Skip to main content
Log in

Transient Synchrony of Distant Brain Areas and Perceptual Switching in Ambiguous Figures

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We studied the relationship between perceptual switching in the Necker cube and long-distance transient phase synchronization in EEG. Transient periods of response related synchrony between parietal and frontal areas were observed. They start 800–600, ms prior to the switch response and occur in pairs. Four types of pairs could be distinguished, two of which are accompanied by transient alpha band activity in the occipital area. The results indicate that perceptual switching processes involve parietal and frontal areas; these are the ones that are normally associated with various cognitive processes. Sensory information in the visual areas is involved in some, but not in all, of switching processes. The intrinsic variability, as well as the participating areas, points to the role of strategic cognitive processes in perceptual switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attneave F (1971) Multistability in perception. Sci Am 225(6):63–71

    Article  PubMed  CAS  Google Scholar 

  • Beck DM, Rees G, Frith CD, Lavie N (2001) Neural correlates of change detection and change blindness. Nat Neurosci 4(6):645–650

    Article  PubMed  CAS  Google Scholar 

  • Borsellino A, De Marco A, Allazetta A, Rinesi S, Bartolini B (1972) Reversal time distribution in the perception of visual ambiguous stimuli. Kybernetik 10(3):139–144

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215

    Article  PubMed  CAS  Google Scholar 

  • Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network UP states in the neocortex. Nature 423(6937):283–288

    Article  PubMed  CAS  Google Scholar 

  • Crick F, Koch C (2003) A framework for consciousness. Nat Neurosci 6(2):119–126

    Article  PubMed  CAS  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  • Driver J, Mattingley JB (1998) Parietal neglect and visual awareness. Nat Neurosci 1(1):17–22

    Article  PubMed  CAS  Google Scholar 

  • Engel AK, Singer W (2001) Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5(1):16–25

    Article  PubMed  Google Scholar 

  • Fiser J, Chiu C, Weliky M (2004) Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 431(7008):573–578

    Article  PubMed  CAS  Google Scholar 

  • Gong P, Nikolaev AR, van Leeuwen C (2003) Scale-invariant fluctuations of the dynamical synchronization in human brain electrical activity. Neurosci Lett 336(1):33–36

    Article  PubMed  CAS  Google Scholar 

  • Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, Schnitzler A (2004) Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci USA 101(35):13050–13055

    Article  PubMed  CAS  Google Scholar 

  • Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R (2004) Synfire chains and cortical songs: temporal modules of cortical activity. Science 304(5670):559–564

    Article  PubMed  CAS  Google Scholar 

  • Inui T, Tanaka S, Okada T, Nishizawa S, Katayama M, Konishi J (2000) Neural substrates for depth perception of the Necker cube; a functional magnetic resonance imaging study in human subjects. Neurosci Lett 282(3):145–148

    Article  PubMed  CAS  Google Scholar 

  • İşoğlu-Alkaç Ü, Başar-Eroğlu C, Ademoğlu A, Demiralp T, Miener M, Stadler M (1998) Analysis of the electroencephalographic activity during the Necker cube reversals by means of the wavelet transform. Biol Cybern 79:437–42

    Article  PubMed  Google Scholar 

  • Ito J, Nikolaev AR, Luman M, Aukes MF, Nakatani C, van Leeuwen C (2003) Perceptual switching, eye movements, and the bus paradox. Perception 32(6):681–698

    Article  PubMed  Google Scholar 

  • Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425(6961):954–956

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt A, Buchel C, Zeki S, Frackowiak RS (1998) Human brain activity during spontaneously reversing perception of ambiguous figures. Proc Biol Sci 265(1413):2427–2433

    Article  PubMed  CAS  Google Scholar 

  • Kornmeier J, Bach M (2004) Early neural activity in Necker-cube reversal: evidence for low-level processing of a gestalt phenomenon. Psychophysiology 41(1):1–8

    Article  PubMed  Google Scholar 

  • Kornmeier J, Bach M (2005) The Necker cube – an ambiguous figure disambiguated in early visual processing. Vis Res 45(8):955–960

    Article  PubMed  Google Scholar 

  • Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8(4):194–208

    Article  PubMed  CAS  Google Scholar 

  • Leopold DA, Logothetis NK (1999) Multistable phenomena: changing views in perception. Trends Cogn Sci 3(7):254–264

    Article  PubMed  Google Scholar 

  • Le Van Quyen M, Foucher J, Lachaux J, Rodriguez E, Lutz A, Martinerie J, Varela FJ (2001) Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J Neurosci Methods 111(2):83–98

    Article  CAS  Google Scholar 

  • Lehky SR (1995) Binocular rivalry is not chaotic. Proc Biol Sci 259(1354):71–76

    Article  PubMed  CAS  Google Scholar 

  • Mao BQ, Hamzei-Sichani F, Aronov D, Froemke RC, Yuste R (2001) Dynamics of spontaneous activity in neocortical slices. Neuron 32(5):883–898

    Article  PubMed  CAS  Google Scholar 

  • Mast FW, Kosslyn SM (2002) Visual mental images can be ambiguous: insights from individual differences in spatial transformation abilities. Cognition 86(1):57–70

    Article  PubMed  Google Scholar 

  • Meenan JP, Miller LA (1994) Perceptual flexibility after frontal or temporal lobectomy. Neuropsychologia 32(9):1145–1149

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Matsui N, Miyauchi S, Kakita Y, Yanagida T (2003) Discrete stochastic process underlying perceptual rivalry. Neuroreport 14(10):1347–1352

    Article  PubMed  Google Scholar 

  • Nakatani H, van Leeuwen C (2005) Individual differences in perceptual switching rates; the role of occipital alpha and frontal theta band activity. Biol Cybern 93(5):343–354

    Article  PubMed  Google Scholar 

  • Peterson MA, Kihlstrom JF, Rose PM, Glisky ML (1992) Mental images can be ambiguous: reconstruals and reference-frame reversals. Mem Cognit 20(2):107–123

    PubMed  CAS  Google Scholar 

  • Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R Jr, Miller GA, Ritter W, Ruchkin DS, Rugg MD, Taylor MJ (2000) Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37(2):127–152

    Article  PubMed  CAS  Google Scholar 

  • Press WH, Teukolshy SA, Vetterling WT, Flannery BP (1993) Numerical Recipes in C (Japanese translation). Gijutsu Hyoron Sha : 460–463

  • Rees G, Kreiman G, Koch C (2002) Nat Rev Neurosci 3(4):261–270

    Article  PubMed  CAS  Google Scholar 

  • Revonsuo A, Wilenius-Emet M, Kuusela J, Lehto M (1997) The neural generation of a unified illusion in human vision. Neuroreport 8(18):3867–3870

    Article  PubMed  CAS  Google Scholar 

  • Ricci C, Blundo C (1990) Perception of ambiguous figures after focal brain lesions. Neuropsychologia 28(11):1163–1173

    Article  PubMed  CAS  Google Scholar 

  • Rock I, Hall S, Davis J (1994) Why do ambiguous figures reverse?. Acta Psychol (Amst) 87(1):33–59

    Article  CAS  Google Scholar 

  • Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (2002) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397(6718):430–433

    Google Scholar 

  • Shevelev IA, Kostelianetz NB, Kamenkovich VM, Sharaev GA (1991) EEG alpha-wave in the visual cortex: check of the hypothesis of the scanning process. Int J Psychophysiol 11(2):195–201

    Article  PubMed  CAS  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239

    Article  PubMed  CAS  Google Scholar 

  • VanRullen R, Koch C (2003) Is perception discrete or continuous?. Trends Cogn Sci 7(5):207–213

    Article  PubMed  Google Scholar 

  • Zhou YH, Gao JB, White KD, Merk I, Yao K (2004) Perceptual dominance time distributions in multistable visual perception. Biol Cybern 90:256–263

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Nakatani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakatani, H., van Leeuwen, C. Transient Synchrony of Distant Brain Areas and Perceptual Switching in Ambiguous Figures. Biol Cybern 94, 445–457 (2006). https://doi.org/10.1007/s00422-006-0057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0057-9

Keywords

Navigation