Skip to main content
Log in

Decoding spike train ensembles: tracking a moving stimulus

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We consider the issue of how to read out the information from nonstationary spike train ensembles. Based on the theory of censored data in statistics, we propose a ‘censored’ maximum-likelihood estimator (CMLE) for decoding the input in an unbiased way when the spike activity is observed over time windows of finite length. Compared with a rate-based, moment estimator, the CMLE is proved consistently more efficient, particularly with nonstationary inputs. Using our approach, we show that a dynamical input to a group of neurons can be inferred accurately and with high temporal resolution (50 ms) using as few as about one spike per neuron within each decoding window. By applying our theoretical results to a population coding setting, we then demonstrate that a spiking neural network can encode spatial information in such a way to allow fast and precise tracking of a moving target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amari S, Nakahara H (2005) Difficulty of singularity in population coding. Neural Comput 17:839–858

    Article  PubMed  Google Scholar 

  • Andersen PK, Borgan O, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Brown EN, Kaas RE, Mitra PP (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci 7:456–461

    Article  PubMed  CAS  Google Scholar 

  • Feng JF (2004) Computational neuroscience: a comprehensive approach. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Feng J, Ding M (2004) Decoding spikes in a spiking neuronal network. J Phys A Math Gen 37:5713–5727

    Article  Google Scholar 

  • Gerstner W, Kistler WM (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Gnedenko BV, Belyayev YK, Solovyev AD (1969) Mathematical methods of reliability theory. Academic, New York

    Google Scholar 

  • Harris KD (2004) Hallucinations and nonsensory correlates of neural activity. Behav Brain Sci 27:796–796

    Article  Google Scholar 

  • Hollander M, Pena EA (2004) Nonparametric methods in reliability. Stat Sci 19:644–651

    Article  PubMed  Google Scholar 

  • Horton P, Nicol A, Kendrick K, Feng JF (2005) Applications of multi-variate analysis of variance (MANOVA) to multi-electrode array electrophysiology data. J Neurosci Methods 166:22–41

    Article  Google Scholar 

  • Klein JP, Moeschberger ML (1997) Survival analysis: techniques for censored and truncated data. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Paz R, Wise SP, Vaadia E (2004) Viewing and doing: similar cortical mechanisms for perceptual and motor learning. Trends Neurosci 27:496–503

    Article  PubMed  CAS  Google Scholar 

  • Peng XM, Van Essen DC (2005) Peaked encoding of relative luminance in macaque areas V1 and V2. J Neurophysiol 93:1620–1632

    Article  PubMed  Google Scholar 

  • Pettitt AN, Kelly JM, Gao JT (1998) Bias correction for censored data with exponential lifetimes. Statist Sinica 8:941–963

    Google Scholar 

  • Raffi M, Siegel RM (2005) Functional architecture of spatial attention in the parietal cortex of the behaving monkey. J Neurosci 25:5171–5186

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Tovee MJ (1994) Processing speed in the cerebral cortex and the neurophysiology of visual masking. Proc R Soc Lond 257:9–15

    Article  CAS  Google Scholar 

  • Rossoni E, Feng J (2006) Non-parametric approach to extract information from interspike intervals. J Neurosci Methods 150:30–40

    Article  PubMed  Google Scholar 

  • Sanger TD (2003) Neural population codes. Curr Opin Neurobiol 13:238–249

    Article  PubMed  CAS  Google Scholar 

  • Schaette R, Gollisch T, Herz AVM (2005) Spike-train variability of auditory neurons in vivo: dynamic responses follow predictions from constant stimuli. J Neurophysiol 93:3270–3281

    Article  PubMed  Google Scholar 

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870–3896

    PubMed  CAS  Google Scholar 

  • Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522

    Article  PubMed  CAS  Google Scholar 

  • Tuckwell HC (1988) Introduction to theoretical neurobiology: nonlinear and stochastic theories. Cambridge University Press, New York

    Google Scholar 

  • Verbeek A (1989) The compactification of generalised linear models. In: Decorli A, Frances B, Gilchrist R and Seebeer G (eds) Statistical modelling. Springer, New York, pp 314–327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Rossoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossoni, E., Feng, J. Decoding spike train ensembles: tracking a moving stimulus. Biol Cybern 96, 99–112 (2007). https://doi.org/10.1007/s00422-006-0106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0106-4

Keywords

Navigation