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Abstract In natural images, the distance measure
between two images taken at different locations rises
smoothly with increasing distance between the locations.
This fact can be exploited for local visual homing where
the task is to reach a goal location that is characterized
by a snapshot image: descending in the image distance
will lead the agent to the goal location. To compute
an estimate of the spatial gradient in the distance mea-
sure, its value must be sampled at three noncollinear
points. An animal or robot would have to insert explor-
atory movements into its home trajectory to collect these
samples. Here we suggest a method based on the
matched-filter concept that allows one to estimate the
gradient without exploratory movements. Two matched
filters – optical flow fields resulting from translatory
movements in the horizontal plane – are used to predict
two images in perpendicular directions from the cur-
rent location. We investigate the relation to differential
flow methods applied to the local homing problem and
show that the matched-filter approach produces reliable
homing behavior on image databases. Two alternative
methods that only require a single matched filter are
suggested. The matched-filter concept is also applied
to derive a home-vector equation for a Fourier-based
parameter method.
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1 Introduction

Local visual homing is the ability of an agent to
return to a target location by relating the currently per-
ceived visual information to stored visual information
taken at the target location. Visual homing methods
received attention from neuroethology as models for the
navigation abilities of social insects and from robotics
as computationally cheap building blocks for topologi-
cal approaches to map building and navigation (Franz
et al. 1998a). Since these methods have been extensively
reviewed in recent publications (Vardy and Möller 2005;
Zeil et al. 2003; Franz and Mallot 2000), we restrict
ourselves to the brief classification shown in Fig. 1. We
leave aside methods based on depth information since
they require multiple cameras, special sensors (Stürzl
and Mallot 2002), or dedicated movement strategies.
Methods where only image intensity is available often
derive themselves from the snapshot hypothesis of in-
sect visual homing (Wehner and Räber 1979; Cartwright
and Collett 1983), according to which insects store a rel-
atively unprocessed “snapshot” image of the surround-
ings of the target location (be it a nest entrance or a food
source) and later return to the target location by moving
in such a way that the current view gradually becomes
more similar to the snapshot.

Homing methods based on intensity information can
be coarsely classified into correspondence methods and
holistic methods. Correspondence methods establish
correspondences between local regions in snapshot and
current views. Each correspondence is expressed by a
shift vector describing the movement of the region from
one image to another. The shift vector can then be
transformed into a direction of movement that would
reduce the shift. Averaging a number of these movement
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Fig. 1 Local visual homing methods. In this paper, we extend parameter methods and the DID method by flow templates and establish
a relation with differential flow methods

vectors gives a viable estimate for the home direction.
In matching methods, corresponding regions are found
by searching for the best-matching region in the neigh-
borhood. The search can be restricted to preselected
features (e.g., edges), or each local region can be con-
sidered without any preselection. The algorithmic snap-
shot model suggested by Cartwright and Collett (1983) is
the classical representative of a matching method with
feature preselection; in this case, the features are dark
and bright regions.

Matching methods without feature preselection have
their roots in methods for the computation of optical
flow (we refer to these methods as “flow-based match-
ing methods” below). In block matching, the matching
is based on the pixel-by-pixel distance between two
rectangular regions in two images, in intensity match-
ing, the block is reduced to a single pixel, and gradi-
ent matching searches for the best-matching gradient
(Vardy and Möller 2005). Differential flow methods are
derived from Taylor approximations of correspondence
equations between intensities (first-order) or between
gradients (second-order) under the assumption of small
shifts (Barron et al. 1994). Vardy and Möller (2005) re-
ported that flow-based matching methods and differen-
tial flow methods yield surprisingly robust navigation
behavior. This is especially surprising for differential
flow methods, since the above-mentioned assumption
of small shifts is violated for the long spatial distance
between the target and the current location. Also in
the matching methods the search was restricted to the
vicinity of a region; thus some regions will have moved
beyond the search range. Vardy and Möller (2005)
explain this good performance by the fact that, even
though the flow fields are of relatively low quality, there
is still a sufficiently large number of flow vectors, par-
ticularly in the vicinity of the foci of expansion and

contraction, that fulfill the assumption of small shifts
and therefore produce a concordant vote for the direc-
tion of the home vector, whereas the erroneous flow
vectors yield uncorrelated movement directions and are
therefore overruled.

Holistic methods, rather than trying to find correspon-
dences between local regions in two images, treat an
image as a whole. The warping method proposed by
Franz et al. (1998b) is essentially a process of “men-
tally” simulating how different movements would dis-
tort (warp) the current image. By searching through
the space of movement parameters for that distorted
image which best fits the stored snapshot, the method
produces estimates for the home direction, the orien-
tation of the agent, and the distance from home. The
search is based on the assumption that all landmarks
are found in roughly the same distance from the agent.
Due to the large search space, the warping method
is only practically feasible if the image is reduced to
a horizontal panoramic view of only one pixel height
(see also Sect. 5.4). Despite these restrictions, the warp-
ing method produces very reliable homing behavior
in different environments; it is only outperformed by
some flow-based matching methods and differential flow
methods that, however, require a compass to align the
two images (Vardy and Möller 2005).

A subclass of holistic methods is embraced by the
term parameter methods. They are based on the assump-
tion that it is sufficient to only store a condensed descrip-
tion of the snapshot image, a so-called “parameter
vector.” Homing is then accomplished by some optimi-
zation method, often a simple gradient descent,
applied on a distance measure between the parameter
vectors obtained from the image at the target location
and at the current location. Parameter methods have
been suggested as a possible explanation for peculiar
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observations in experiments with desert ants (Möller
2001) and bees (Möller 2000). A special instance of
parameter models is the average landmark vector (ALV)
model (Lambrinos et al. 2000), where the parameter
vector comprises the two components of the average
of unit vectors pointing to selected landmark features.
While usually in parameter methods the distance mea-
sure or “potential” can be computed but the home vec-
tor has to be estimated by sampling the potential at
multiple locations in space, the ALV method directly
provides a home vector (it is equal to the difference
between the two average landmark vectors), whereas
the potential cannot be computed because it depends on
the unknown distances to the landmarks (Möller 2002).
While these parameter methods are of mostly theoreti-
cal interest, the Fourier-amplitude method suggested by
Menegatti et al. (2004) may indeed be suitable for real-
world applications. In this method, a panoramic image
(with cyclic rows) is characterized by the first few Fou-
rier amplitudes of each row. Since Fourier amplitudes
are invariant against shifts, the parameter vector has the
desirable property of being invariant against rotations
of the agent, and the method can thus be used without
a compass. In a recent publication, Stürzl and Mallot
(2006) derived another Fourier-based method from the
warping method.

Another promising holistic method is the descent in
image distances (DID) introduced by Zeil et al. (2003).
The method was derived from the observation that,
in natural images, the root mean squared error (RMS
error) between snapshot and current view smoothly
rises with increasing spatial distance between current
and target location (see gray tones in Fig. 2). Thus,
similar to parameter models, the target location can
be reached by applying a movement strategy derived
from some optimization method on the distance mea-
sure (here the RMS error). This can be a form of the
Gauss–Seidel strategy (move straight while the distance
measure decreases; otherwise turn ±90◦) as in the “Run-
Down” strategy used by Zeil et al. (2003), or the gradient
of the distance measure can be estimated repeatedly. For
the latter, the agent has to collect at least three samples
of the distance measure on noncollinear locations; usu-
ally, the three sampling points form a right triangle. The
negative gradient estimated from the potential at these
three points is the home vector (see vectors in Fig. 2).

In a practical application, however, these movement
strategies are not desirable, since they require sharp
turns of the robot and increase the overall length of
the homeward journey. Especially in applications like
cleaning where the robot has to follow a given trajec-
tory, test steps are impractical. Moreover, estimates of
the gradient are affected by odometry errors, since the

relative position of the sampling points has to be known.
In this paper, we suggest a novel method to determine
an estimate of the gradient without the necessity of insert-
ing test steps to sample the distance measure. This con-
cept is generally applicable to all homing methods that
can be formulated as a gradient descent or ascent in a
distance measure. We focus on applying the idea to
the DID method since this method is promising for
real-world applications and distinguishes itself by its
simplicity and low computational complexity. In the
discussion we demonstrate the broader applicability by
outlining three alternative methods derived from the
same framework. Being able to save the test steps and
instead compute the home vector directly would make a
whole class of methods more attractive for applications.

The core idea of our approach is to predict how the
image would change under two small, mutually perpen-
dicular movements and to estimate the gradient from the
distance measure applied to the current image and the
two predicted images. The image prediction is accom-
plished by projecting the intensity gradient onto two
fixed template flow fields or “matched filters” for purely
translational movements. These flow fields have a
typical form: a focus of expansion in the direction of
movement, a focus of contraction in the opposite direc-
tion, and regions with approximately horizontal flow
between them (Fig. 4). The direction of the flow vectors
in the two templates does not depend on the distance
to the objects in the world, but distance only affects the
length of these vectors. Since depth information is not
available, we can only assume that all objects are located
in approximately the same distance from the current
position. The matched-filter method directly delivers the
home vector by a pixelwise summation; both the image
prediction and the computation of the distance measure
are performed implicitly.

Starting from a description that covers both parame-
ter models and the DID method, we derive the matched-
filter DID method (MFDID) in Sect. 2. It turns out that
MFDID exhibits a structural resemblance to first-order
differential flow methods, as tested by Vardy and Möller
(2005); this relation is analyzed in Sect. 3. The perfor-
mance of the MFDID method is compared with the
original DID method and with a first-order differential
flow method by applying it to indoor image databas-
es in Sect. 4. We discuss the experimental results and
alternative matched-filter methods in Sect. 5.

2 Derivation of matched-filter DID

Notation Let ϕij = (βi, γj)
T be a 2D vector of angles

in spherical coordinates describing the direction from
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Fig. 2 DID method applied
to indoor image database (lab
environment, see Sect. 4).
Gray tones in each square
correspond to the RMS error
between the image taken at
the position in the center of
the square and the snapshot
image taken in the center of
the white square (white:
maximal value, black: zero).
The home vectors are
obtained by estimating the
gradient from the RMS values
at this and at two neighboring
grid positions in
perpendicular directions. Left:
Home position (5,7). Right:
Home position (5,16)
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Fig. 3 In spherical coordinates, the unit vector d pointing
toward a feature of distance D from the origin O is expressed by a
horizontal angle β and a vertical angle γ . When the agent moves
in direction α in the x–y plane, the feature shifts in direction ḋ

the vantage point of the camera to the visual feature
in the environment that appears at pixel coordinates
(i, j)T in the image. The horizontal angle βi varies only
with pixel coordinate i, the vertical angle γj only with j
(γj = 0 corresponds to the horizon, positive γj are above
the horizon). In the horizontal direction, the image is
closed to a panoramic view. We will omit the pixel index
in some steps of the derivation. Figure 3 visualizes the
geometrical relations.

Also, let x = (x, y)T be the position of the vantage
point in the horizontal plane. We assume that the camera
coordinate system is aligned with a fixed world coordi-
nate system by using some sort of compass. With C(ϕij, x)

we describe a pixel (i, j)T in the image taken at position
x. In local visual homing, a snapshot image is captured
at the goal location x0 and stored, denoted henceforth

as S(ϕij) = C(ϕij, x0). If we refer to pixel coordinates, we
use the abbreviations Cij(x) = C(ϕij, x) and Sij = S(ϕij).
Entire images are represented by C(x) and S = C(x0).
All images are assumed to be monochrome.

Descent in distance measures In a general formula-
tion covering both parameter methods and the DID
method, a distance measure (potential) p(x) is defined
over the plane (coordinate x):

p(x) = P{f [C(x)], f [S]}.

The home vector is the negative spatial gradient of the
potential:

h(x) = −∇xp(x).

The potential is determined by applying a distance
measure expressed by P to a feature vector derived
from the current view C(x) and a feature vector de-
rived from the snapshot S. The transformation from im-
ages to feature vectors is described by function f . In
the ALV model, for example, f would produce the two
components of the average landmark vector (Lambrinos
et al. 2000); in the contour model, it would amount to a
computation of contour length and contour eccentricity
(Möller 2001); in the Fourier-amplitude model, f would
deliver the first few Fourier amplitudes for each image
row (Menegatti et al. 2004).

The DID model is a special case where f is the identity
mapping:

p(x) = P{C(x), S}.
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More specifically, Zeil et al. (2003) use the root mean
squared error (RMS) error as distance measure

P{C, S} = RMS{C, S} =
√
√
√
√

1
N

∑

i,j

[Cij − Sij]2 , (1)

where N is the number of pixels included in the
measure. This allows a comparison of image distance
values if different parts of the image are excluded from
the analysis; Zeil et al. (2003) used this to remove parts
of the camera gantry visible in their images.

SSE gradient In the MFDID method, we use the sum
squared error (SSE) instead of the RMS (root of SSE
normalized to number of pixels) suggested by Zeil et al.
(2003). This modification has no effect on the direction
of the gradient but is more amenable to analytical treat-
ment. The SSE between the current image C(ϕij, x) and
the snapshot S(ϕij) is defined as

p(x) = SSE(x) = 1
2

∑

i,j

[C(ϕij, x) − S(ϕij)]2 . (2)

The home vector h(x) is the negative gradient of the
SSE:

h(x) = −∇xSSE(x)

= −
∑

i,j

∇xC(ϕij, x) · [C(ϕij, x) − S(ϕij)]. (3)

Spatial gradient and intensity gradient For small test steps
�x, the spatial gradient ∇xC(ϕij, x) can be related to
the intensity gradient in the following way. A small
movement in direction �x will cause a small shift of
the feature at ϕ in the image by �ϕ = �ϕ(ϕ, x, �x).
This shift depends on the movement (�x) and on the
distance to the feature in the environment (and thus on
x). By Taylor expansion of C(ϕ + �ϕ, x + �x) for both
arguments at the point (ϕ, x) we obtain

C(ϕ + �ϕ, x + �x)

≈ C(ϕ, x) + ∇T
ϕC(ϕ, x) · �ϕ + ∇T

x C(ϕ, x) · �x .

If we assume that the intensity of the pixel does not
change markedly when the pixel is shifted, i.e.,

C(ϕ + �ϕ, x + �x) ≈ C(ϕ, x),

then we find that

−∇T
ϕC(ϕ, x) · �ϕ ≈ ∇T

x C(ϕ, x) · �x , (4)

which establishes the relation between the spatial gra-
dient ∇xC(ϕ, x) and ∇ϕC(ϕ, x), the intensity gradient of
the current view.

Optical flow For small movements, the shift �ϕ can
be determined from the flow equation derived by
Koenderink and van Doorn (1987): When the coor-
dinate system of the camera moves with speed ẋ and
performs a rotation around ω with speed ‖ω‖, the flow
vector ḋ that describes the visual movement of a feature
in direction d (with ‖d‖ = 1) and distance D from the
vantage point is obtained from

ḋ = − ẋ − (ẋTd)d
D

− ω × d . (5)

In our case, the movement is restricted to pure transla-
tion, thus ω = 0. For a movement in the x–y plane in
direction α and with speed v

ẋ = (ẋ, ẏ, 0)T = v(cos α, sin α, 0)T ,

and with d and ḋ expressed in spherical coordinates as
ϕ = (β, γ ) and ϕ̇ = (β̇, γ̇ )T, respectively, we obtain
(

β̇

γ̇

)

= v
D

(

sec γ 0
0 sin γ

)

︸ ︷︷ ︸

�

(

sin β − cos β

cos β sin β

)

︸ ︷︷ ︸

B

(

cos α

sin α

)

= 1
D

�B
(

ẋ
ẏ

)

, (6)

where sec γ = (cos γ )−1. Equation (6) transforms a
movement into a flow vector. For a small movement
�x = (�x, �y)T in the plane, we can approximate

�ϕ = 1
D

�B�x . (7)

For movements in the direction of the coordinate axes e1
and e2 with small length η � 1 described by �x1 = ηe1
and �x2 = ηe2 we see from Eq. (7) that

�ϕ1 = η

D
�Be1 , �ϕ2 = η

D
�Be2 . (8)

These equations describe the two flow templates
(matched filters) shown in Fig. 4. �ϕ1 is the flow field
experienced under the movement �x1 along the x direc-
tion, and �ϕ2 is the flow field for the movement �x2
along the y direction. When these flow fields and move-
ments are inserted into Eq. (4), we see that each compo-
nent of the spatial gradient is related to one of the two
flow fields.

Home vector We now insert Eq. (7) into Eq. (4). For
arbitrary �x, we obtain the following expression for the
spatial gradient:

∇xC(ϕ, x) ≈ − 1
D

BT�∇ϕC(ϕ, x). (9)

Here, D = D(ϕ) is the distance of the feature at angular
coordinate ϕ. Since we have no information about object
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Fig. 4 Flow templates for translations in direction e1 (top) and
e2 (bottom) obtained from Eq. (8). The horizontal axis is β

(0 . . . 2π), the vertical axis γ (−1 . . . 1). Lines: horizon (γ = 0) and
maximal/minimal value of γ as well as range of β. Dots: foci of
expansion and contraction. The flow vectors are scaled for good
visibility

distances, we continue with an equal-distance assump-
tion (see, e.g., Franz et al. 1998b): D is assumed to be
constant for all directions ϕ. We finally get an equation
for the home vector in Eq. (3)

h(x) =
∑

i,j

1
D

B(βi)
T�(γj) · ∇ϕC(ϕij, x)

×[C(ϕij, x) − S(ϕij)]. (10)

Image processing For the derivation above, we used
angular coordinates ϕij = (βi, γj)

T; if Eq. (10) is imple-
mented in an image processing system, however, we
have to switch to pixel coordinates (i, j)T to express
∇ϕC(ϕij, x) by standard filter operations. For simplicity
we assume that the image has been preprocessed in such
a way that we have an approximately linear relationship
between βi and i and between γj and j, like

βi = 2π − 2π i
w

, γj = γ0 + (γh−1 − γ0)j
h − 1

for an image of width w and height h pixels, where i
decreases with increasing βi and j decreases with increas-
ing γj. The bottom and top rows correspond to γh−1
and γ0, respectively. For equal angle-to-pixel ratios δ in
vertical and horizontal directions

δ = 2π

w
= γ0 − γh−1

h − 1

we get βi = 2π −δi and γj = γ0 −δj. We can then express
the gradient in pixel coordinates by

∇ijCij(x) =
(

∂
∂i Cij(x)

∂
∂j Cij(x)

)

=
(

∂
∂β

C(ϕij, x)
∂β
∂i

∂
∂γ

C(ϕij, x)
∂γ
∂j

)

= −δ ∇ϕC(ϕij, x). (11)

∇ijCij(x) can easily be determined from a discrete approx-
imation by applying simple filter kernels like
1
2 (−1, 0, 1) and 1

2 (−1, 0, 1)T to the pixels of the current
image. Since D in Eq. (10), δ in Eq. (11), and the factor
1
2 in the kernels are positive constants and just affect
the length of the home vector, we can omit these factors
from the computation of Eq. (10) and determine the
home vector from

h̃(x) =
∑

i,j

B(βi)
T�(γj)

︸ ︷︷ ︸

Tij

·∇ijCij(x) · [Sij − Cij(x)], (12)

where the matrices Tij can be precomputed. Note that
the negative sign in Eq. (11) was incorporated into the
last factor. The tilde signifies that this home vector is
computed from an intensity gradient related to pixel
coordinates rather than angular coordinates and that
we omitted the factors as described above; this is the
home vector computation used in our implementation.

3 Analysis of matched-filter DID

In what follows, we investigate the relation between
the MFDID method in Eq. (10) and the flow vectors
computed by a first-order differential method applied
to the snapshot and the current view.

Flow-based navigation Vardy and Möller (2005)
applied first-order differential flow methods to the prob-
lem of visual homing. In this application, the flow vector
field is determined between the snapshot image S(ϕ) =
C(ϕ, x0) and the current view C(ϕ, x) with x = x0 + �x.
First-order methods rest on the assumption that the
image intensity is unchanged under a shift �ϕ (Barron
et al. 1994):

C(ϕ + �ϕ, x) = S(ϕ).

By Taylor expansion of the l.h.s. for its first argument
and approximation to the first order, we get

C(ϕ, x) + ∇T
ϕC(ϕ, x)�ϕ = S(ϕ). (13)

The solution to this flow equation is not unique due
to the aperture problem. Choosing the flow vector �ϕ

parallel to the intensity gradient, we gain

�ϕ = ∇ϕC(ϕ, x)

‖∇ϕC(ϕ, x)‖2 · [S(ϕ) − C(ϕ, x)] (14)
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as one possible solution that fulfills Eq. (13) (see, e.g.,
Beauchemin and Barron (1995)). The flow vector �ϕ

at the pixel in direction ϕ describes the shift of a fea-
ture from its position in the snapshot to its position in
the current view. By a “vector mapping” method such
as the one described by Vardy and Möller (2005) or by
inverting Eq. (7), the flow vector can be transformed
into a corresponding direction of movement.

MFDID versus differential flow The structural resem-
blance between Eq. (14) and the summands in Eq. (10)
is apparent: The summands are proportional to the flow
vector obtained from applying a first-order differen-
tial flow method to the snapshot and the current view.
Neglecting the division by the squared length of the
intensity gradient, we can therefore interpret the
summands of Eq. (10) as flow vectors that are trans-
formed into the corresponding direction of movement
in the plane; the latter could be called a “local home
vector”

hij(x) = 1
D

B(βi)
T�(γj) · ∇ϕC(ϕij, x)

×[C(ϕij, x) − S(ϕij)], (15)

with the overall home vector being determined from
summing over i and j. In what follows, we establish a rela-
tionship between the flow vector obtained from Eq. (14),
referred to as �ϕ∗

ij, and the flow vector �ϕij correspond-
ing to the local home vector of the MFDID method in
Eq. (15). By inserting �ϕ∗

ij from Eq. (14) into Eq. (15),
we get

hij(x) = − 1
D

B(βi)
T�(γj) · ‖∇ϕC(ϕij, x)‖2 · �ϕ∗

ij .

Here, D is the average distance to the landmarks that
is used in the prediction steps. In contrast to the flow
fields obtained from the small test steps in the MFDID
method, the flow vectors relating the current view to the
snapshot result from usually long spatial distances. This
violates the assumptions underlying the derivation of
Eq. (13); nevertheless, differential flow methods seem
to produce relatively good homing performance (Vardy
and Möller 2005). For our analysis, we assume that the
spatial distance between the snapshot and the current
view is small, and can therefore transform hij(x) into the
corresponding flow vector as �x according to Eq. (7):

�ϕij = 1
Dij

�(γj)B(βi)hij(x)

= − 1
DijD

�(γj)B(βi)B(βi)
T�(γj)

×‖∇ϕC(ϕij, x)‖2 · �ϕ∗
ij .

Dij is the true distance to the feature in the world. Since
BBT = I, we end with the relation

�ϕij = − 1
DijD

(

sec2 γj 0
0 sin2 γj

)

×‖∇ϕC(ϕij, x)‖2 · �ϕ∗
ij . (16)

This is a relation between two flow vectors. On the l.h.s.
we find the flow vector �ϕij that we would obtain if
the agent moved along the local home vector hij(x)

produced by the MFDID method. The r.h.s. contains
the flow vector �ϕ∗

ij at the same position in the im-
age that would be produced by a first-order differential
flow method when it is applied to the snapshot and the
current view.

The negative sign derives from the fact that the
local home vector of the MFDID method describes a
movement toward the target location whereas the flow
vector determined by the differential method describes
a movement from the target location to the current
location. Furthermore, the relation includes the squared
ratio between the length of the gradient and the feature
distance, which can be explained as a property of the
DID method. The DID method establishes a relation
between the spatial distance and the image distance.
This relation depends on the distance to the feature
(the larger the distance of an object, the smaller that
object’s impact on the image distance) and on the inten-
sity gradient (the larger the intensity gradient, the larger
its influence on the image distance). Finally, the matrix
multiplies the horizontal component of �ϕ∗

ij by sec2 γj

and the vertical component with sin2 γj. For the usually
small vertical range of the images, the first multiplication
should have a negligible effect. The second multiplica-
tion reveals that the MFDID method (l.h.s.) seems to
underestimate the vertical components of flow vectors
close to the horizon (γ = 0) relative to the first-order
differential flow method.

4 Experiments

4.1 Image database

The database of images collected by Vardy and Möller
(2005) is used for all experiments described below. This
database is publicly available at www.ti.uni-biele-
feld.de/html/research/avardy. Images from
this database were captured by a mobile robot equipped
with a panoramic imaging system. This imaging system
consists of a camera pointed upward at a hyperbolic mir-
ror. Images from two different environments are used
here. The first environment is a computer lab of dimen-
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sions 5.5 × 8.25 m. Within this lab the capture area was
2.7 × 4.8 m with images captured on a grid with 30-cm
resolution. The second environment is the main hall of
Bielefeld University, a large open space where the dis-
tance of viewed objects ranges from several meters to
hundreds of meters. The capture grid in the hall had
dimensions 4.5 × 10 m at 50-cm resolution.1

All images were captured at approximately the same
orientation. If the methods described here were to be
used for the online control of a mobile robot, some kind
of compass would have to be employed. Since magnetic
compasses tend to be problematic in indoor environ-
ments, orientation could be derived from visual informa-
tion; the minimization of image distances over rotation
can be used for this purpose as well (Zeil et al. 2003).

Raw images from the database were low-pass filtered
using a Butterworth filter. The filtered images were then
reprojected onto a sphere and unfolded to rectangular
images of size 300×50. Rows in these images correspond
to equal vertical angles above and below the horizon
(center row); columns correspond to equal horizontal
angles. The filter parameters were obtained by testing
all methods using a variety of parameters and choos-
ing a parameter set that worked well for all methods.
The chosen parameters (relative cutoff frequency 0.01,
order 3) yield strongly blurred images, an example of
which can be seen in Fig. 5 (bottom). We discuss the
impact of low-pass filtering in Sect. 5.1.

4.2 Methods

We compare three different methods [again, the tilde
signifies home vectors as they are computed in our imple-
mentation, see comment below Eq. (12)]:

1. DID: The original DID method uses a current view
and two nearby views in the database to estimate
the negative gradient:

h̃1(x) = −
(

SSE([xm+s, yn]T) − SSE([xm, yn]T)

SSE([xm, yn+s]T) − SSE([xm, yn]T)

)

.

(17)

Here, m and n relate to the index of the database
view on the grid, and s is a step length, also in grid
units (if not stated otherwise, we use s = 1; thus
views are taken from adjacent grid points). Increas-
ing indices m and n correspond to increasing coor-
dinates on the corresponding axis. When the indices

1 Images from the “lab environment” come from the original
image collection of the database. Images from the “hall environ-
ment” come from image collection hall1.

Fig. 5 Top: Image (5,7) from lab. Center: The same image filtered
at relative cutoff frequency 0.1 and unfolded. Bottom: Image fil-
tered at cutoff frequency 0.01

m + s or n + s lie outside of the grid, [xm−s, yn]T

and [xm, yn−s]T are taken instead and the sign of the
corresponding component is inverted.

2. Matched-filter DID (MFDID): In the matched-fil-
ter version of the DID method, the home vector is
computed from Eq. (12), given here again:

h̃2(x) =
∑

i,j

B(βi)
T�(γj)

×∇ijCij(x) · [Sij − Cij(x)]. (18)

3. First-order differential flow (FirstOrder): The flow
vector computed from the first-order differential
flow method in Eq. (14) is inserted into the inverse
of Eq. (7); if we assume that all visible points are at
the same distance D, we can omit D and obtain

h̃3(x) =
∑

i,j

B(βi)
T�(γj)

−1

× ∇ijCij(x)

‖∇ijCij(x)‖2 · [Sij − Cij(x)],

where we applied B−1 = BT. The division by the
square of the intensity gradient requires some thres-
holding scheme to prevent division by near-zero val-
ues. We have found that omitting this division leads
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to an improvement in the algorithm’s performance.
Hence, we utilize the following flow expression:

h̃4(x) =
∑

i,j

B(βi)
T�(γj)

−1

×∇ijCij(x) · [Sij − Cij(x)]. (19)

4.3 Assessment

Homing performance is assessed by selecting one posi-
tion in the capture grid as the goal and then applying the
homing method to all other positions to obtain a home
vector for each. This home vector field is then charac-
terized by two performance metrics, as used before by
Vardy and Möller (2005).

The average angular error (AAE) is the average angu-
lar distance between the computed home vector ĥ and
the true home vector h (the angular distance between
these two unit vectors is computed as arccos(ĥTh) ∈
[0, π ]). Note that the AAE is a linear statistical mea-
sure, not a circular one (Batschelet 1981). The return
ratio (RR) is computed by placing an agent at each non-
goal position and allowing it to move according to the
home vector for that position. We use steps with a length
of 0.5 grid units. If the agent reaches within one grid unit
of the goal after a fixed number of steps, the attempt is
considered successful (the maximal number of steps is
chosen such that the agent could reach the lower right
corner of the grid from the upper left corner on an
L-shaped course). RR is defined as the ratio of the
number of successful attempts to the total number of
attempts.

As we are interested in robust performance through-
out an environment, we test each homing method using
all capture grid positions in turn as the goal position and
then average the results. Henceforth, AAE∗ and RR∗
will refer to the average AAE and RR quantities across
all goal positions.

4.4 Results

Home vectors for all methods for goal positions (5,7) and
(5,16) of the lab environment are shown in Fig. 6. Rela-
tively little difference between the methods is apparent
for goal position (5,7), although the performance met-
rics shown above each vector field indicate that MFDID
exhibits the most correct field. The situation for goal
position (5,16) is quite different. Here we see excellent
performance by FirstOrder but relatively poor perfor-
mance by DID and MFDID.

Figure 7 presents plots of AAE and RR across all
goal positions of the lab environment. For FirstOrder,
the performance is generally good throughout. How-
ever, for DID and MFDID, the performance is quite
poor along the line y = 16.

Figure 8 summarizes the results for the hall environ-
ment. Here it is MFDID that exhibits both the lowest
AAE∗ and the highest RR∗ values. In particular, the RR
plots show that this method is the most consistent in this
environment.

Qualitatively, we find the performance of all methods
tested above quite comparable. The method based on
first-order differential flow performs better in the lab
environment, where both DID and MFDID experience
a problem in one small region of the capture grid. In the
hall environment, MFDID clearly performs the best of
all methods.

5 Discussion

5.1 Analysis of the performance

In this section we discuss several issues that are relevant
to the performance of the methods studied in this paper.

First, we consider the issue of low-pass filtering. As
shown in Fig. 5 (bottom), the filter parameters adopted
yield very strong low-pass filtering. To assess the impact
on performance, we tested all three methods by fixing
the order of the Butterworth low-pass filter at 3 and vary-
ing the relative cutoff frequency. The results are shown in
Fig. 9. Note that lower cutoff frequencies yield a stronger
low-pass-filtering effect (i.e., more blurry images). The
chosen cutoff frequency of 0.01 appears to be optimal
for all methods in the range examined. For smaller cut-
off frequencies the performance drops drastically for all
methods. For cutoff frequencies higher than 0.01, there is
a slight reduction in performance for all methods, except
for MFDID as measured by return ratio. Generally, it
appears that all methods are relatively insensitive to the
filter frequency, as long as it remains higher than 0.01.

The performance of both DID and MFDID depends
on the spatial structure of the image distance function.
For the concept of gradient DID to be applicable, the 2D
image distance function must rise smoothly and mono-
tonically with spatial distance. Figure 2 (left) shows this
image distance function for goal position (5,7) in the lab
environment. Overlaid on this figure are the home vec-
tors generated by DID. This distance function exhibits
the necessary properties: a smooth monotonic rise from
the single global maximum. Figure 2 (right) shows the
image distance function for goal position (5,16). In this
case, the distance function fails to exhibit the desired
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Fig. 6 Home vector fields for goal positions (5,7) (top row) and (5,16) (bottom row) in lab environment

structure. The absence of a sharply defined attractor
point at the goal, as well as the presence of local min-
ima, implies that homing to position (5,16) will not be
successful for distant starting positions. In the results
presented above we found poor performance for both
DID and MFDID along the line y = 16.

The structure of the distance function in this region
of the capture grid is likely due to the appearance of
the table lying along the top wall of the lab.2 At y = 16,
the robot’s camera was practically underneath this table;
therefore the top wall was occluded by the darker under-
side of the table. However, for y < 16 the white wall
above the table is more prevalent. Compare the top two
images in the left-hand column of Fig. 10 to the bottom
two to see this effect. The impact on the shape of the
image distance function is such that DID and MFDID
are relatively ineffective for goals in this region.

One result that may be surprising is the fact that
MFDID consistently outperformed DID. One might
suppose that DID would be the better performer given

2 We refer to this as the “top wall” as it corresponds to the top of
the plots in Figs. 6 and 7.

that it actually samples the image distance function,
while MFDID only approximates this function. Further,
MFDID relies upon an equal-distance assumption that
will clearly be unsatisfied in many environments – par-
ticularly in the hall environment where MFDID actually
performs quite well. We believe that the superior perfor-
mance of MFDID lies in yet another factor. To estimate
the gradient of the image distance function, DID relies
on images taken from two adjacent positions in the cap-
ture grid. Both of these images are taken from positions
30 cm from the current position. MFDID, on the other
hand, estimates the gradient using two synthetic images
taken from infinitesimally close positions. Thus, the gra-
dient determined by MFDID is more sensitive to the
fine local structure of the approximated distance func-
tion. To ascertain the impact of this factor, we tested
DID with increasing step sizes (multiples of 30 cm). The
results shown in Fig. 11 indicate that the optimal step
size for DID is less than 1. Such a step size is not achiev-
able with this database. It may be the case that for online
control of a mobile robot, DID could match the perfor-
mance of MFDID by decreasing its step size.
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Fig. 7 AAE and RR for all goal positions in lab environment.
White represents an AAE value of 0, or an RR value of 1. Black
represents an AAE value of 1.8333 (maximum), or an RR value

of 0. The numbers above each plot show the mean and standard
deviation (in parentheses)

A possible reason to explain the difference in per-
formance between MFDID and the differential flow
method is the underestimation of vertical flow vector
components close to the horizon (Sect. 3). Generally,
we found that the differential methods performed well
in the lab environment whereas MFDID performed well
in the hall environment. Images from the hall environ-
ment, as shown in Fig. 10, are dominated by vertical
structures. These vertical structures will tend to exhibit
mostly horizontal flow vectors. Thus, in the hall environ-
ment, MFDID’s lack of emphasis on vertical flow does
not hinder performance relative to FirstOrder. Images
from the lab environment, on the other hand, include a
great number of horizontal structures, which will tend
to exhibit mostly vertical flow vectors.

5.2 Descent methods

In the following, we discuss the MFDID method and
introduce two versions that require only a single flow
template rather than two.

Homing with two flow templates The MFDID method
suggested in this paper derives from a version of the
original DID method where the gradient is estimated
by sampling the distance measure in two perpendicular
directions. We assumed that these test steps originated
from the same current location; in a practical applica-
tion, the robot could sample two points at the beginning
and end of a forward movement, and the third point
after a ±90◦ turn and a subsequent forward movement,
preferably of equal length. The gradient would be com-
puted at the second point of this sequence, but applied
at the third. Now the core idea of the MFDID is to
replace the two test steps with predictions of how the
image would change under two small movements.

Each prediction is based on a “matched filter” or
template flow field for a translation in the corresponding
direction. A matched filter is a concept in neuroethology
and describes the spatial layout of some population of
receptors that is matched to a certain aspect of the task
(Wehner 1987). For example, preferred directions for
arrays of elementary motion detectors seem to corre-
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Fig. 8 AAE and RR for all goal positions in hall environment. White represents an AAE value of 0, or an RR value of 1. Black
represents an AAE value of 1.1343 (maximum), or an RR value of 0. Notation as for Fig. 7

spond to flow fields induced by particular movements
of flies, e.g., by roll movements (Egelhaaf et al. 2002;
Krapp 2000; Franz and Krapp 2000; Franz et al. 2004).

Our matched filters have the typical structure of flow
fields for pure translations in the horizontal plane: a
focus of expansion, a focus of contraction, and nearly
horizontal flow between them (Fig. 4). If no depth infor-
mation is available, though, only the directions of the
flow vectors in the two matched filters are known, but
not their length. Our prediction therefore rests on an
“equal-distance assumption” as the warping method
(Franz et al. 1998b). The performance of the MFDID
method shows that, as in the warping method, even
severe violations of this assumption have only mild ef-
fects on the home vector direction.

In the MFDID method in Eq. (12), the intensity gra-
dient of the current image is projected onto the two
matched filters (the rows of BT�) and multiplied with
the difference between the intensity of the pixel in the
snapshot and in the current view. This is essentially a
comparison between the intensity change in the direc-

tion of the flow vector and the change that would be
required to become more similar to the snapshot. If
the signs of the two factors coincide, a movement in
the direction corresponding to the flow template would
make this pixel in the current view more similar to the
same pixel in the snapshot. In this case, the local home
vector component would be positive (pointing in the
template’s corresponding movement direction).

Homing with a single frontal flow template We
mentioned above that a matched filter is supposed to
correspond to the flow experienced under some typical
movement of the animal. In what follows we assume
that the matched filters are bound to the agent’s coor-
dinate system, with a “frontal” filter where the focus
of expansion coincides with the usual movement direc-
tion and a “sideways” filter where the foci of expansion
and contraction are at ±90◦ from the movement direc-
tion. While the frontal filter will relate to flow expe-
rienced under forward translations, the sideways filter
is less plausible, at least for walking animals like ants.
Moreover, the frontal filter may simultaneously serve
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some other purpose like path integration; at least for
walking insects, it is more difficult to come up with an
alternative purpose for the sideways filter.

In what follows we therefore briefly discuss a ver-
sion of MFDID where a single matched filter in for-
ward direction is sufficient. We start from the fact that
the gradient is the direction with the largest directional
derivative and from the assumption that the directional
derivative will vary smoothly with varying gaze direc-
tion. Probing the directional derivative could be accom-
plished by small head rotations or small changes in the
orientation of the body. For each gaze direction, the
directional derivative can be determined by applying
just the frontal flow field in the same way as described
above for the MFDID method. Turning toward larger
values will then gradually align the animal with the home
direction.

For our case of gradient descent, we can define the
directional derivative as

H(α, x) =
(

cos α

sin α

)T

· h(x). (20)

Thus, the directional derivative is the projection of the
home vector onto a vector pointing in direction α. We
now give up the assumption that the agent’s visual coor-
dinate system is aligned with the world coordinates irre-
spective of its body orientation, but instead assume that
the current view is bound to the body of the agent. (For
all methods discussed so far, the snapshot would have
to be mentally rotated to an orientation matching that
of the current view.) Then we can fix the template flow
field in the movement direction of the agent’s coordi-
nate system α = 0. We also insert h(x) from Eq. (10)
and obtain

H(0, x) =
∑

i,j

1
D

eT
1 B(βi)

T�(γj) · ∇ϕC(ϕij, x)

×[C(ϕij, x) − S(ϕij)].
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by low-pass filtering (cutoff 0.1, order 3) and unfolding as described in Sect. 4.1
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By comparing this equation to the home vector in
Eq. (10), we see that H(0, x) is just a projection onto the
frontal flow filter (focus of expansion in the direction of
movement): The intensity gradient is projected onto the
first row of BT�. By looking into different directions,
e.g., just by moving the head slightly from side to side,
and predicting the image change through the frontal
flow filter, the agent can detect a turn direction in which
the directional derivative increases. Figure 12 (center)
shows the length of the directional derivative computed
in this way for three current locations in different
directions.

Of course, a similar strategy could also be applied
without prediction by actually measuring the change of
the SSE under small translations. Rather than sampling

the SSE at three points in a right triangle, the agent
would move on a slightly winding trajectory. After hav-
ing executed a small translatory movement, the agent
determines an approximation of the directional deriv-
ative from SSE values sampled at the beginning and
the end of this step, changes the heading angle by a
small amount, executes another translatory movement,
again approximates the directional derivative from two
SSE values, and then decides what direction to turn in so
that the directional derivative will decrease. This method
may be problematic, though, since the two translatory
steps do not originate from the same point.

Homing with a single sideways flow template In the
method described in the previous paragraph, the agent
will turn toward an increasing directional derivative.
This opens an alternative approach to MFDID that has
the advantage of not requiring any sampling movements
(not even changes in gaze direction) but that is less plau-
sible with respect to the matched-filter concept since at
least walking animals will rarely experience this flow
field. In this approach the agent will not determine a
home vector directly but will determine an amount by
which to turn at each step. The agent can turn according
to the derivative of the directional derivative H(α, x)

dα

dt
= ε

∂H(α, x)

∂α
,

where the term on the r.h.s. can simply be determined
from Eq. (20):
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Fig. 12 MFDID method applied to lab database. Left Home vec-
tor field for goal location in center of black square, obtained by
applying two flow templates. Center Directional derivative for
different gaze directions computed at three different locations,
determined from a single frontal flow template. The directional
derivative is represented by the length of the gray vectors pointing
in the gaze direction. The black vector is the home vector. Right

Trajectories produced by determining the turn direction from a
single sideways flow template. From each of the three starting
points (black dots), the simulated agent starts with two different
initial orientations (looking to the left side of the grid or to the
right). The closest view in the database grid to the agent’s position
is used for the computation. The agent moves in steps of 0.3 grid
units

∂H(α, x)

∂α
=

(− sin α

cos α

)T

· h(x).

Again, we change from fixed coordinates to agent-bound
coordinates (α = 0) and insert the home vector from
Eq. (10), which yields

∂H(0, x)

∂α
=

∑

i,j

1
D

eT
2 B(βi)

T�(γj) · ∇ϕC(ϕij, x)

×[C(ϕij, x) − S(ϕij)].
A comparison with the home vector in Eq. (10) reveals
that this equation projects the intensity gradient onto
the sideways flow filter (second row of BT�). In this
filter, the foci of expansion and contraction lie at ±90◦
from the forward direction. The behavior of this method
is shown in Fig. 12 (right): Starting from three different
points in two different orientations, the agent is turning
toward the snapshot location and approaching this loca-
tion while moving with constant speed. For the sake of
demonstration, we chose a small value for ε; this leads
to slow turning and exaggerates the differences between
the two trajectories originating at the same point.

Since it requires only a single matched filter and has
no motor components (no head movements, no transla-
tional test steps), this method is clearly attractive for
applications where the robot’s task is to approach a
target location. The method has its limitations when
the local homing method is integrated into topologi-

cal navigation in a view graph (Franz et al. 1998a) since
it does not provide a home vector. For some purposes,
for example to select a new direction of exploration
at a graph node, it is more efficient if the home vec-
tor toward neighboring graph nodes can be determined
directly. The method with the single sideways filter would
have to physically rotate the robot (or the flow template)
in the home direction. Here the MFDID method using
two matched filters is more efficient.

5.3 Other matched-filter methods

In the main part of this paper we derived and tested
the MFDID method where the matched-filter concept
is applied to simplify the DID suggested by Zeil et al.
(2003). We focused on the DID method because of its
simplicity and low computational complexity. However,
the matched-filter approach is a more general concept
and can be applied to derive closed-form solutions for all
methods that are formulated as a gradient descent in a
distance measure. With the three methods presented in
what follows we intend to illustrate the broader applica-
bility of the matched-filter concept. The first two meth-
ods adhere to the concept of DID but use a different
distance measure and a different template flow field,
respectively, whereas in the third example we derive
the matched-filter solution for the Fourier-amplitude
method (Menegatti et al. 2004).
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MFDID with different distance measure The DID
method is based on the RMS error in Eq. (1) or the
SSE in Eq. (2) between images, but a number of alter-
native distance measures could be used as well; Gia-
chetti (2000) gives an overview in the context of block
matching. One might conjecture, for example, that the
covariance measure

p(x) = COV(x)

= 1
N

∑

i,j

[C(ϕij, x) − C(x)] · [S(ϕij) − S]

(where N is the total number of pixels and the overlined
quantities are average image intensities) is more robust
against global variations of brightness than RMS and
SSE. It is straightforward to derive the home vector for
this method by approximating the spatial gradient with
the intensity gradient according to Eq. (9):

h(x) = − 1
N

∑

i,j

1
D

B(βi)
T�(γj)

×∇ϕC(ϕij, x) · [S(ϕij) − S]. (21)

(Note that in this case the home vector is obtained from
a gradient ascent in the potential.) While MFDID with
the SSE as distance measure produces a home vector
that may appear to be just a version of the first-order
method with a different weighting of the flow vectors
[compare Eq. (18) with Eq. (19)], other distance mea-
sures result in solutions such as Eq. (21) that are more
remotely related to the first-order flow method.

MFDID with rotational flow template Both the orig-
inal MFDID method given by Eq. (10) and the method
derived from the covariance measure given by Eq. (21)
use two purely translational flow templates to approx-
imate the gradient. These methods are based on the
observation by Zeil et al. (2003) that the image dis-
tance varies smoothly over the spatial distance to the
goal. The same authors report that the image distance
also changes smoothly when images from two nearby
locations are rotated against each other. The distance
measure exhibits a pronounced minimum at the angle
where the two images are approximately aligned as if
they had been captured in the same camera orientation.
The rotation angle can be found either by rotating the
images through all angles and searching for the minimal
SSE or by a gradient descent in the rotation angle α

with respect to the SSE. We can apply the matched-fil-
ter approach to the gradient descent by formulating the
distance

p(α) = SSE(α) = 1
2

∑

i,j

[C(ϕij, α) − S(ϕij)]2 .

Here we omitted the position x of the current view
and introduced the rotation angle α as parameter. In
this case, our template flow field corresponds to a pure
rotation around the vertical axis, i.e., we insert ẋ = 0
and ω = ω(0, 0, 1)T into the flow Eq. (5). After some
manipulations, we obtain the descent equation over the
rotation angle α:

α̇ = −
∑

i,j

dC(ϕij, α)

dβi
· [C(ϕij, α) − S(ϕij)].

If the agent rotates according to α̇, the image distance
between the current view and the snapshot is reduced.
Note that the test steps for rotation come practically for
free (the image can be rotated without movements), so
this method does not share with MFDID the advantage
of saving test steps; we are mainly presenting this for
the sake of demonstrating the general applicability of
the matched-filter method.

Fourier-amplitude method In the Fourier-amplitude
method introduced by Menegatti et al. (2004), each im-
age is characterized by the first K amplitudes of the
Fourier spectra of each row of the panoramic image.
Since Fourier amplitudes are invariant against shifts,
this method does not require a compass to align the
two images before computing the distance. We denote
the discrete Fourier transform as

Fk(I) = 1√
n

n−1
∑

i=0

Ii exp

(

−ıki
2π

n

)

,

where n is the number of pixels per image row, Ii is pixel i
of the image row I, and ı is the imaginary unit (see,
e.g., Jähne 2002). As the distance measure we use the
SSE applied to the Fourier amplitudes of corresponding
rows j in the two images, a simple formulation would be

p(x) = 1
2

∑

j

K
∑

k=−K

(|Fk(Cj(x))| − |Fk(Sj)|
)2 .

Here, Cj(x) and Sj denote row j of the panoramic images.
We introduce the two components of the spatial gradient
that is approximated by the intensity gradient according
to Eq. (9):

(

�ij(x)

ij(x)

)

= δ

D
B(βi)

T�(γj)∇ijCij(x),

with δ from Eq. (11). The home vector equation
is derived in the usual way. We use the abbreviations
	k(I) = Re{Fk(I)} and 
k(I) = Im{Fk(I)} and omit the
argument x:
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h = −
∑

j

K
∑

k=−K

|Fk(Cj)|−1

×
(	k(�j)	k(Cj) + 
k(�j)
k(Cj)

	k(j)	k(Cj) + 
k(j)
k(Cj)

)

× (|Fk(Cj)| − |Fk(Sj)|
)

.

The method requires a discrete Fourier transform of
each row j in images C, S, �, and .

5.4 MFDID versus warping

Both our approach and the warping method introduced
by Franz et al. (1998b) use matched filters for local visual
homing. In what follows, we highlight the differences
between the two methods. Formulated in the context
of matched filters, warping applies a large number of
different flow templates to one of the images (e.g., the
current view). The templates correspond to movements
with three parameters describing two rotations and a
translation. The rotation parameters cover the full range
of 360◦ each and the translation parameter essentially
varies between zero and the average distance to the
landmarks (with a typical angular resolution of 10◦ and
20 steps for the distance, 25,920 templates are required).
The distorted images obtained by passing the current
view through the templates are compared to the snap-
shot by some distance measure (e.g., SSE). The home
vector can then be expressed by the parameters that
were used to produce the best-matching distorted cur-
rent view. It is an advantage of the warping method that
no compass is necessary since the robot rotation is cov-
ered by the two rotational parameters. Warping can in
principle be applied to 2D images but is computationally
feasible only for 1D images (for our image size of 300×50
and the parameter resolution given above, a single home
vector computation would require ca. 4·109 operations).
To summarize, warping is a search procedure where one
image is explicitly distorted according to a large number
of templates and compared to the other image by some
distance measure. The templates are describing all pos-
sible and thus also large movements from the current
position to the goal position.

In contrast, the MFDID method derived in this paper
is using just two flow templates for translational move-
ments. The derivation is based on the assumption that
these movements are infinitesimally small. The image
distortion is performed implicitly: Rather than comput-
ing the change of the image and the corresponding
change in the distance measure, both steps are fused in a
single equation that directly provides the home vector.
MFDID performs no search and its complexity therefore

scales linearly with the number of pixels in the image;
this also makes the application to 2D images practically
feasible. MFDID requires a compass to align the two
images to the same coordinate system which is a clear
disadvantage compared to warping.

Both methods are based on the assumption that all
features have approximately the same distance from the
camera. For the warping method it could be proved
mathematically that the error due to this assumption
decreases when the agent approaches the goal
(Franz et al. 1998b); whether this property also holds
for MFDID is still an open question. In the practical
application, violations of the equal distance assumption
appear to have only mild effects on the overall perfor-
mance of either warping and MFDID.

6 Conclusions

MFDID replaces exploratory movements for the
estimation of the gradient by two image predictions. The
predictions are based on matched flow filters for trans-
latory movements in the plane. The method is closely
related to differential optical flow methods and exhibits
comparable performance; the major difference lies in
the influence of vertical flow components close to the
horizon. In our image database experiments, MFDID
performed better than the original DID method with
perpendicular test steps, despite the underlying equal-
distance assumption, although this may be due to the
coarse resolution of the database grid. We show that it
is also possible to navigate either with a single frontal
flow template and exploratory changes in gaze direc-
tion or with a single sideways flow template without any
exploratory movements. The matched-filter approach
can generally be applied to gradient DID measures and
thus also opens a new perspective on parameter models
of local visual homing.
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