Skip to main content
Log in

A comparative analysis of multi-conductance neuronal models in silico

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We demonstrate that a previously presented flexible silicon–neuron architecture can implement three disparate conductance-based neuron models with both fast and slow dynamics. By exploiting the real-time nature of this physical implementation, we mapped the model dynamics across a large region of parameter space. We also found that two of these dynamically different models represent points in a contiguous bursting space that spans between the two models. By systematically varying the model parameters, we also found that multiple, diverse trajectories in parameter space connected the two canonical bursting points. In addition, we found that the combination of parameter values keeps the neuron in the bursting region. These findings demonstrate the usefulness of the silicon–neuron architecture as a neural-modeling tool and illustrate its versatility as a platform for a multi-behavioral neuron that resembles its living analog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bragg JA, Brown E, Hasler P, DeWeerth SP (2002) A silicon model of an adapting motoneuron. In: 2002 IEEE international symposium on circuits and systems, IEEE Circuits and Systems Society, IEEE, Scottsdale, AZ, vol 4, pp 261–264

  • Butera R Jr, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the Pre-Bötzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82(1):382–397

    PubMed  Google Scholar 

  • Connor J, Stevens C (1971) Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol 213(1):21–30

    PubMed  CAS  Google Scholar 

  • Cymbalyuk GS, Patel GN, Calabrese RL, DeWeerth SP, Cohen AH (2000) Modeling alternation to synchrony with inhibitory coupling: a neuromorphic VLSI approach. Neural Comput 12(10):2259–2278

    Article  PubMed  CAS  Google Scholar 

  • Darghouth N (2004) Modeling A-current modulation in an identified molluscan neuron. Master’s thesis, Georgia Institute of Technology, Atlanta, GA

  • Foster W, Ungar L, Schwaber J (1993) Significance of conductances in Hodgkin–Huxley models. J Neurophysiol 70(6):2502–2518

    PubMed  CAS  Google Scholar 

  • Getting PA (1983) Mechanisms of pattern generation underlying swimming in Tritonia. III. Intrinsic and synaptic mechanisms for delayed excitation. J Neurophysiol 49:1036–1050

    PubMed  CAS  Google Scholar 

  • Golowasch J, Goldman MS, Abbott L, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87:1129–1131

    PubMed  Google Scholar 

  • Graas E, Brown E, Lee RH (2004) An FPGA-based approach to high-speed simulation of conductance-based neuron models. Neuroinformatics 2(4):417–436

    Article  PubMed  CAS  Google Scholar 

  • Hahnloser R, Sarpeshkar R, Mahowald M, Douglas R, Seung H (2000) Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405(6789):947–951

    Article  PubMed  CAS  Google Scholar 

  • Hill A, Lu J, Masino M, lsen O, Calabrese R (2001) A model of a segmental oscillator in the leech heartbeat neuronal network. J Computat Neurosci 10(3):281–302

    Article  CAS  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates Inc,. Sunderland MA

    Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 117:500–544

    CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (eds) (2000) Principles of neural science, 4th edn. McGraw-Hill/Appleton & Lange, New York, NY

    Google Scholar 

  • Krinskii V, Kokoz Y (1973) Analysis of equations of excitable membranes. I. Reducing of Hodgkin–Huxley equations to system of second-order. Biofizika 18:506–511

    PubMed  CAS  Google Scholar 

  • Liu SC, Kramer J, Indiveri G, Delbrück T, Douglas R (2002) Analog VLSI: circuits and principles. The MIT Press, Cambridge

    Google Scholar 

  • Mahowald MA, Douglas R (1991) A silicon neuron. Nature 354(6354):515–518

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76(3):687–717

    PubMed  CAS  Google Scholar 

  • Marder E, Prinz AA (2002) Modeling stability in neuron and network function: the role of activity in homeostasis. BioEssays 24(12):1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Mead CA (1989) Analog VLSI and neural systems. Addison-Wesley, Reading

    Google Scholar 

  • Nadim F, Ølsen O, Schutter ED, Calabrese R (1995) Modeling the leech heartbeat elemental oscillator: I. Interactions of intrinsic and synaptic currents. J Comput Neurosci 2(3):215–235

    Article  PubMed  CAS  Google Scholar 

  • Patel G, Brown E, DeWeerth SP (2000) A neuromorphic VLSI system for modeling the neural control of axial locomotion. In: Solla SA, Leen TK, Müller KR (eds) Advances in neural information processing systems, vol 12 Proceedings of the 1999 conference. The MIT Press, Cambridge, pp 724–730

    Google Scholar 

  • Pearson K (2000) Neural adaptation in the generation of rhythmic behavior. Annu Rev Physiol 62:723–753

    Article  PubMed  CAS  Google Scholar 

  • Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90:3998–4015

    Article  PubMed  Google Scholar 

  • Rinzel J (1985) Excitation dynamics: insights from simplified membrane models. Fed Proc 44(15):2944–2946

    PubMed  CAS  Google Scholar 

  • Sarpeshkar R, Lyon RF (1998) A low-power wide-dynamic-range analog VLSI cochlea. Analog integrated circuits and signal processing 16(3):245–274

    Article  Google Scholar 

  • Simoni MF, Cymbaluyk GS, Sorensen MQ, Calabrese RL, DeWeerth SP (2001) Development of hybrid systems: interfacing a silicon neuron to a leech heart interneuron. In: Leen T, Dietterich T, Tresp V (eds) Advances in neural information processing systems, vol 13, Proceedings of the 2000 conference. The MIT Press, Cambridge

  • Simoni MF, Cymbaluyk GS, Sorensen ME, Calabrese RL, DeWeerth SP (2004) A multiconductance silicon neuron with biologically matched dynamics. IEEE Trans Biomed Eng 51(2):342–354

    Article  PubMed  Google Scholar 

  • Sorensen M, Calabrese R, DeWeerth S (2004) The functional role of model complexity in a neuronal oscillator. In: 2004 Abstract viewer/itinerary planner, Society for Neuroscience, Washington, DC, program No. 420.6

  • Weinstein R, Lee R (2004) Computationally intensive motoneuron modeling in FPGAs. In: 2004 Abstract viewer/itinerary planner, Society for Neuroscience, Washington, DC, program No. 921.5

  • Weisstein EW (2004) Hypergeometric distribution. MathWorld—a Wolfram Web resource, http://www.mathworld. wolfram.com/HypergeometricDistribution.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. DeWeerth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeWeerth, S.P., Reid, M.S., Brown, E.A. et al. A comparative analysis of multi-conductance neuronal models in silico . Biol Cybern 96, 181–194 (2007). https://doi.org/10.1007/s00422-006-0111-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0111-7

Keywords

Navigation