Skip to main content

Advertisement

Log in

Generation and reshaping of sequences in neural systems

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The generation of informational sequences and their reorganization or reshaping is one of the most intriguing subjects for both neuroscience and the theory of autonomous intelligent systems. In spite of the diversity of sequential activities of sensory, motor, and cognitive neural systems, they have many similarities from the dynamical point of view. In this review we discus the ideas, models, and mathematical image of sequence generation and reshaping on different levels of the neural hierarchy, i.e., the role of a sensory network dynamics in the generation of a motor program (hunting swimming of marine mollusk Clione), olfactory dynamical coding, and sequential learning and decision making. Analysis of these phenomena is based on the winnerless competition principle. The considered models can be a basis for the design of biologically inspired autonomous intelligent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott A, Tsay A (2000) Sequence analysis and optimal matching methods in sociology: review and prospect. Sociol Methods Res 29:3–33

    Article  Google Scholar 

  • Afraimovich V, Hsu S-B (2003) Lectures on Chaotic Dynamical Systems. AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Somerville, MA

  • Afraimovich V, Zhigulin V, Rabinovich M (2004a) On the origin of reproducible sequential activity in neural circuits. Chaos 14:1123–1129

    Article  PubMed  CAS  Google Scholar 

  • Afraimovich VS, Rabinovich MI, Varona P (2004b) Heteroclinic contours in neural ensembles and the winnerless competition principle. Int J Bifurcat Chaos 14:1195–1208

    Article  Google Scholar 

  • Anderson J (1995) An introduction to neural networks. MIT Press, Cambridge, MA

    Google Scholar 

  • Ashby WR (1960) Design for a Brain, 2nd edn. Wiley, New York

    Google Scholar 

  • Ashwin P, Borresen J (2005) Discrete computation using a perturbed heteroclinic network. Phys Lett A 347:208–214

    Article  CAS  Google Scholar 

  • Bapi R, Pammi VC, Miyapuram K, Ahmed (2005) Investigation of sequence processing: a cognitive and computational neuroscience perspective. Curr Sci 89:1690–1698

    Google Scholar 

  • Barto AG, Flagg AH, Sitkoff N (1999) A cerebellar model of timing and prediction in the control of reaching. Neural Comput 11:565–594

    Article  PubMed  CAS  Google Scholar 

  • Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel H, Sejnowski T, Laurent G (2001) Model of transient oscillatory synchronization in the locust antennal lobe. Neuron 30:307–309

    Article  Google Scholar 

  • Bischoff-Grethe A, Goedert KM, Willingham DT, Grafton ST (2004) Neural substrates of response-based sequence learning using fmri. J Cogn Neurosci 16(1):127–138

    Article  PubMed  Google Scholar 

  • Busse F, Heikes K (1980) Convenction in a rotating layer: a simple cased of turbulence. Science 208:173–175

    Article  PubMed  Google Scholar 

  • Clark D, Fairburn C (eds) (1997) Science and Practice of Cognitive Behavioral Therapy. Oxford University Press, Oxford

    Google Scholar 

  • Collins D, Wyeth G (1999) Cerebellar control of a line following robot. In: Proceedings of the Australian conference on robotics and automation (ACRA -9) pp 74-9

  • de Zeeuw CI, Simpson JI, Hoogenaraad CC, Galjart N, Koekkoek SKE, Ruigrok TJH (1998) Microcircuitry and function of the inferior olive. Trends Neurosci 21:391–400

    Article  PubMed  CAS  Google Scholar 

  • Doboli S, Minai AA, Best P (2000) Latent attractors: a model for context-dependent place representations in the hippocampus. Neural Comput 12:1009–1043

    Article  PubMed  CAS  Google Scholar 

  • Dominey PF (2005) From sensorimotor sequence to grammatical construction: evidence from simulation and neurophysiology. Adapt Behav 13(4):347–361

    Article  Google Scholar 

  • Doyon J, Song A, Karni A, Lalonde F, Adams M, Ungerleider L (2002) Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci USA 99:1017–1022

    Article  PubMed  CAS  Google Scholar 

  • Fox M, Snyder A, Vincent J, Corbetta M, Essen DCV, Raichle M (2005) The human brain is intrinsically organized into, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678

    Article  PubMed  CAS  Google Scholar 

  • Friedrich R, Laurent G (2002) Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291:889–894

    Article  Google Scholar 

  • Galan RF, Sachse S, Galizia CG, Herz AVM (2004) Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neural Comput 16:999–1012

    Article  Google Scholar 

  • Giambra L (1995) A laboratory method for investigating influences on switching attention to task-unrelated imagery and thought. Conscious Cogn 4:1–21

    Article  PubMed  CAS  Google Scholar 

  • Gigerenzer G, Todd PM (2000) Simple Heuristics That Make Us Smart. Oxford University Press, Oxford

    Google Scholar 

  • Glickstein M (1993) Motor skills but not cognitive tasks. Trends Neurosci 16:450–451

    Article  PubMed  CAS  Google Scholar 

  • Hazeltine E, Ivry R (2002) Can we teach the cerebellum new tricks?. Science 296:1979–1980

    Article  PubMed  CAS  Google Scholar 

  • Hertz J, Palmer R, Krogh A (1991) Introduction to the theory of neural computation. Addison-Wesley, Redwood City, CA

    Google Scholar 

  • Hikosaka Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S, Doya K (1999) Parallel neural networks for learning sequential procedures. Trends Neurosci 22:464–471

    Article  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558

    Article  PubMed  CAS  Google Scholar 

  • Huerta R, Rabinovich MI (2004) Reproducible sequence generation in random neural ensembles. Phys Rev Lett 93:238104

    Article  PubMed  CAS  Google Scholar 

  • Ito M (1982) Cerebellar control of the vestibulo-ocular reflex-around the flocculus hypothesis. Annu Rev Neurosci 5:275–296

    Article  PubMed  CAS  Google Scholar 

  • Jefferys J, Traub R, Whittington M (1996) Neuronal networks for induced “0 hz”rhythms. Trends Neurosci 19:202-208

    Article  PubMed  CAS  Google Scholar 

  • Kistler WM, de Zeeuw CI (2002) Dynamical working memory and timed responses: the role of reverberating loops in the olivo-cerebellar system. Neural Comput 14:2597-2626

    Article  PubMed  Google Scholar 

  • Krupa M (1997) Robust heteroclinic cycles. J Nonlin Sci 7:129–176

    Article  Google Scholar 

  • Lashley K (1960) The problem of serial order in behavior. In: Beach FA, Hebb DO, Morgan CT, Nissen HW (eds) The Neuropsychology of Lashley. McGraw-Hill, New York, pp 506–521

    Google Scholar 

  • Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Abarbanel HDI (2001) Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu Rev Neurosci 24:263–297

    Article  PubMed  CAS  Google Scholar 

  • Lawrence M, Trappenberg TP, Fine A (2005) A multi-modular associator network for simple temporal sequence learning and generation. In: Proceedings of ESANN-5, Bruges, Belgium, April 2005, pp 423-28

  • Leibold C, Kempter R (2006) Memory capacity for sequences in a recurrent network with biological constrain. Neural Comput 18:904–941

    Article  PubMed  Google Scholar 

  • Levi R, Varona P, Arshavsky YI, Rabinovich MI, Selverston AI (2004) Dual sensory-motor function for a molluskan statocyst network. J Neurophysiol 91:336–345

    Article  PubMed  CAS  Google Scholar 

  • Levi R, Varona P, Arshavsky YI, Rabinovich MI, Selverston AI (2005) The role of sensory network dynamics in generating a motor program. J Neuroscience 25:9807–9815

    Article  CAS  Google Scholar 

  • Llinás R, Welsh JP (1993) On the cerebellum and motor learning. Curr Opin Neurobiol 3:958

    Article  PubMed  Google Scholar 

  • Mazor O, Laurent G (2005) Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48:661–673

    Article  PubMed  CAS  Google Scholar 

  • Mccoy AN, Platt ML (2005) Risk-sensitive neurons in macaque posterior cingulate cortex. Nat Neurosci 8:1220–1227

    Article  PubMed  CAS  Google Scholar 

  • Melamed O, Gerstner W, Maas W, Tsodyks M, Markram H (2004) Coding and learning of behavioral sequences. Trends Neurosci 27:11–14

    Article  PubMed  CAS  Google Scholar 

  • Miguel MS, Toral R (2001) In: Tirapegui E, Martinez J, Tiemann R (eds) Instabilities and Nonequilibrium Structures VI. Kluwer, Dordrecht

  • Nusbaum MP, Beenhakken MP (2002) A small-system approach to motor pattern generation. Nature 417:343–350

    Article  PubMed  CAS  Google Scholar 

  • Oscarsson O (1980) Functional organization of olivary projection to cerebellar anterior lobe. In: Courville J, de Montigny C, Lamarre Y (eds) The inferior olivary nucleus. Raven, New York, pp 279–289

    Google Scholar 

  • Panchin Y, Arshavsky Y, Deliagina T, Popova L, Orlovsky G (1995) Control of locomotion in marine mollusk clione limacina. IX. Neuronal mechanisms of spatial orientation. J Neurophysiol 73:1924–1937

    PubMed  CAS  Google Scholar 

  • Poldrack A, Packard MG (2003) Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41:245–251

    Article  PubMed  Google Scholar 

  • Rabinovich M, Ezersky A, Weidman P (2000) The dynamics of patterns. World Scientific, Singapore

    Google Scholar 

  • Rabinovich M, Huerta R, Varona P (2006a) Heteroclinic synchronization: ultra-subharmonic locking. Phys Rev Lett 96:0141001

    Article  CAS  Google Scholar 

  • Rabinovich M, Varona P, Selverston A, Abarbanel H (2006b) Dynamical principles in neuroscience. Rev Modern Phys 78(4):1213

    Article  Google Scholar 

  • Rabinovich M, Volkovskii A, Lecanda P, Huerta R, Abarbanel HDI, Laurent G (2001) Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys Rev Lett 8706:U149–U151

    Google Scholar 

  • Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez F, Huerta R (2004) Analysis of perfect mappings of the stimuli through neural temporal sequences. Neural Netw 17:963–973

    Article  PubMed  Google Scholar 

  • Seliger P, Tsimring LS, Rabinovich MI (2003) Dynamics-based sequential memory: Winnerless competition of patterns. Phys Rev E 67:011905

    Article  CAS  Google Scholar 

  • Selverston A, Rabinovich M, Abarbanel H, Elson R, Szncs A, Pinto R, Huerta R, Varona P (2000) Reliable circuits from irregular neurons: a dynamical approach to unterstanding central pattern generators. J Physiol (Paris) 94:357–374

    Article  CAS  Google Scholar 

  • Shiv B, Loewenstein G, Bechara A, Damasio H, Damasio A (2005) Investment behavior and the negative side of emotion. Psychol Sci 16:435–439

    PubMed  Google Scholar 

  • Stone E, Holmes P (1990) Random perturbations of heteroclinic attractors. SIAM J Appl Math 50:726–743

    Article  Google Scholar 

  • Sun R, Giles CL (2001) Sequence learning: from recognition and prediction to sequential decision making. IEEE Intell Syst 16:67–70

    Article  Google Scholar 

  • Tanji J (2001) Sequential organization of multiple movements: involvement of cortical motor areas. Annu Rev Neurosci 24(1):631–651

    Article  PubMed  CAS  Google Scholar 

  • Teasdale J, Dritschel B, Taylor M, Proctor L, Lloyd C, Nimmo-Smith I, Baddeley A (1995) Stimulus-independent thought depends on central executive resources. Mem Cognit 23(5):551–559

    PubMed  CAS  Google Scholar 

  • van der Smagt P (2000) Benchmarking cerebellar control. Robot Auton Syst 32:237–251

    Article  Google Scholar 

  • Varona P, Aguirre C, Torres JJ, Rabinovich MI, Abarbanel HDI (2002a) Spatiotemporal patterns of network activity in the inferior olive. Neurocomputing 44-6:685–690

    Article  Google Scholar 

  • Varona P, Rabinovich MI, Selverston AI, Arshavsky YI (2002b) Winnerless competition between sensory neurons generates chaos: a possible mechanism for molluscan hunting behavior. Chaos 12:672–677

    Article  Google Scholar 

  • Venaille A, Varona P, Rabinovich MI (2005) Synchronization and coordination of sequences in two neural ensembles. Phys Rev E 71:061909

    Article  CAS  Google Scholar 

  • Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:8–9

    Article  CAS  Google Scholar 

  • Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neurosci 21(9):370–375

    Article  PubMed  CAS  Google Scholar 

  • Wang L (2000) Heteroassociations of spatio temporal sequences with the bidirectional associative memory. IEEE Trans Neural Netw 11:1503–1505

    Article  PubMed  CAS  Google Scholar 

  • Waugh F, Marcus C, Westervelt R (1990) Fixed-point attractors in analog neural computation. Phys Rev Lett 64:1986–1989

    Article  PubMed  Google Scholar 

  • Willingham DB, Salidis J, Gabrieli JD (2002) Direct comparison of neural systems mediating conscious and unconscious skill learning. J Neurophysiol 88:2451–1460

    Google Scholar 

  • Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55–80

    Article  PubMed  CAS  Google Scholar 

  • Wilson R, Turner G, Laurent G (2004) Transformation of olfactory representations in the drosophila antennal lobe. Science 303:366–370

    Article  PubMed  CAS  Google Scholar 

  • Worgotter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17(2):245–319

    Article  PubMed  Google Scholar 

  • Yamauchi BM, Beer RD (1994) Sequential behavior and learning in evolved dynamical neural networks. Adapt Behav 2(3): 219–246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail I. Rabinovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabinovich, M.I., Huerta, R., Varona, P. et al. Generation and reshaping of sequences in neural systems. Biol Cybern 95, 519–536 (2006). https://doi.org/10.1007/s00422-006-0121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0121-5

Keywords

Navigation