Skip to main content
Log in

Intrinsic versus extrinsic influences in the development of neuronal maps

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Accumulating evidence suggests that the plasticity of extrinsic thalamocortical inputs in cortical layer IV may be guided or instructed by earlier plasticity events in the intrinsic, horizontal connections within the extragranular cortical layers. We analyse a rate-based model of the plasticity of a set of extrinsic afferents in the presence of a pre-existing (and fixed) plexus of intrinsic, overall excitatory horizontal connections between a set of target neurons. We determine conditions under which afferent synaptic pattern formation respects this pre-existing lateral structure. We find three broad regimes under which extrinsic afferent plasticity may violate this structure: the initial pattern of extrinsic afferent innervation of the target cells is far from balanced; the gain of the extrinsic afferents greatly exceeds the overall scale of the strength of lateral excitation; the target cell horizontal coupling matrix is sparse. If none of these conditions is satisfied, then extrinsic afferent plasticity respects the pre-existing lateral connectivity, so that afferent synaptic pattern formation conforms to the pattern of lateral excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antonini A, Stryker MP (1993) Rapid remodeling of axonal arbors in the visual cortex. Science 260:1819–1821

    Article  PubMed  CAS  Google Scholar 

  • Antonini A, Stryker MP (1996) Plasticity of geniculocortical afferents following brief or prolonged monocular occlusion in the cat. J Comp Neurol 369:64–82

    Article  PubMed  CAS  Google Scholar 

  • Bartsch AP, van Hemmen JL (2001) Combined Hebbian development of geniculocortical and lateral connectivity in a model of primary visual cortex. Biol Cybern 84:41–55

    Article  PubMed  CAS  Google Scholar 

  • Callaway EM (1998) Local circuits in primary visual cortex of the macaque monkey. Annu Rev Neurosci 21:47–74

    Article  PubMed  CAS  Google Scholar 

  • Carreira-Perpinan MA, Goodhill GJ (2004) Influence of lateral connections on the structure of cortical maps. J Neurophysiol 92:2947–2959

    Article  PubMed  Google Scholar 

  • Crair MC, Gillespie DC, Stryker MP (1998) The role of visual experience in the development of columns in cat striate cortex. Science 279:566–570

    Article  PubMed  CAS  Google Scholar 

  • Crair MC, Horton JC, Antonini A, Stryker MP (2001) Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age. J Comp Neurol 430:235–249

    Article  PubMed  CAS  Google Scholar 

  • Crowley JC, Katz LC (1999) Early development of ocular dominance columns. Science 290:1321–1324

    Article  Google Scholar 

  • Crowley JC, Katz LC (2000) Development of ocular dominance columns in the absence of retinal input. Nature Neurosci 2:1125–1130

    Article  Google Scholar 

  • Daw NW, Fox K, Sato H, Czepita D (1992). Critical period for monocular deprivation in the cat visual cortex. J Neurophysiol 67:197–202

    PubMed  CAS  Google Scholar 

  • Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451

    Article  PubMed  CAS  Google Scholar 

  • Elliott T (2003) An analysis of synaptic normalization in a general class of Hebbian models. Neural Comput 15:937–963

    Article  PubMed  Google Scholar 

  • Elliott T, Shadbolt NR (2002) Dissociating ocular dominance column development and ocular dominance plasticity:A neurotrophic model. Biol Cybern 86:281–292

    Article  PubMed  CAS  Google Scholar 

  • Ernst UA, Pawelzik KR, Sahar-Pikielny C, Tsodyks MV (2001) Intracortical origin of visual maps. Nature Neurosci 4:431–436

    Article  PubMed  CAS  Google Scholar 

  • Fox K (1992) A critical period for experience-dependent synaptic plasticity in rat barrel cortex. J Neurosci. 12:1826–1838

    PubMed  CAS  Google Scholar 

  • Gilbert CD (1983) Microcircuitry of the visual cortex. Annu Rev Neurosci 6:217–247

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CD (1998) Adult cortical dynamics. Physiol Rev 78: 467–485

    PubMed  CAS  Google Scholar 

  • Gödecke I, Bonhoeffer T (1996) Development of for two eyes without common visual experience. Nature 379: 251–254

    Article  PubMed  Google Scholar 

  • Gödecke I, Kim D-S, Bonhoeffer T, Singer W (1997) Development of orientation preference maps in area 18 of kitten visual cortex. Eur J Neurosci 9:1754–1762

    Article  PubMed  Google Scholar 

  • Goodhill GJ, Löwel S (1995) Theory meets experiment:correlated neural activity helps determine ocular dominance column periodicity. Trends Neurosci 18:437–439

    Article  PubMed  CAS  Google Scholar 

  • Hensch TK, Stryker MP (2004) Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Science 303:1678–1681

    Article  PubMed  CAS  Google Scholar 

  • Horten JC, Hocking DR (1996) Intrinsic variability of ocular dominance column periodicity in normal macaque monkeys. J Neurosci 16:7228–7339

    Google Scholar 

  • Hubel DH, Wiesel TN (1965) Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol 28:1041–1059

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206:419–436

    PubMed  CAS  Google Scholar 

  • Kaschube M, Wolf F, Puhlmann M, Rathjen S, Schmidt K-F, Geisel T, Löwel S (2003) The pattern of ocular dominance columns in cat primary visual cortex:intra- and interindividual variability of column spacing and its dependence on genetic background. Eur J Neurosci 18:3251–3266

    Article  PubMed  Google Scholar 

  • Katz LC, Gilbert CD, Wiesel TN (1989) Local circuits and ocular dominance columns in monkey striate cortex. J Neurosci 9:1389–1399

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1994) Supervised learning in the brain. J Neurosci 14:3985–3997

    PubMed  CAS  Google Scholar 

  • LeVay S, Wiesel TN, Hubel DH (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191:1–51

    Article  PubMed  CAS  Google Scholar 

  • Löwel S (1994) Ocular dominance column development:Strabismus changes the spacing of adjacent columns in cat visual cortex. J Neurosci 14:7451–7468

    PubMed  Google Scholar 

  • Löwel S, Singer W (1992) Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science 255:209–212

    Article  PubMed  Google Scholar 

  • MacLean JN, Watson BO, Aaron GB, Yuste R (2005) Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48:811–823

    Article  PubMed  CAS  Google Scholar 

  • Sirosh J, Miikkulainen R (1997) Topographic receptive fields and patterned lateral interactions in a self-organizing model of the primary visual cortex. Neural Comp 9:577–594

    Article  CAS  Google Scholar 

  • Somers DC, Nelson SB, Sur M (1995) An emergent model of orientation selectivity in cat visual cortical simple cells. J Neurosci 15:5448–5465

    PubMed  CAS  Google Scholar 

  • Song S, Abbott LF (2001) Cortical development and remapping through spike timing-dependent plasticity. Neuron 32:399–350

    Article  Google Scholar 

  • Swindale NV (1980) A model for the formation of ocular dominance stripes. Proc Roy Soc Lond Ser B 208:243–264

    Article  CAS  Google Scholar 

  • Tanaka S (1990) Theory of self-organization of cortical maps:mathematical framework. Neural Networks 3:625–640

    Article  Google Scholar 

  • Tieman SB, Tumosa N (1997) Alternating monocular exposure increases the spacing of ocularity domains in area 17 of cats. Visual Neurosci 14:929–938

    Article  CAS  Google Scholar 

  • Trachtenberg JT, Stryker MP (2001) Rapid anatomical plasticity of horizontal connections in the developing visual cortex. J Neurosci 21:3476–3482

    PubMed  CAS  Google Scholar 

  • Trachtenberg JT, Trepel C, Stryker M P (2000) Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. Science 287:2029–2032

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Elliott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, T. Intrinsic versus extrinsic influences in the development of neuronal maps. Biol Cybern 96, 129–143 (2007). https://doi.org/10.1007/s00422-006-0103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0103-7

Keywords

Navigation