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Abstract

Lateral inhibition is a well documented aspect of neural architec-

ture in the main sensory systems. Existing accounts of lateral inhibi-

tion focus on its role in sharpening distinctions between inputs that

are closely related. However, these accounts fail to explain the func-

tional role of inhibition in cortical columns, such as those in V1, where

neurons have similar response properties. In this paper, we outline a

model of position tracking using cortical columns of integrate-and-fire

neurons which respond optimally to a particular location, to show

that negatively-correlated firing patterns arise from lateral inhibition

in cortical columns, and that this provides a clear benefit for popula-

tion coding in terms of stability, accuracy, estimation time and neural

resources.
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1 Overview

1.1 Introduction

Understanding the functional meaning of particular aspects of neural ar-

chitecture is a central objective of computational neuroscience. Inhibitory

interneurons are very common in the neocortex, and lateral inhibition has

been shown to play an important role in sharpening the distinctions between

similar inputs, where such inputs would otherwise invoke nearly the same re-

sponse in neurons with only slightly different response properties. However,

it is our belief that inhibition also plays an important role in population

coding, stabilising the mean field potential and greatly improving the ability

of a group of neurons to accurately represent a given stimulus, by creating

negatively-correlated firing patterns. In this paper, we will describe the prin-

ciple on which this improvement is based, showing how it extends the benefit

of population coding. We will then present a model and a set of experiments

using this model, which demonstrates that pools of neurons operating with

inhibitory connections perform better on a stimulus-tracking task than the

same model with no inhibitory connections. The model is designed to show

how this can work in principle in neural sensory coding, incorporating a num-

ber of realistic aspects such as the use of spiking neurons, online estimation

and a simple filtering mechanism, but it is not intended to be a biophysically

realistic model, which would reduce the clarity of this initial demonstration.

We will, however, include a brief discussion on how our model is related to

the circuits found in the primary visual cortex.

1.2 Inhibitory mechanisms in neocortex

Sensory neural processing is most often thought of in terms of many inter-

connected circuits using excitatory connections to propagate signals through

layers of increasingly abstract representation. Whilst there is some truth in

this necessarily simplified image, it is also the case that half of all neurons
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in the brain are inhibitory. Inhibitory neurons can operate in a variety of

different ways, such as feedforward inhibition, where the inhibitory connec-

tion comes from the same area that gives the excitatory connections to other

neurons in the current area, and feedback inhibition where the excitatory

neurons in the current area in turn suppress the activity of other neurons

through the use of local inhibitory interneurons. Much of the existing work

on inhibitory mechanisms in the context of cortical columns has focused on

the role of lateral inhibition in sharpening distinctions between neurons with

slightly different response properties [8, 10]. However, the existence of local

inhibitory circuits [12, 13] and the fact that horizontal connections lead to

inhibitory post-synaptic potentials (IPSPs) [6], suggest that inhibitory cir-

cuits are likely to operate within cortical columns, as well as across them.

Clearly, inhibitory connections within cortical columns do not have the same

role as those that operate across different columns. Lateral inhibition within

columns means neurons with the same response properties inhibiting each

other. What could be the functional role for this local inhibitory mech-

anism? In this paper, we propose that this local inhibition improves the

performance of pooled neurons, by exploiting a property of the central limit

theorem applicable to population coding.

1.3 Population Coding and the Central Limit Theorem

Many areas of the neocortex show a columnar structure, in which all of

the neurons in a given layer within the column (sometimes called a pool

of neurons) have essentially the same response properties. Somatosensory

cortex and primary visual cortex (V1) are two prominent examples of this.

Cortical columns are an important structural unit in the brain, and operate

on the principle of population coding, where the activity of the pool as a

whole is taken to be the signal, rather than the firing rates of the individual

neurons. This mean field potential can be formally defined as [5]:-
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Figure 1: The central limit effect for noisy neurons. The underlying signal value for
neural firing to convey is shown, along with the mean (pooled) activity for a set of five
uncorrelated neurons and a set of five negatively correlated neurons. The individual neuron
firing rates are also shown (circles). It can be seen that when the neurons are negatively
correlated, the result is that the mean field potential gives a more reliable representation
of the underlying signal.
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The advantage of the this scheme for neural processing is that it allows vari-

ations in firing rates of individual neurons, due to extrinsic or intrinsic noise,

whilst maintaining the signal-to-noise ration (SNR) through the cancellation

of the noise when the firing rates are pooled together. This is an effect of

the central limit theorem, and can be seen in figure 1. When a group of

random elements, for example neural firing rates, are summed together, they

give a mean value (mean field potential). For a system in which the random

elements consist of signal plus zero-mean gaussian noise, which is a typical

assumption for most noisy systems including neurons, the mean value will

tend to be closer to the signal value because the noise cancels out (central

limit effect). More elements pooled together results in greater noise cancel-
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lation. There is, however, another way to accelerate the central limit effect,

and this is to have a noise component that is negatively-correlated. It can

be seen in figure 1 that negatively-correlated noise cancels out much more

quickly and effectively than independent noise, because corresponding ele-

ments tend to be on opposite sides of the mean (the space-filling effect of

negative correlation). In order to take advantage of this fact, however, a sys-

tem has to have a means to influence the correlation of the noise component,

or at least the effect of the noise component.

In neural systems (and more generally in all threshold systems), a centrally

important fact is that a neuron which spikes will be on average more likely to

have a positive noise component than a negative one (because positive noise

components lead to an increased membrane potential, which in turn increases

the probability of spiking). In order to simulate the effect of negatively-

correlated noise with the other neurons (without actually effecting the ex-

trinsic or intrinsic noise directly, which is by definition beyond control), this

neuron must reduce the membrane potential of the other neurons in the pool.

This can be achieved through the inhibitory connections identified in section

1.2, and the result is that neurons within a pool should have firing patterns

that are negatively correlated with each other. We believe that this will re-

sult in a more stable system, with a mean field potential closer to that of the

underlying signal, which will give an improved performance on whatever task

the neural pool undertakes. In the following sections, we test this hypothesis

on the task of tracking a moving stimulus using groups of pooled neurons.

2 Methods

2.1 Network Model

Our model consists of a set of 10 cortical columns, each containing 100

integrate-and-fire neurons, which are either unconnected (control condition;
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an effective synaptic strength of zero), or have a full set of inhibitory connec-

tions within each column, with a synaptic strength of -1 to all other neurons

in the column (there were no recurrent connections back to the originating

neuron itself). There are no connections across columns. Each neuron is pa-

rameterised by vthre (firing threshold), vrest (the resting and reset potential),

γ (the membrane time constant), and xcol (maximal response stimulus posi-

tion, which is the same for all neurons within a column). In the experiments

presented here, vrest was always set to 0 (using a standard rescaling approach

from realistic values, for ease of analysis) and γ was always set to 20. The

value of vthre was varied in the experiments (details are given in sections 2.4

and 3.3). xcol took evenly spaced values between 0 and 10 (inclusive), which

were chosen to coincide with the limits of the stimulus range (in order that

the model could handle all stimulus positions, but also that the full range of

stimulus positions that could be handled by the model were available to be

tested).

At each simulation step, external inputs (determined by stimulus position

and a random element; see section 2.3) were presented to each of the neu-

rons, and the membrane potential v updated according to the following leaky

integrator equation:-

dv(t)

dt
= −v(t)

γ
+ IE(t) + IS(t) (2)

Here, IE(t) is the external input from the stimulus, and IS(t) is the spiking

input from other neurons; in the control condition, IS(t) will always be zero.

In order to account for shunting inhibition (where the hyperpolarising effect

of inhibitory input is related to the degree of depolarisation caused by exci-

tatory inputs); see [1]), we have also included a half-wave rectification which
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ensures that neurons do not become hyperpolarised beyond resting poten-

tial. Neurons which reached the threshold level vthre produced a spike and

had their membrane potential set to vrest for the remainder of the simulation

step.

2.2 Decoding Strategy

In order to effectively evaluate the performance of a network model on a

given task, it is necessary to be able to convert the network’s output back

into the domain of the task. In the case of our model using spiking neurons

to perform the tracking task, this means we have to address the issue of neu-

ral decoding. In their model which performed the same tracking task, [11]

explored two statistical decoding methods, one based on moment estimate,

and an optimal unbiased strategy using a censored maximum likelihood ap-

proach. The latter of these provides a useful benchmark on the best decoding

performance possible given a set of particular conditions (including balanced

inputs). For our model, however, we prefer to use a decoding strategy that

can be interpreted in terms of a neural model. There are two aspects to our

decoding strategy:-

1. All of the spikes in the estimation window for each column are simply

summed and normalised, and combined with their respective column

position.

2. The resultant set of outputs (one for each column) are filtered using

a simple gaussian filter. The stimulus position is estimated to be the

mean of the filtered output.

The first stage represents the projection of activity from the columns to

the next stage of cortical processing. The second stage represents a rela-

tive heightening of the more active outputs compared to the other outputs.

Lateral inhibition across columns has been widely interpreted as having this
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effect; feedback connections, which are prominent between V1 and the LGN,

could also act as this sort of filter. The filter is set up in advance, and is iden-

tical for all experiments and conditions outlined in the paper. Its equation

is as follows:-

1√
2πσ2

exp(
−(xdis − xwin)2

2σ2
) (3)

xdis is the distance from the column with the strongest response, xpos; σ is the

standard deviation of the filter, which was fixed at a value of 1.5, determined

by numerical experiments to give a reliable performance). It can be seen

that both stages in our decoding strategy have biological plausibility and do

not rely upon any abstract, complex statistical calculation. Also in keeping

with biological plausibility, estimation was performed online, with a position

estimate given at each simulation step, rather than simply at the end of

an estimation period or after the simulation is complete. This was achieved

using a sliding estimation window representing the memory of the estimation

system. A rectangular sliding window was used in the experiments presented

here, although alternative schemes can also be implemented in the model.

The size of the estimation window is a parameter that was varied during

the experiments (details given in the next section), in order to assess the

interaction of estimation time and inhibition.

2.3 Input Stimuli

In order to facilitate comparison with the optimal statistical approach out-

lined in [11], we adopt the same approach to input stimuli. In the experiments

presented in the next section, the stimulus position was either held constant

throughout, or moved instantaneously every 100ms, creating a steplike signal.
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As the former case can be contained within the latter allowing the updated

position to be the same at each step, the stimulus position is given as [11]:-

x(t) =
∑

k

ξkχ(t ∈ {(k − 1)TW , kTW}) (4)

Here, ξk are independent, uniformly-distributed random variables, between

limits [X,Y ]. For a constant input position, X = Y = Position. For the

step inputs, the limits are [0, L], where L is the highest maximal-response

position for any neuron in the network model. Given the stimulus position,

x(t), a gaussian input rate λ is created for each neuron:-

λ(t) = λcore + cλcore exp(−(x(t) − xpos)
2

2σ2
) (5)

There are three constants in this stimulus creation. σ is the spatial resolution

of each neuron, and was set to 1 for all neurons across all experiments. λcore

provides both a constant input component, and effectively scales the random

element in the balanced input; this was fixed at 3 for all of the experiments.

Finally, c scales the stimulus intensity, effectively controlling the extent to

which the input is position dependent; this was fixed to 10 for all of the

experiments. Given the input parameter λ(t), the external input to each

neuron is given by a gaussian process using a balanced input [2]:-

IE(t) = µ(λ(t)) + σ(λ(t))B (6)

µ(λ(t)) = aλ(t)(1 − r) (7)
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σ(λ(t)) = a
√

λ(t)(1 + r) (8)

r(λ(t)) = 1 − vthre

λ(t)aγ
(9)

B is a standard Brownian motion, providing a random element in the input,

r(λ(t)) provides the balancing condition, a is the magnitude of the postsy-

naptic potentials (set to 0.5 for all experiments here), γ is the membrane

time constant for the network neurons, vthre is the firing threshold for the

network neurons. It is important to understand the dynamics of the input

behaviour. Given the balanced condition, µ provides a constant input to all

neurons irrespective of stimulus position. σ effectively sets the variance of

the Brownian motion according to how close the stimulus is to the column

centre of a given neuron. The result of this is that the magnitude of the

input to neurons for which the stimulus is closer to their maximal response

position will be greater than that for other neurons. The mean input will

remain the same because the Brownian motion remains centred at zero, but

the effect of stochastic resonance [4] is that neurons with a greater magni-

tude will typically have a greater firing rate. In this way, neurons can receive

balanced inputs while responding with different firing rates.

2.4 Experiments

A number of experiments have been conducted, to examine the effect of in-

hibitory connections in the network on performance on the stimulus tracking

task. Basic performance was measured using the mean squared error (MSE),

of the position estimate and the actual stimulus position, at the end of each

estimation window period. Although an online sliding estimation window

was used to produce a continual position estimate, in calculating the MSE

we use the position after a period of time equivalent to a complete estimation

window has passed in order to ensure that there are no contamination effects
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from the previous stimulus position remaining in the estimation window. In

addition to examining basic performance, correlation measures (both across

and within columns, and estimate autocorrelation), and firing rates have

been shown where apporpriate. We also vary a number of other parameters

in the experiments, including:-

• The stimulus type: both constant and steplike signals are used.

• The size of the estimation window: values from 100ms right down to

just 10ms are tested.

• The number of neurons in each column: set to 100 by default, but

varied in one experiment to examine the central limit effect of neuron

numbers.

• The firing threshold Vthre: set to 5 by default for the network with

lateral inhibitory input, and 20 for the network without, to ensure

similar firing rates and therefore a balanced input for both, but varied

in one experiment to have the same threshold value of 20 for each.

• The inhibitory connection strength (set to -1 by default, but all values

from 0 to -1 tested in one experiment).

The results of all of these experiments are presented in the next section.

3 Results

3.1 Basic Performance

The performance of the network was first tested on a stimulus with a con-

stant position of 4.5. It can be seen in figure 2 that when lateral inhibitory

connections are used, the MSE is much lower, and the network’s online po-

sition estimate is much more stable. As the estimation window size becomes
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Figure 2: Position targets (dotted line) and estimates (solid line) for a constant signal,
across 50ms, 20ms and 10ms estimate window sizes (shown here in different rows). Left

column: Lateral inhibition used. Right column: Lateral inhibition not used. It can be
seen that the MSE is lower when lateral inhibition is present, across all window sizes. The
greater reliability of the position estimate when neurons have inhibitory connections is
particular apparent for smaller estimation window sizes, when the estimation task becomes
more difficult.
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Figure 3: The mean firing rate for each neuron, shown here using a grayscale index,
with higher firing rates shown by lighter shades. The neurons in the columns which have
maximal response near to the constant stimulus position of 4.5 show higher firing rates,
as expected. The variability in individual firing rates even within the same column is also
apparent here.

13



smaller, the stimulus tracking task becomes more difficult, and this is re-

flected in the increased MSE for the smaller window sizes. It is notable,

however, that even for small window sizes, the network with inhibitory con-

nections performs quite well, giving a performance with a 10ms estimation

window slightly better than that of the network with no inhibitory connec-

tions and a 50ms estimation window. This highlights the very significant

benefits that inhibitory connections within a pool of neurons can bring in

situations where fast estimation is required, which would be expected for an

evolved sensory processing system. Figure 3 shows the firing rates for all of

the neurons in the network (in this case with inhibitory connections), demon-

strating that neurons in the columns whose maximal response properties are

closest to the stimulus position have the highest firing rates, but also em-

phasising the noisy nature of neural firing while performing the tracking task.

Figures 4 and 5 show the same results for a random steplike signal which

moves position instantaneously every 100ms. As for the constant stimulus,

the network with inhibition significantly outperforms the network with no

lateral connections, and the difference, not that apparent at 100ms, becomes

increasingly obvious as the estimation window size decreases. The relation-

ship between estimation window size and MSE for networks with and without

inhibitory connections is shown explicitly in figure 6.

3.2 Correlation Measures

It is useful to look more closely at one specific simulation, and in particular

several different measures of correlation. Figure 7 gives the results of a simu-

lation (of both a network with inhibitory connections, and one without) using

default values and a 50ms estimation window. The top row of Figure shows

that, in keeping with the results of the previous section, the MSE for a net-

work with inhibition is much lower than that of a network with no inhibition.

The difference is qualitatively characterised by a smoother estimation curve
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Figure 4: Position targets (dotted line) and estimates (solid line) for a random steplike
signal, across 100ms and 50ms estimate window sizes (shown here in different rows). Left

column: Lateral inhibition used. Right column: Lateral inhibition not used. It can be
seen that the MSE is lower when lateral inhibition is present, across all window sizes.
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Figure 5: Position targets (dotted line) and estimates (solid line) for a random steplike
signal, across 20ms and 10ms estimate window sizes (shown here in different rows). Left

column: Lateral inhibition used. Right column: Lateral inhibition not used. It can be
seen that the MSE is lower when lateral inhibition is present, across all window sizes. The
difference is greater for these smaller estimation windows than for the larger estimation
windows in the previous figure.
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the estimation task given less time can be seen here. Performance for the network without
inhibitory connections drops quite considerably for small window sizes, while the presence
of inhibitory connections helps the network to maintain a robust performance at these
smaller sizes.

for the inhibitory network, reflecting its greater reliability. This difference

can measured quantitatively by autocorrelation at low lags, which are shown

in the left-middle graph, the greater autocorrelation reflected the smoother,

more reliable, curve.

Of central importance to the understanding of lateral inhibitory connections

in a column of neurons is the concept of firing rate correlation. This is the

level of synchronisation (or anti-synchronisation) of the spike trains of neu-

rons within a column. It was earlier shown (figure 1) that when the firing

rates of neurons were negatively correlated (that is, when one neuron fired

more and other neurons correspondingly tended to fire less), the central limit

benefit of pooled activity was enhanced. One mechanism for these firing rates

to be achieved is if the spike trains of the neurons themselves are negatively

correlated, which means that when one neuron fires, it reduces the proba-

bility of other neurons firing. Clearly, lateral inhibition might be expected

to lead to this behaviour. The right-middle graph of figure 7 shows correla-

tion curves for the networks with and without lateral inhibition. These are
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Figure 7: A detailed example using a 50ms estimate window. Top: Position targets (dotted
line) and estimates (solid line) for a random steplike signal. The better performance with
lateral inhibition present can be seen. Middle left : Position estimate autocorrelation.
These give an indication of the reliability of the signal by measuring short fluctuations
in the estimate, and show the greater reliability of the estimate when lateral inhibition
is used (dotted line). Middle right : Correlation curves of firing patterns for neurons in
the same column. The use of inhibitory connections results in negatively-correlated firing
patterns (dotted line). Bottom: Mean correlation across columns as a function of column
distance. This shows that neurons in columns close to each other will tend to respond in
a similar way as expected. Neurons in columns at medium distances tend to respond in
quite different ways, giving a ’mexican hat’ shape, which is accentuated by the presence
of inhibitory connections (dotted line).
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calculated by measuring the number of spikes within short time bins (and

shown across a range of bin sizes in order to ensure that the results are not an

artefact of bin size), and evaluating the correlation of these with each other;

the mean correlation value is shown. The graph also shows a baseline value

(solid line), which is the lowest possible mean correlation value, a constraint

resulting from the number of neurons in a column. It is clear from the graph

that inhibitory connections have resulted in negatively correlated firing pat-

terns emerging from the network, and without these, the firing patterns are

slightly positively correlated.

In addition to measuring the correlation of neurons within columns, it is of in-

terest to evaluate the correlation across columns, given that column location

is directly related to neural response properties (neurons in columns close to

each other have similar response properties). The mean correlation between

columns is shown at the bottom of figure 7. It is clear from this that neurons

in columns close to each other tend to respond in similar ways as expected,

and also that neurons in very distant columns tend to be independent of each

other. Interestingly, neurons a medium distance away show a negative cor-

relation, indicating that they tend to respond at different times. We believe

that this is because neurons at longer distances are actually have a negative

correlation component when either are particularly active, but a positive cor-

relation component when columns centrally in between them are more active

and as a result they are both less active at the same time. Columns a middle

distance apart do not have as strong a positive correlation component (since

there are fewer columns in between), and as a result appear to be more nega-

tively correlated overall. It is also interesting to observe that the correlation

curve is more accentuated for the network with inhibitory connections than

the one without, indicating a smoother harmonic behaviour by that network.
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3.3 Threshold, Firing Rate and Inhibitory Connection

Strength

As described in section 2.3, the inputs have been set to balanced, in order

to allow comparison with [11]. However, this is not in itself needed for our

network, since we are not using the analytical expression for neural firing

rates dependent on this, given in [2]. It is also the case that in the network

with inhibitory connections obviously has an additional source of input to

each neuron (lateral inhibitory inputs from other spiking neurons) beyond

the external stimulus input. As a result, given the same input strength and

firing threshold, neurons in the inhibitory network will have a lower firing

rate. This is shown in the top row of figure 8. It should be noted that in

this situation, the improved performance of the network with inhibitory con-

nections is evident. In order to rule out the difference in firing rates as a

possible factor, and to simulate balanced inputs, the firing rate threshold of

neurons in the inhibitory network was reduced to a level that would allow a

firing rate approximately the same as that of the non-inhibitory network (the

default situation). It should be noted that this is simply a scaling operation,

equivalent to increasing the scale of the inputs or simulating background ex-

citatory connections, for example, and in no way changed the dynamics of

the model. The middle row of figure 8 confirms that the inhibitory network

still has a much better performance than the non-inhibitory network, show-

ing that irrespective of whether the firing threshold or the firing rates are the

same, the inhibitory connections still allow the network to perform better.

Closely related to the relationship between inhibitory connections and firing

rates is the relationship between inhibitory connections and within-column

correlation. We have already seen in section 3.2 that inhibitory connections

lead to negatively correlated firing patterns. The bottom of 8 shows that as

the connections become more inhibitory, the correlation duly becomes more

negative, as we would expect if the inhibitory connections were responsible
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Figure 8: The effects of threshold and firing rate. Top: Position targets (dotted line) and
estimates (solid line) for a random steplike signal using a 20ms estimate window, with the
same firing threshold for each (vthre = 20). Middle: Position targets (dotted line) and
estimates (solid line) for a random steplike signal using a 20ms estimate window, with ap-
proximately the same firing rate. Bottom: The effect of changing the inhibitory connection
strength on MSE and correlation. Increasing the strength of the inhibitory connections
decreases the MSE, and reduces the correlation in the firing patterns of neurons within
columns.
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for the negative correlation. It also shows that the MSE tends to decrease

as the connections become more inhibitory, which conforms with our earlier

results.

3.4 Number of Neurons

Our hypothesis, described earlier in section 1.3, is that population coding

benefits from the central limit theorem, and that by having negatively cor-

related firing patterns, that benefit is enhanced. We have already seen that

negatively correlated firing patterns arise from inhibitory connections and

improve performance. In order to assess the initial central limit aspect, we

tested our model with different numbers of neurons. Figure 9 top row shows

the performance of networks with and without inhibitory connections, with

100 neurons in each column. The middle row shows the performance with

just 10 neurons per column. It can clearly be seen that with fewer neurons,

the performance is much worse. The bottom graph shows the central limit

effect clearly across a range of neuron population sizes. It also shows that

across all sizes, the presence of inhibitory connections, with the associated

negative correlation, improves performance.

4 Discussion

4.1 Mechanism

Current theories of inhibitory mechanisms in the sensory cortex focus on

lateral inhibition between neurons with slightly different response proper-

ties. These theories do not give an explanation of lateral inhibition between

neurons with the same response properties, such as neurons in the same cor-

tical columns in the primary visual cortex. We have presented a model here

which demonstrates that the functional explanation of these local inhibitory

mechanisms is that they improve the accuracy of the mean field potential by
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Figure 9: The effect of neuron numbers. Top: Position targets (dotted line) and estimates
(solid line) for a random steplike signal using a 25ms estimate window, with 100 neurons in
each column. Middle: Position targets (dotted line) and estimates (solid line) for a random
steplike signal using a 25ms estimate window, with 10 neurons in each column. Bottom:
The effect of changing the number of neurons on the MSE for when inhibitory connections
are present (dotted line) and not present (dashed line). The central limit effect can be
seen clearly in both cases, where increasing the number of neurons reduces the MSE. In
addition the MSE is consistently lower when inhibitory connections are present irrespective
of the number of neurons.
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reducing the effects of noise. The explanation is as follows:-

1. Inhibition between neurons in the same column ensures that when one

neuron fires, the probability of other neurons firing is decreased. This

gives negatively-correlated firing patterns.

2. Negatively-correlated firing patterns mean that one neuron with a higher

than average firing rate will result in reduced firing rates of other neu-

rons in the pool. This is in effect the centre-surround space-filling

property of negatively-correlated data.

3. The combined activity of all neurons in the pool (mean field potential)

is stabilised by the centre-surround property, ensuring that the effects of

random noise are minimised in comparison to the same pool of neurons

operating without inhibitory connections.

4. The reduced-noise pooled activity is carried through decoding and leads

directly to an improved performance on the given task of the pool of

neurons.

In the case of our model, the improved performance of the network on the

stimulus tracking task was evident in each experiment outlined. It is impor-

tant to note that the by effectively making the noise negatively correlated,

inhibitory connections are actually minimising the negative effects of noise

without actually needing to reduce the intrinsic or extrinsic noise of individ-

ual neurons, the positive aspects of noise such as stochastic resonance, which

our simulation actually exploited, remain intact.

4.2 Multi-Electrode Data

Given that our model has produced negatively-correlated firing patterns, and

shown the benefit of these, we might expect actual neural firing in the brain

to be negatively-correlated, at least in areas where the type of population
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coding we have used is in force. Historically, data taken from single-electrode

recordings has not been able to give the firing patterns of neurons close

to each other during the same time period, meaning that it has not been

possible to accurately assess whether or not neural firing in the brain is

in fact negatively correlated. Recently, however, data from the olfactory

bulb obtained using a multi-electrode array, coupled with an advance in

spike sorting [7], has allowed us to examine this question, and significantly it

appears that neural firing patterns are indeed negatively correlated, as our

model predicts.

4.3 Further Developments

Our model outlines the functional meaning local inhibitory connections, and

demonstrates the benefits on a specific task. While being careful to ensure

that the model has clear biophysical correlates as far as possible, it is not

intended in itself to be a biophysically accurate model. We are currently

working on a more biophysically realistic model, taking into account the spe-

cific neural architecture of orientation columns in the primary visual cortex,

in order to see how the principles outlined in our current model will translate

into this specific neural environment.

Related to a more biophysically-inspired model is the important question of

how existing descriptions of lateral inhibition, and in particular how inhibi-

tion between neurons with similar but not identical response properties fits

into the picture. We believe that the negatively-correlated firing patterns

seen between pooled neurons in our current model will also exist between

neurons across columns where lateral inhibition is in effect, but the func-

tional meaning of this type of inhibition may be quite different.

Finally, further exploration of the implications of the current model in terms

of other theories could yield fruitful results. For example, it has been sug-
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gested that the brain employs sparse codes [3, 9]. Sparse coding actually

arises naturally as a consequence of negatively correlated neural firing pat-

terns, where the negative correlation ensures that only a small number of

neurons are actively involved in representing a given input at any one time.

Could the important benefits of local inhibitory mechanisms outlined here be

responsible for the brain’s choice of neural code? This is one of the questions

that we will seek to answer in continued investigations into the benefits of

local inhibitory mechanisms.
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