeld.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirschfeld, K. The physical basis of alpha waves in the electroencephalogram and the origin of the “Berger effect”. Biol Cybern 92, 177–185 (2005). https://doi.org/10.1007/s00422-005-0547-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0547-1

Keywords

Navigation