Skip to main content
Log in

An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Chaos is a central feature of human locomotion and has been suggested to be a window to the control mechanisms of locomotion. In this investigation, we explored how the principles of chaos can be used to control locomotion with a passive dynamic bipedal walking model that has a chaotic gait pattern. Our control scheme was based on the scientific evidence that slight perturbations to the unstable manifolds of points in a chaotic system will promote the transition to new stable behaviors embedded in the rich chaotic attractor. Here we demonstrate that hip joint actuations during the swing phase can provide such perturbations for the control of bifurcations and chaos in a locomotive pattern. Our simulations indicated that systematic alterations of the hip joint actuations resulted in rapid transitions to any stable locomotive pattern available in the chaotic locomotive attractor. Based on these insights, we further explored the benefits of having a chaotic gait with a biologically inspired artificial neural network (ANN) that employed this chaotic control scheme. Remarkably, the ANN was quite robust and capable of selecting a hip joint actuation that rapidly transitioned the passive dynamic bipedal model to a stable gait embedded in the chaotic attractor. Additionally, the ANN was capable of using hip joint actuations to accommodate unstable environments and to overcome unforeseen perturbations. Our simulations provide insight on the advantage of having a chaotic locomotive system and provide evidence as to how chaos can be used as an advantageous control scheme for the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • KT Allgood TD Sauer JA Yorke (1997) Chaos: an introduction to dynamical. Systems Springer Berlin Heidelberg New York

    Google Scholar 

  • HDI Abarbanel (1996) Analysis of observed chaotic data Springer Berlin Heidelberg New York

    Google Scholar 

  • GL Baker JP Gollub (1996) Chaotic dynamics Cambridge University Press New York

    Google Scholar 

  • H Barbeau S Rossignol (1987) ArticleTitleRecovery of locomotion after chronic spinalization in the adult cat Brain Res 412 84–95 Occurrence Handle10.1016/0006-8993(87)91442-9 Occurrence Handle3607464

    Article  PubMed  Google Scholar 

  • UH Buzzi N Stergiou MJ Kurz PA Hageman J Heidel (2003) ArticleTitleNonlinear dynamics indicates aging affects variability during gait Clinical Biomechanics 18 435–443 Occurrence Handle10.1016/S0268-0033(03)00029-9 Occurrence Handle12763440

    Article  PubMed  Google Scholar 

  • JE Clark SJ Phillips (1993) ArticleTitleA longitudinal study of intralimb coordination in the first year of independent walking: a dynamical systems analysis Child Dev 64 1143–1157 Occurrence Handle8404261

    PubMed  Google Scholar 

  • JD Cohen K Dunbar JL McClelland (1990) ArticleTitleOn the control of automatic processes: a parallel distributed processing account of the stroop effect Psychological Review 97 IssueID3 332–361 Occurrence Handle10.1037//0033-295X.97.3.332 Occurrence Handle2200075

    Article  PubMed  Google Scholar 

  • S Collins A Runia R Tedrake M Wisse (2005) ArticleTitleEfficient bipedal robots based on passive dynamic walkers Science 307 IssueID5712 1082–1085 Occurrence Handle10.1126/science.1107799 Occurrence Handle15718465

    Article  PubMed  Google Scholar 

  • JB Dingwell JP Cusumano D Sternad PR Cavanagh (2000) ArticleTitleSlower speeds in patients with diabetic neurophathy lead to improved local dynamic stability of continuous overground walking J Biomech 33 1269–1277 Occurrence Handle10.1016/S0021-9290(00)00092-0 Occurrence Handle10899337

    Article  PubMed  Google Scholar 

  • H Forssberg S Grilner J Halbertsma (1980a) ArticleTitleThe locomotion of the low spinal cat I. coordination within a hindlimb Acta Physiol Scand 108 269–281

    Google Scholar 

  • H Forssberg S Grilner J Halbertsma (1980b) ArticleTitleThe locomotion of the low spinal cat II. interlimb coordination Acta Physiol Scand 108 283–295

    Google Scholar 

  • M Garcia A Chatterjee A Ruina M Coleman (1998) ArticleTitleThe simplest walking model: stability, complexity, and scaling ASME J Biomech Eng 120 IssueID2 281–288

    Google Scholar 

  • AL Goldberger LAN Amaral JM Hausdorff PC Ivanov CK Peng HE Stanley (2002) ArticleTitleFractal dynamics in physiology: alterations with disease and aging Proc Natl Acad Sci 99 IssueID1 2466–2472 Occurrence Handle10.1073/pnas.012579499 Occurrence Handle11875196

    Article  PubMed  Google Scholar 

  • S Grillner (1981) Control of locomotion in bipeds, tetrapods and fish VB Brooks (Eds) The nervous system II. American Physiological Society Press Bethesda 1179–1236

    Google Scholar 

  • Groswami A, Thuilot B, Espiau B (1996) Compass-like bipedal robot part I: stability and bifurcations of passive gaits. INRIA Research Report No. 2996.

  • SJ Harkema (2001) ArticleTitleNeural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking Prog Clin Neurosci 7 IssueID5 455–468

    Google Scholar 

  • Howell GW, Baillieul J (1998) Simple controllable walking mechanisms which exhibit bifurcations. In: Proceedings of the 37th IEEE Conference on Decision and Control, pp 3027–3032

  • SJ Harkema (2001) ArticleTitleNeural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking Prog Clin Neurosci 7 IssueID5 455–468

    Google Scholar 

  • JM Hausdorff CK Peng Z Ladin JY Wei AL Goldberger (1995) ArticleTitleIs walking a random walk? Evidence for long-range correlations in stride interval of human gait J Appl Physiol 78 IssueID1 349–358 Occurrence Handle7713836

    PubMed  Google Scholar 

  • JM Hausdorff SL Mitchell R Firtion CK Peng ME Cudkowicz JY Wei AL Goldberger (1997) ArticleTitleAltered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease J Appl Physiol 82 IssueID1 262–269 Occurrence Handle9029225

    PubMed  Google Scholar 

  • JM Hausdorff ME Cudkowicz R Firtion JY Wei AL Goldberger (1998) ArticleTitleGait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntingon’s Disease Mov Disord 13 IssueID3 428–437 Occurrence Handle10.1002/mds.870130310 Occurrence Handle9613733

    Article  PubMed  Google Scholar 

  • JM Hausdorff L Zemany CK Peng AL Goldberger (1999) ArticleTitleMaturation of gait dynamics: stride-to-stride variability and its temporal organization in children J Appl Physiol 86 IssueID3 1040–1047 Occurrence Handle10066721

    PubMed  Google Scholar 

  • JM Hausdorff A Lertratanakul ME Cudkowicz AL Peterson D Kaliton AL Goldberger (2000) ArticleTitleDynamic markers of altered gait rhythm in amyotrophic lateral sclerosis J Appl Physiol 88 2045–2053 Occurrence Handle10846017

    PubMed  Google Scholar 

  • JO Judge RB Davis S Ounpuu (1996) ArticleTitleStep length reductions in advanced age: the role of ankle and hip kinetics J Gerontol 51A IssueID6 303–312

    Google Scholar 

  • DC Kerrigan MK Todd UD Croce LA Lipisitz JA Collins (1998) ArticleTitleBiomechanical gait alterations independent of speed in healthy elderly: evidence for specific limiting impairments Arch Phys Med Rehabil 79 317–322 Occurrence Handle10.1016/S0003-9993(98)90013-2 Occurrence Handle9523785

    Article  PubMed  Google Scholar 

  • AD Kuo (2001) ArticleTitleA simple model of bipedal walking predicts the preferred speed-step length relationship ASME J Biomech Eng 123 264–269

    Google Scholar 

  • AD Kuo (2002) ArticleTitleEnergetics of actively powered locomotion using the simplest walking model J Biomech Eng 124 113–120 Occurrence Handle10.1115/1.1427703 Occurrence Handle11871597

    Article  PubMed  Google Scholar 

  • MJ Kurz N Stergiou J Heidel ET Foster (2005) ArticleTitleA template for the exploration of chaotic locomotive patterns Chaos Solitons Fractals 23 485–493 Occurrence Handle10.1016/j.chaos.2004.04.034

    Article  Google Scholar 

  • TY Li JA Yorke (1975) ArticleTitlePeriod three implies chaos Am Math Mon 82 985

    Google Scholar 

  • E Marder (2002) ArticleTitleSenseless motion Nature 416 131–132 Occurrence Handle10.1038/416131a Occurrence Handle11894076

    Article  PubMed  Google Scholar 

  • DI McCloskey (1978) ArticleTitleKinesthetic sensibility Physiol Rev 58 763–820 Occurrence Handle360251

    PubMed  Google Scholar 

  • TA McGeer (1990) ArticleTitlePassive dynamic walking Int J Robot Res 9 IssueID2 62–82

    Google Scholar 

  • JL McClelland DE Rumelhart (1981) ArticleTitleAn interactive activation model of context effects in letter perception: part 1. An account of basic findings Psychol Rev 88 375–407 Occurrence Handle10.1037//0033-295X.88.5.375

    Article  Google Scholar 

  • RGM Morris (1989) Parallel distributed processing implications for psychology and neurobiology Oxford University Press New York

    Google Scholar 

  • E Ott C Grebogi JA Yorke (1990) ArticleTitleControlling chaos Phys Rev Lett 64 IssueID11 1196–1199 Occurrence Handle10.1103/PhysRevLett.64.1196 Occurrence Handle10041332

    Article  PubMed  Google Scholar 

  • S Rossignol M Belanger C Chau N Giroux E Brustein L Bouyer et al. (2000) The spinal cat RG Kalb SM Strittmatter (Eds) Neurobiology of Spinal cord Injury Humana Press Totowa 57–87

    Google Scholar 

  • DE Rumelhart GE Hinton RJ Williams (1986) ArticleTitleLearning representations by backpropagating errors Nature 323 533–536 Occurrence Handle10.1038/323533a0

    Article  Google Scholar 

  • DE Rumelhart JL McClelland (1986) Parallel distributed processing MIT Press Cambridge

    Google Scholar 

  • S Russell P Norvig (2003) Artificial intelligence a modern approach Prentice Hall Upper Saddle River

    Google Scholar 

  • MA Shand (1982) ArticleTitleSign-based short-term coding of American sign Language signs and printed English words by congenitally deaf signers Cogn Psychol 14 1–12 Occurrence Handle10.1016/0010-0285(82)90002-0

    Article  Google Scholar 

  • T Shinbrot C Grebogi E Ott JA Yorke (1993) ArticleTitleUsing small perturbations to control chaos Nature 363 411–417 Occurrence Handle10.1038/363411a0

    Article  Google Scholar 

  • J Starrett R Tagg (1995) ArticleTitleControl of a chaotic parametrically driven pendulum Phys Rev Lett 74 IssueID11 1974–1977 Occurrence Handle10.1103/PhysRevLett.74.1974 Occurrence Handle10057810

    Article  PubMed  Google Scholar 

  • N Stergiou UH Buzzi MJ Kurz J Heidel (2004a) Nonlinear tools in human movement N Stergiou (Eds) Innovative analysis of human movement Human Kinetics Champaign 63–90

    Google Scholar 

  • N Stergiou C Moraiti G Giakas S Ristanis AD Georgoulis (2004b) ArticleTitleThe effect of the walking speed on he stability of the anterior cruciate ligament deficient knee Clin Biomech 19 IssueID9 957–963 Occurrence Handle10.1016/j.clinbiomech.2004.06.008

    Article  Google Scholar 

  • M Suster M Bate (2002) ArticleTitleEmbryonic assembly of a central pattern generator without sensory input Nature 416 174–178 Occurrence Handle10.1038/416174a Occurrence Handle11894094

    Article  PubMed  Google Scholar 

  • E Thelen E Bates (2003) ArticleTitleConnectionism and dynamic systems: are they really different? Dev Sci 6 IssueID4 378–391 Occurrence Handle10.1111/1467-7687.00294

    Article  Google Scholar 

  • BJ West L Griffin (1998) ArticleTitleAllometric control of human gait Fractals 6 IssueID2 101–108

    Google Scholar 

  • BL West L Griffin (1999) ArticleTitleAllometric control, inverse power laws and human gait Chaos Solitons Fractals 10 IssueID9 1519–1527 Occurrence Handle10.1016/S0960-0779(98)00149-0

    Article  Google Scholar 

  • DA Winter AE Patla JS Frank SE Walt (1990) ArticleTitleBiomechanical walking pattern changes in the fit and healthy elderly Phys Ther 70 340–347 Occurrence Handle2345777

    PubMed  Google Scholar 

  • DA Winter (1991) The biomechanics and motor control of human gait: normal, elderly, and pathological University of Waterloo Press Waterloo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max J. Kurz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurz, M., Stergiou, N. An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model. Biol Cybern 93, 213–221 (2005). https://doi.org/10.1007/s00422-005-0579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0579-6

Keywords

Navigation