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Abstract  In this paper, we present a continuous att-
ractor network model that we hypothesize will give
some suggestion of the mechanisms underlying several
neural processes such as velocity tuning to visual stim-
ulus, sensory discrimination, sensorimotor transforma-
tions, motor control, motor imagery, and imitation. All
of these processes share the fundamental characteristic
of having to deal with the dynamic integration of motor
and sensory variables in order to achieve accurate sen-
sory prediction and/or discrimination. Such principles
have already been described in the literature by other
high-level modeling studies (Decety and Sommerville in
Trends Cogn Sci 7:527-533, 2003; Oztop et al. in Neu-
ral Netw 19(3):254-271, 2006; Wolpert et al. in Philos
Trans R Soc 358:593-602, 2003). With respect to these
studies, our work is more concerned with biologically
plausible neural dynamics at a population level. Indeed,
we show that a relatively simple extension of the classi-
cal neural field models can endow these networks with
additional dynamic properties for updating their inter-
nal representation using external commands. Moreover,
an analysis of the interactions between our model and
external inputs also shows interesting properties, which
we argue are relevant for a better understanding of the
neural processes of the brain.
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1 Introduction

For several decades, a large number of neural network
architectures have been studied in order to understand
the computational properties of the brain and its under-
lying neural mechanisms. A very influential series of
models that have been proposed are known as contin-
uous attractor neural networks or neural fields (Amari
1977; Wilson and Cowan 1973). Indeed, in addition to
their biologically plausible structural relationship with
real cortical neural ensembles, their numerous compu-
tational properties make them very attractive to the
computational neuroscience community. For instance,
these models were applied to research areas related to
visual processing (Ben-Yishai et al. 1995; Giese 2000;
Mineiro and Zipser 1998), visual attention (Rougier
2006), spatial navigation (Xie et al. 2002; Zhang 1996),
decision making (Erlhagen and Schoner 2002; Sauser
and Billard 2006; Schoner 2002), sensorimotor transfor-
mations (Burnod et al. 1999; Salinas and Thier 2000;
Sauser and Billard 2005), stimulus binding (Wersing
et al. 2001), and parameter estimation (Deneve et al.
1999). These networks are primarily based on a center-
surround recurrent connectivity, where neurons sharing
similar firing properties cooperate by exciting them-
selves and where neurons distant in their preferential
tuning inhibit each other. This interneuron relationship
is the basis of their fundamental ability to allow one sin-
gle localized activity packet to emerge from this neural
implementation of a winner-take-all operation.

The first point we would like to address here is con-
cerned with the dynamics of stimulus—network interac-
tions and, more precisely, with the temporal variation
of a stimulus input in neural space. Indeed, apart from
purely abstract theoretical works and a few applied to
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the modeling of biological systems (Giese 2000; Mineiro
and Zipser 1998; Xie et al. 2002; Zhang 1996), the use
of such networks in practical neurobiological modeling
assumes quasistatic neural dynamics. By quasistatic we
mean that the time scale of external input changes in
neural space is much larger than that of the network.
Since the dynamics of neural fields are, by definition,
strongly influenced by the recurrent connectivity, the
reaction time to a changing stimulus is thus higher than
that of single neurons (Panzeri et al. 2001). Hence, in
quasistatic network dynamics, the time scale of the input
updating is set to a large value. When comparing these
network implementations with real biological systems,
this issue is not really a problem since their performance
is considered in relatively slow tasks. However, when
dealing, for example, with precise and fast movements
like catching a ball or smooth eye pursuit, the inter-
nal representations should be updated very quickly, or
even in advance, in order to predict accurately the out-
come of self-generated movements (Miall and Wolpert
1996; Wolpert and Kawato 1998). An influential theory
related to motor control suggests that the brain may use
forward models in order to better control movements,
arguing that, in humans, a closed-loop control system
alone would be relatively inaccurate, given the long
time needed for sending motor commands and receiving
the resulting sensory feedback (Miall and Reckess 2002;
Miall and Wolpert 1996; Wolpert and Kawato 1998). For
instance, in an eye-tracking of a self-moved target exper-
iment, it has been shown that, when the subjects actively
move a target, the presence of the movement sensory
feedback is not necessary to achieve almost zero latency,
in contrast to the motor efference copies (Vercher et al.
1991). Furthermore, when considering neurophysiolog-
ical data, predictive neural responses were found in the
monkey visual, parietal, and frontal cortices and in the
cerebellum (Nakamura and Colby 2002; Roitman et al.
2005; Unema and Goldberg 1997), highly suggesting the
presence of forward control.

A second, more practical, motivation concerns the
neural mechanisms of self-awareness and recognition. A
current theoretical framework related to this research
topic mainly considers two forms of cues that may be
at the origin of such a human capacity (Decety and
Sommerville 2003; Haggard and Clarke 2003; Jeannerod
2003). When one has to recognize one’s own limb, body
cues such as the spatial and visual attributes of the limb
are primarily used. Since it is not within the scope of
this paper to address the problem of self-limb recog-
nition from these visual attributes, we are rather more
interested in the second form of cues. Indeed, when the
former attributes are ambiguous, it has been shown that
one relies more on action or movement cues, e.g., the
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time course of the movement velocity and its accel-
eration (Jeannerod 2003). A plausible mechanism has
been suggested whereby an internal prediction of the
consequences of a motor act is compared with the real
sensory outcome. Then, depending on their similarity
or discrepancy, the brain can determine the ownership
of the observed movement (Decety and Sommerville
2003). In addition, another problem arises when con-
sidering the possible neural substrates concerned with
the perception of self action and that of others. Indeed,
the current body of evidence suggests that a common
neural substrate devoted to the recognition and produc-
tion of movements exists in both humans and monkeys
(Iacoboni et al. 1999; Rizzolatti et al. 2001). A behavioral
correlate of such a discovery, described in several psy-
chophysics experiments (Chaminade et al. 2005; Kilner
et al. 2003), is that observing movements of others influ-
ences the quality of one’s own performance. The obser-
vation of such an interference effect, while supporting
the view of a common pathway for the transfer of visuo-
motor information, calls for an explanation as to how the
same substrate can both integrate multisensory infor-
mation and determine the ownership of the observed
movement.

Despite the apparent differences between the two
previously introduced topics, they both share a com-
mon fundamental property: their need for a predictive
forward model, which would allow, respectively, (a) an
almost instantaneous updating of the internal represen-
tation of the sensory states and (b) the computation of
sensory predictions to be compared with movement out-
come. Indeed, the timing of neural updating for internal
sensory information is crucial in motor control for accu-
rate movement generation (Miall and Reckess 2002;
Vercher and Gauthier 1988). Similarly, a short time
between movement execution and the perception of sen-
sory feedback is also crucial for perceiving the agency
of an action (Haggard and Clarke 2003). Our interest
here is effectively to show how a neural field, a neu-
ral substrate for representing information, can integrate
the efferent commands from a forward model in order
to update its internal representation. As internal rep-
resentations, we restrict our modeling by considering
neural ensembles encoding simultaneously a variable
value and its first-order time derivative. For instance,
the position and the velocity of either a visual stimu-
lus in retinal space or the hand location in cartesian
or joint space may be considered. Indeed, real popula-
tions of neurons with such a tuning property have been
found in several brain areas, such as the motor, parietal,
visual, and temporal cortices and in the cerebellum (Ben
Hamed et al. 2003; Hubel and Wiesel 1977; Jellema et
al. 2004; Kettner et al. 1988; Roitman et al. 2005). The



Biol Cybern

modeling novelties that we introduce in this paper are
threefold. First, we provide a generalized framework for
the dynamic integration of velocity commands within
continuous attractor networks by selectively adding an
asymmetric recurrent connectivity on neural ensembles
sharing similar movement direction preferences. Sec-
ond, we also consider the need for a detailed stimulus
encoding function that can compensate for the internal
dynamics of both neurons and the network. Third, we
describe and analyze properties and applications result-
ing from the proposed integration mechanism, such as
(a) dynamic or input driven velocity tuning, (b) instan-
taneous and predictive-like information transfer, and
(c) abilities for stimuli discrimination based on their
dynamic properties.

This paper is organized as follows. Section 2 intro-
duces the model core architecture and then describes
the mechanisms underlying the integration of velocity
commands. Next, the form of stimulus encoding and the
synaptic projections for transferring information across
neural populations are defined. Note that detailed math-
ematical calculations were left in the Appendix. Fur-
ther, in Sect. 3, we show some analysis of the network
dynamic properties with and without external stimulus
inputs, such as velocity tuning. We also address the tim-
ing of information transfer across neural populations
and then tackle the problem of stimulus discrimination.
Moreover, we also compare our model dynamics with
that of a more commonly used neural field architec-
ture and then show its weaknesses. Finally, we discuss in
Sect. 4 the relationship between our model properties
and biological data and present some implications and
predictions from our work regarding several of the brain
neural mechanisms.

2 Model

We consider a continuous attractor neural network com-
posed of a set of neurons preferentially tuned to a pri-
mary variable r and a secondary variable s following a
uniform distribution such thatr € %, and s € %;. As
mentioned previously, these neural spaces are assumed
to encode, respectively, a variable value and its varia-
tion in time. For example, if we consider that a stimulus
location is encoded in the space %, a neuron tuned to
a specific s will fire preferentially when the stimulus is
moving in the direction given by that s. The present
hypothesis regarding a combined preferential tuning to
both a variable value and its direction of variation is
mainly motivated by several neurophysiological stud-
ies showing neurons having similar firing properties (Fu
et al. 1997; Jellema et al. 2004; Kettner et al. 1988; Roit-

Table 1 Definition domains of neural preferential tuning consid-
ered in this paper

Ring Torus

[-m, 7] x [-m, 7]

T {R?[ el =1}
{®Is 1 =1}

Ds {-1,1}

man et al. 2005). In addition to the computational power
that such a neural representation may provide to other
connected brain networks, we argue and will show that
it may also help in updating itself.

Further, the cases of both a unidimensional and a
two-dimensional (2D) attractor are addressed (Table 1).
To avoid boundary effects, periodic spaces are assumed
such that these domains form, respectively, a ring and its
2D analog, a torus. Despite the discrete nature of s in the
case of the ring attractor, the neural ensemble follows
continuous attractor network dynamics where the time
evolution of the neurons’ membrane potential u(r, s, t)
satisfies

Ti(r,s, t) = —u(x,s,t) + h(s,t) + x(x,s,t)
+ # [WE—r)—AVWE—1)-§]
x f(u@',s',0))dr'ds’". (1)

The transfer function f(u) is the linear threshold func-
tion max(0,u), and r € R? is the time constant of the
neurons. The network receives external inputs that were
separated into two distinct forms. x(r,s, ) is defined as
the stimulus input, whereas h(s,t) is the background
input. Note that h(s,t) is, by definition, homogeneous
across the subpopulations of neurons sharing the same
preferential tuning to the variable s. Henceforth, these
subpopulations will be designated as sublayers.

The network is fully connected by means of a set of
synaptic weights composed of two parts: a center-sur-
round Gaussian-like,! translation-invariant, and sym-
metric component W(r — r') and an asymmetric term
—AVW( —v) - ¢/, where V corresponds to the gradient
operator alongr. A € R is a constant scaling factor. The
first term is a convolution kernel that links the neurons
along the neural fundamental variable r, while the sec-
ond term links them along s. These convolution weights
and the network architecture are illustrated in Figs. 1
and 2. As will be described in Sect. 2.1, this connectivity
is the basis of the system’s ability to integrate velocity
commands.

I The exact shape of W is not crucial for our argument, as long
as it allows the network to sustain an activity packet on its neural
surface (Amari 1977). Nevertheless, in Appendix C, we define the
exact shape of W that we will use further in our experiments.
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Fig. 1 Illustration of model architecture and weight kernels for
both the ring (fop) and the torus attractor spaces (bottom). Each
sublayer encoding a variable in the neural space defined on r has
a preferred movement direction s that is the result of the asym-
metric self-connectivity. This weight kernel is shown for different
values of s. It is superimposed on the arrows denoting the synaptic
projections across the sublayers

As illustrated in Fig. 2, this type of neural dynamics
are known to form an activity packet or attractor bump
on the surface of the neural field. It is suggested that
this class of networks conveys information by such a
compact blob of excitation. A typical read-out mecha-
nism, the population vector p(t), has been suggested to
measure the macroscopic effect of the joint activities of
large sets of neurons (Georgopoulos 1996). It consists of
a weighted summation of the firing activity of each neu-
ron with its preferred direction. The estimate p(t) € %
of the variable value encoded along r is given by

b f(ur,s,0)rdrds
P f(us,n)drds

p(®) (2)

@ Springer

An estimate of the encoded variable in %5 might be
envisaged similarly. However, since that space is an
extension of the primary space Z; used for integration
purposes, its explicit definition is not necessary. The next
section addresses the use of that dimension for updating
the network neural representation using external com-
mands provided through the background input.

2.1 Forward model commands and intrinsic dynamics

In this section, we are interested in how forward model
commands, by acting on the background input, may
drive the network internal dynamics so that the neural
representation may be updated accordingly. Afterwards,
we also determine the boundaries in which this velocity
integration remains valid. Let us start by defining how
the population vector p(f) encoded by the neural repre-
sentation may be varied by an external command v*(¢)
such that

p() = v (o). (3)

Furthermore, we consider here that the network is
already representing and sustaining information and
that the stimulus input is absent, i.e., x(r,s,?) = 0. The
background input A(s, ¢) is then defined as

h(s,t) = ho[1 4 ho(t) - ], 4)

where Ay > 0 is a constant excitation and ﬁo is a direc-
tional input component that can break the network sym-
metry when different from zero (Fig. 3a). Indeed, when
referring to Eq. (1), it can be noticed that a strictly homo-
geneous input (hy = 0) leads to a zero value of the
integral along s of the asymmetric weights convolution,
ie.,

#AVW(r —1) -8 f(u@',s',0))dr'ds' = 0. (5)

By symmetry, the system thus settles into a constant state
along s. In this case, this network is equivalent to a typi-
cal continuous attractor network without an asymmetric
connectivity, which is known to exhibit marginally stable
bump solutions.

Further, an input ho # 0 breaks this symmetry. It
consequently favors a higher excitation of the network
sublayers with a direction preference s close to that given
by hy. Now, if we first consider a single sublayer, it has
been shown that, as an attractor state, it develops a trav-
eling activity bump symmetric in shape and with con-
stant velocity. That speed depends strictly on the ratio
between the strength of the asymmetric weights and
the neuron’s time constant and is given by A/7 (Zhang
1996). Coming back, then, to the full architecture, the
coupling across the sublayers introduces a competitive
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(a)

Fig. 2 Illustration of model architecture. Each sublayer encoding
a variable in the neural space defined on r € % has a preferred
movement direction s € % that is the result of the asymmet-
ric self-connectivity. a The center arrows indicate the preferred
movement direction of the sublayers. If considered alone, each

interaction between those having an opposite direction
preference. This produces a push—pull mechanism regu-
lated by the respective balance of excitation among the
sublayers. In our model, this effect is controlled by the
strength of the asymmetry of the background input hg.
Therefore, by balancing this input factor, one may drive
the network representation p(f) in direction and veloc-
ity. The detailed calculations given in Appendix A show
that near the equilibrium, the relationship between p(#)
and ﬁo (t) can be approximated linearly such that

N
P ~ zv ho (1), (6)

where ho(7) is small. y is the slope of the linear approx-
imation that depends on the recurrent weight parame-
ters.” Since this updating of the neural representation
is performed by modulating the respective influence of
opposite sublayers, the maximal velocity that our model
may attain is constrained by that of a single sublayer, i.e.,
A /7. Thus, the network velocity is bounded such that

hy (1)
_ . 7
||ho<r>||) @)

. A -
P() & — min (y ho(9),
Then, rewriting Eq. (4) using Egs. (3) and (7) gives

h(s,t) = ho [1 + v -S} vl < & (8)
% T
which corresponds to the background homogeneous
input to be applied to the network so that it can drive its
internal representation with speed v*(¢). Like a related
model (Xie et al. 2002), this integration mechanism
makes it possible for forward commands to allowthe

2 Except for rare special cases, y must be found numerically.

[Wir=r") - AVWir-r)s]

(b)

of them would display a traveling activity blob in its preferred
movement direction, as shown by the trace of the activity blobs
on the neural surface. b Each sublayer projects its activity onto all
sublayers using the same weight profile

network to predict its next state p(f) according to its
supposed variation in time. As a consequence, the sta-
tic marginal attractor states of the model become linear
trajectories with constant velocity in the neural space
defined on %,. Therefore, to contrast the effect of a
stimulus input on the network, our network is said to
possess an intrinsic velocity v*(t) < A/t determined by
its background input, which is defined as the velocity of
the trajectories of its attractors.

2.2 Stimulus encoding

In this section we describe how a stimulus input should
be defined in order to drive the network dynamics
toward that of the input. A nonlinear form is first
defined, since its derivation from the background input
is the most straightforward. We will then slightly mod-
ify this description by approximating it with a linear
form more suitable for transferring information across
multiple neural populations. Indeed, this linear input
form will further help us derive appropriate synaptic
projections. As a consequence, within a large network,
instances of our model may easily transfer their posi-
tional and velocity-dependent information across each
other. So, let us introduce the first form of stimulus input.

We consider a stimulus located at r,(f) in the neu-
ral space %, moving in phase with the network intrin-
sic velocity, i.e., ¥,(f) = v*(?). Its input to the network
x(r,s, 1), shown in Fig. 3b, is given by

x(r,s,0) = hy [G(r—r, (1) — 1k, (1)) - VG(r — 1, (1))]

T . . A
[1 =i ~s] Iy 0l < =,

)

@ Springer



Biol Cybern

where i1 > 0 corresponds to the stimulus amplitude and
G to the fundamental shape of the input. We assume this
shape to be Gaussian-like and centered on the stimulus
location r, () (see a precise definition in Appendix C).
The second term of the first factor compensates for the
neuron’s integration time so that the network represen-
tation of the input shape is unaffected by stimulus move-
ment. It stays symmetric, as if it was static in the neural
medium. Finally, comparing the equation of the stimu-
lus input with that of the background input [Egs. (9) and
(8)], it can be noticed that the asymmetric term in the
second factor is responsible for driving the push—pull
mechanism of the neural field. Through this modula-
tory excitation, the asymmetric recurrent connectivity
will help the neural field tracking the stimulus. Since the
asymmetry of the stimulus input is driven by its speed,
we introduce here a directional input factor h; that has
arole similar to that of the background input. It is given
by

h) = i i, (0). (10)

This relationship relates to the amount of strength of
the input asymmetry that is necessary for the network
to follow its speed. Rewriting Eq. (9) then gives

xX(r,8,0) = hy [G(r —x,(0) — Ay hy(0) - VG(r— ro(t))]

[1+ho ). (11)

Since the asymmetric factors of both the stimulus and
the background input are proportional, respectively, to
the stimulus and intrinsic network velocity, the use of
either notation will be considered equivalent in the fur-
ther analysis of our experiments. Again, the reader inter-
ested in a more detailed description of this mathematical
development is encouraged to refer to Appendix B.1.

2.2.1 Linear encoding

As mentioned earlier, an alternative stimulus input form
can be defined so as to avoid the nonlinear multiplica-
tive factor found in its previous definition [Eq. (9)]. This
multiplicative factor is needed to drive the internal net-
work dynamics toward that of the input. In order to
replace it, the idea is to apply the same principle as that
described in the case of the background input. A con-
stant term, homogeneous along the stimulus space Z
and with a velocity-dependent asymmetry along s, can
be used. Detailed calculations given in Appendix B.2
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result in the following input form:

x(r,s,t) = |:G(r —1,(0)) — T, (1) - VG (r —x, (1))

‘HI ﬁl : S:|, (12)

where 7 is a constant that depends on both the network
recurrent weights W and on the input shape G. This form
of linear encoding is particularly interesting for trans-
mitting information across populations. Indeed, as will
be described next, our model may transfer both its posi-
tional and velocity-related information to another field
by means of strictly linear synaptic projections chosen
appropriately.

2.3 Information transmission across neural fields

In large-scale neural networks, it may be envisaged that
several instances of our model may communicate and
transfer information. The synaptic projections W s from
one neural field A to another B are defined so that the
input x;(r, s, t) of population B is given by

xg(t,8,1) = # Waar,s, v/, s)f (u ('8, 0))dr'ds’.  (13)

In this section, our aim is to allow these synaptic projec-
tions to be equivalent to the stimulus input form given by
Eq. 12. Consequently, the information conveyed by the
source population A would be completely transferred
such that ps(f) = p,(¢) and p, () = p, (¢). Usually, in clas-
sical neural field implementation, information is trans-
mitted using a weight kernel having a symmetric and
center-surround shape. However, as shown previously,
the ability for velocity integration is the result of an
asymmetric coupling across the network sublayers. Thus,
we here use a similar technique to that described in the
context of whole network dynamics [Eq. (1)]. It can be
shown (Appendix B.3) that the following weights

We(,s,r,s)= [WT(r—r’)—AVWT(r—r’) S S s/]
(14)

produce the desired effect. Wy is a symmetric and cen-
ter-surround convolution kernel strictly defined on the
neural space %;. The last term, s - 8', where us is
a constant depending on the recurrent weights and on
the input shape, is the analog to that of Eq. (12). The
input source may hence drive the network according to
its own dynamics.
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Fig. 3 Examples of external inputs where the same representa-
tion as in Fig. 2 is used. The color code on the right indicates
the corresponding preferred movement direction of each sublay-
er. a Background input A(s,?) [Eq. (4)]. b stimulus input x(r,s, )

3 Experiments and results

In this section, we present several experiments that were
performed using our model. Sections 3.1 and 3.2 show
numerical simulations aimed at illustrating the relevance
of our mathematical developments. Our model’s abil-
ity to integrate velocity commands and its response to
both types of stimulus inputs and synaptic projections
across multiple instances of our networks are described.
We further investigate, in Sect. 3.3, how our model may
reproduce neurophysiological data concerning the pref-
erential tuning to stimulus velocity of several groups of
neurons in the visual cortex (Orban et al. 1986). Finally,
we report two additional simulation results addressing
mechanisms that we suggest to be respectively related
to motor imagery and sensory discrimination. The for-
mer experiment describes how the excitation level of the
network may liberate it from its sensory influences. The
latter considers a neural population that receives two
contradictory and ambiguous sensory feedback inputs
and that should select the input corresponding best to
its own internal dynamics.

3.1 Dynamic velocity integration

In the hippocampal formation of the rat, it has been
shown that the so-called head-direction cells code for the
current heading direction of the animal. It has also been
observed that this group of neurons displays a fast updat-
ing of its representation according to motor efference
copies or vestibular inputs (Sharp et al. 2001). Moreover,
in other brain regions, neural representations encoding
for different sensory states have also been shown to
exhibit a similar updating (Roitman et al. 2005; Schwartz
and Moran 1999).

HHQHIYHY

[Eqg. (9)]. ¢ Linear form of stimulus input [Eq. (12)]. The arrow
in the middle of the figures denotes the intrinsic velocity of the
network resulting when the corresponding input is applied

Here, we show that our model may also update its
internal representation according to the commands v*(¢)
given through the background input /(s, ¢). The simula-
tion parameters that were used in each of the following
experiments are summarized in Appendix C. Figure 4
shows the measured velocity response p(¢) of the neu-
ral field as a function of ||ﬁo||. Each point on the graph
was obtained in a different trial with a different value
for |hg||. The approximation, given by Eq. (7), is dis-
played in the same graph. Note that, in the ring attractor
case, for a sufficiently strong asymmetric input, the net-
work reaches the maximum velocity A/t. However, in
the torus case, it can be seen that the system only tends
toward that maximum asymptotically. Indeed, in the for-
mer case, the stronger sublayer is capable of completely
inhibiting its opposite and hence driving the whole net-
work alone. The continuous nature of the direction pref-
erence in the second case forbids a single sublayer to win
against all the others. Nevertheless, for a relatively small
asymmetric component hy, the theoretical approxima-
tion fits the simulation results well. In Figs. 5 and 6,
some trajectories of the command v* are compared to
the velocity response p(¢) of the network.

3.2 Information transfer

The purpose of this section is to show how our net-
work can integrate the representation given by a stim-
ulus input and by projections from another network. It
was mentioned previously that a population of neurons
may update its encoded variable through the integration
of velocity commands. Similarly, a stimulus input should
also be able to do so. In what follows, our model will be
shown to capture such an effect. In addition, we will also
compare its performance with that of a more commonly
used single-layered attractor network. Recall that the
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Fig. 4 Network velocity response (dotted line) to different asym-

metric background input drives hg, as displayed by a ring (left)
and torus attractor (right). The straight line corresponds to the
approximation of the velocity response [Eq. (4)]

Velocity r
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!

Fig. 5 Velocity response p(¢) of a ring network to external com-
mands v*(¢) provided through background input [Eq. (8)]. Dotted
and straight lines correspond, respectively, to the desired velocity
command v*(¢) and the network velocity response p(¢). As can be
seen when a high-velocity command is given, the network satu-
rates at its maximum velocity integration boundary given by 1/t
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Fig. 6 Velocity response p(¢) of a torus network to external com-
mands v*(7). Data are shown relative to the two principal axes of
the network representation space % given by the canonical base
{e; = (1,0),e2 = (0,1)}. The same notation as in Fig. 5 is used

latter neural dynamics are given by

u(r, ) = —u(r, ) +x@, ) +h() + 55 Wa—r') f(u@,0)dr.
(15)
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When compared to Eq. (1), this corresponds to a net-
work with a reduced dimensionality. In this case, the
stimulus and the background inputs are given, respec-
tively, by x(r,1) = hy G(r — r, (1)) and h(t) = ho.

3.2.1 Transfer from stimulus to network representation

To illustrate the validity of our mathematical develop-
ment concerning stimulus integration, we applied sepa-
rately to the network the nonlinear and the linear forms
of the stimulus input [Egs. (9) and (12), respectively].
The background input amplitude /¢ was set to zero. For
different stimulus speeds, we measured the spatial lag
between the effective stimulus spatial location ry(#,) and
the neural population vector p(t,) at a given time ¢,,. The
results are plotted in Fig. 7a and b. These figures show
that, under both conditions, our model outperforms the
simpler model. Indeed, below the maximum integration
velocity given by A /7, the lag stays close to zero, while
an almost linear velocity-dependent lag is observed for
the other model.

3.2.2 Transfer across network representation

Next, we performed similar simulations while consider-
ing the transfer of information across the representa-
tions of two interconnected neural fields using Egs. (13)
and (14). The projection weights kernel W is defined in
Appendix C. Figure 7c shows the resulting lag measured
across the neural populations. As expected, the lag effec-
tively stays close to zero below the velocity integration
boundary A/t, which corresponds to a property similar
to that mentioned in the case of a stimulus input.

3.3 Dynamic velocity tuning

In the context of the visual system, neurons have been
found to be preferentially tuned to both a stimulus posi-
tion and velocity in retinal space. This property has
further been suggested to be the basis of the human
ability for velocity discrimination (Cheng et al. 1994;
Chey et al. 1998; Goodwin and Henry 1975; Mineiro
and Zipser 1998). Our interest is to see if our model
may first reproduce this experimental result and further
suggest an alternative approach to this neural process.
Indeed, it has already been shown that a single-layered
attractor network having a fixed asymmetric recurrent
connectivity can exhibit a certain tuning to input stim-
ulus speed (Mineiro and Zipser 1998). However, such
a model is restricted to be tuned to a single preferred
velocity. It thus needs to be replicated a sufficiently large
number of times with different synaptic strengths so that
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Fig. 7 Bottom Positional lag at a given time #, between the net-
work representation p(z,) and a a moving stimulus encoded using
the nonlinear method (Eq. 9), b a moving stimulus encoded with
the linear method (Eq. 12), and ¢ another network driven by
a moving stimulus (Eq. 13). To quantify the amount of latency
between these representations, the lag is given relative to the
breadth o of the input shape G (Appendix C). Top System
schematic shows which part of the network is considered in each

the whole system will then exhibit a preferential tuning
to a broad range of velocities (Chey et al. 1998).

By considering the changes in the network response
resulting from the modulation of the stimulus speed, we
show that our model can display this large range of pref-
erential tuning by simply varying the asymmetry of the
background input A(s, ¢). Indeed, by dynamically setting
the intrinsic network velocity v*, a stimulus with a close
speed will resonate or cooperate more with the network
than divergent ones. Since cooperative interactions in
such an attractor network result in higher activation pat-
terns than competitive ones, we assume that the mean
global firing rate of all the neurons is a good measure of
this resonance effect. The network response energy E(¢)
is defined by
E@) = #f(u(r, s,1))drds. (16)
Several simulation trials were performed while the
model was given various intrinsic velocities v*. Then,
a single stimulus moving according to a large range of
speeds and directions was applied. The measured net-
work energy for each trial is shown in Fig. 8. It can
be seen that the network effectively responds prefer-
entially to stimuli with a close velocity and that these
tuning curves show a high similarity to those reported in
the visual cortex (Cheng et al. 1994; Orban et al. 1986).

case. Data are shown for different values of the ratio A/t, which
corresponds to the maximum allowable integration velocity. Note
that the lag is very low below this maximal value but then grows
almost linearly with the input speed. Moreover, this figure also
compares our neural field model with classical continuous attrac-
tor network implementation (dotted line). Note that such a model
suffers from a lag that is almost linearly related to the input speed

3.4 Stimulus to background input strength ratio

The experiments described above were mostly perfor-
med while the mean background homogeneous input
ho was kept sufficiently small so that the influence of
the network recurrent connectivity was relatively weak
compared to the strength of the stimulus input 4.
Indeed, the ratio hg/h is of critical importance when
considering the network dynamic behavior. Indeed, it
determines which of these inputs is driving the network.
A small value corresponds to a predominance of the
stimulus input, while a larger one corresponds to a dom-
inance of the network intrinsic dynamics.

This network property may allow the same neural
substrate to be used for different purposes. For instance,
several motor areas of the brain have been shown to
be activated similarly by movement execution, imagery,
and observation (Fogassi and Gallese 2002; Jeannerod
and Decety 1995; Porro et al. 1996; Rizzolatti et al. 2001),
processes that are not completely equivalent. During
motor execution, it is necessary for the brain to keep
track of the real sensory states, whereas during the other
processes, it should avoid perceiving them. Consider-
ing now an analogy for our model, in the former case
(h1 > ho), the network stays locked to the input stimu-
lus. In the latter case (kg > hq), the intrinsic dynamics
become sufficiently strong to free itself from the stimulus
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Fig. 8 Top Ring network mean energy relative to the speed of
the input stimulus. Each plot corresponds to a different intrinsic
network speed. Notice the shift in the preferential velocity tuning

input. Hence, the network evolves strictly according to
its background input. Figure 9 shows, for different values
of the ratio ho/hq, the velocity space in which the net-
work is mostly driven by either the stimulus or the back-
ground input. By mostly driven by the stimulus input we
mean that the network response p(¢) is strongly depen-
dent on the stimulus location rg(¢). Indeed, if the lag
between these values is almost constant through time, it
means that the network actually follows that input. In
contrast, an uncorrelated difference between p(¢) and
1o (?) indicates that the network is only driven by its back-
ground input. The data shown in Fig. 9 was obtained by
first letting the network and the stimulus evolve for a
given and sufficiently long period of time. Then, we mea-
sured the lag between the stimulus location and that of
the network representation. If, for a given trial, the lag
was less than twice the breadth of the stimulus input o
(Appendix C), the network was considered to be stimu-
lus driven.

3.5 Sensory discrimination

The last simulation concerns sensory discrimination.
Our inspiration was taken from a behavioral experi-
ment addressing the recognition of a stimulus moving
according to self-generated movements in the presence
of one ambiguous distractor. Indeed, the neural mech-
anisms related to self-recognition are supposed to be
grounded in the brain by means of a forward model
taking as inputs motor efference copies whose predic-
tions are compared with actual sensory consequences
(Decety and Sommerville 2003). A close match between
the prediction and the sensory feedback is supposed
to signify that the observed stimulus is controlled by
the self, whereas a discrepancy would mean that it is
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of the network with its intrinsic speed. Botfom The same results
for a torus attractor. The black dot indicates the network intrinsic
speed. The brighter the plot is, the higher the energy

under an external influence. Neurophysiological data
suggest that this discrimination process may be partly
grounded within brain regions containing shared repre-
sentations (Decety and Sommerville 2003). This would
signify that aneural population receiving two ambiguous
inputs should be capable of performing such a selection.

Therefore, we applied this principle to our model.
Two external stimulus inputs located, respectively, at
r;(t) and 1 (1) in neural space are fed to our network.
Since they are supposed to be ambiguous, their corre-
sponding amplitude is equivalent, i.e., i{ = A}, and their
initial location in neural space is assumed to be identi-
cal. Respectively designated by the indices c and 1, the
compatible stimulus has a speed that is equally fed to
the network through its background input, i.e. h1 =hy
such that i{;(r) ~ v*(¢), while the incompatible stimu-
lus is different. Simulation results are shown in Figs. 10
and 11. Figure 10 illustrates the network neural activ-
ity at different time steps. It can be seen that when the
stimulus inputs are separated in neural space, the net-
work selects the input with a speed corresponding best
to its own intrinsic dynamics. Figure 11 shows the tem-
poral dynamics of stimulus selection for different cases.
Below the maximum intrinsic network speed (Fig. 11a,
b), the selection is successful, but above, the network
may either lag behind the compatible stimulus or even
select the incompatible stimulus (Fig. 11c, d). Finally,
Fig. 12 summarizes the range of speeds where the net-
work successfully discriminates the right stimulus. In the
case of a right decision, the spatial lag between the pop-
ulation vector p(¢) and the compatible stimulus location
r;; is shown. Note that the lag is almost zero when the
compatible stimulus velocity lies within the allowable
range of velocity integration. Indeed, as described in
Sect. 3.2.1, outside that range, the lag increases with
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Fig. 9 Input space in which
the network is mostly driven
by the stimulus or the
background input is shown
for different value of the ratio
ho/hy. The straight lines
indicate the separations of the
input velocity space between
areas where the network is
mostly driven by the stimulus
input (straight arrows) and
where the background input
dominates (dashed arrows)

n(r.s.1)

(a) (b)

Fig. 10 Network response during a velocity discrimination task.
Eachsubplot corresponds to a snapshot of the membrane potential
u(r,s, t) of selected sublayers sorted according to their preferred
movement direction. The surfaces enclosed with the white dotted
line indicate regions of neural space in which activity is above
zero, i.e., the neurons within these areas are actually firing. In the
middle of each subfigure, the external input x(x, s, f) averaged over
the preferred directions of movement s are shown. a Beginning

the stimulus speed. Moreover, the regions of false dis-
crimination are strictly located over the system inte-
gration boundary. Since the network cannot accurately

Time

(c)

of discrimination task: both the compatible and the incompatible
stimuli are at the same location in neural space; they are indis-
tinguishable. b The stimuli, moving at different speeds, start to
separate but are not distinguishable on the network representa-
tion yet. ¢ The stimuli are clearly disjointed, and, by means of its
recurrent interactions, the network naturally selects the stimulus
that is the most compatible with its own intrinsic velocity

update its internal representation, it naturally selects
the input that is the closest to its actual intrinsic velocity.
When the input with incompatible speed is closer to the
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Position [— Compatible stimulus  ry(#)

- == Incompatible stimulus ry(f)

= Internal representation p(7)

Time

(a) (b)

Fig. 11 Illustration of network response p(f) when a stimulus
compatible with the intrinsic network velocity and an incompati-
ble one are applied to the inputs of the network. The positions of
the compatible stimulus (/ight filled line), the incompatible stim-
ulus (dotted line), and the network response (dark filled line) are
shown over time in several situations. a-¢ As soon as the stimuli
are sufficiently separated in neural space, the network success-
fully selects the compatible stimulus. Note that the trajectory of
the internal representation p(#) exhibits, initially, a deviation from

integration boundary than that of the compatible one, it
is selected.

These results confirm that our model can account for
the importance of the precise timing between the pre-
diction of the movement outcome and the sensory feed-
back. Indeed, this allows our model to select which of
the stimuli is under self-control (Haggard and Clarke
2003). Consequently, it also proposes a neural mecha-
nism contributing to this cognitive function and suggests
how it may be realized within a shared representation.

4 Discussion

In this paper, we have presented a continuous attrac-
tor network model capable of integrating velocity com-
mands for updating its internal representation.
Moreover, we have also considered and defined ade-
quate external input forms such that they can positively
influence the network integration dynamics toward their
own. Further, the analysis of the network dynamics
reveals that our model should not be restricted to repre-
senting the mechanism of a single brain region. Rather,
its various properties suggest that its architecture might
be more dispersed across brain areas, such as the cere-
bellum and the motor, visual, and associative cortices.
Other models addressing the integration of velocity
commands have already been described in the literature.
The vast majority of them consider the rat head direc-
tion system, its hippocampal places fields, and its abilities
for path integration (Redish et al. 1996; Stringer et al.
2004; Xie et al. 2002; Zhang 1996). Despite the fact that
the biological plausibility of their implementation is still
under debate, a series of models assumes the existence of
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the compatible stimulus trajectory. As described in Fig. 10, this
is the result of the temporary overlap between the two stimulus
representations on neural space; the network thus cannot discrim-
inate between the two. However, as soon as the stimuli are suffi-
ciently separated, the selection is performed. ¢ Since the speed of
the compatible stimulus is above the maximal network velocity, a
constant lag can be observed. d In a similar out-of-bounds situa-
tion, the network selects the wrong input. Indeed, the input speed
is here closer to that of the network

Lag

=

050

Compatible stimulus

0 A
Incompatible stimulus h,

Fig. 12 Range of compatible-incompatible stimulus velocities
leading the network to a false decision (triangular black regions).
Moreover, in the case of a correct decision, the figure also shows
the lag measured between the location r{j of the compatible stim-
ulus and the network response p. The lag is given relative to the
breadth o of the stimulus input. As can be seen, when the com-
patible stimulus speed is over the network integration limit, an
increasing lag between the input and the network response is
observed

sigma-pi units, i.e., neurons performing both a sum and a
product of their inputs (Redish et al. 1996; Stringer et al.
2004; Zhang 1996). Although our architecture allows
for avoiding the use of such computational units, our
model is nevertheless largely inspired from the compu-
tational principles that were described by Zhang (1996)
and may even, under certain assumptions, be reduced
to his model. Indeed, by averaging over the sublayers
sharing the same preferential movement direction, only
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a neural field spanning the neural space of the main
variable remains. Then, by replacing the background
input by a multiplicative scaling of the asymmetric recur-
rent weights, our network model matches the above-
mentioned velocity integration model (Zhang 1996).
Despite this similarity, our model, whose structure is
also very close to that described by (Xie et al. 2002), we
first consider explicitly external inputs to the system and
their interaction properties. Second, our model analysis
has given several new predictions and hypotheses that
will be described throughout the following discussion.

4.1 Velocity tuning

Velocity and direction tuning are properties of neurons
that have been found primarily in visual cortices, such
as V1 and V2. They have been shown to fire preferen-
tially for stimuli moving at a specific speed and direc-
tion within their receptive field (Orban et al. 1986).
This neurophysiological finding has been suggested to
be the basis of the human ability to discriminate veloc-
ity (De Bruyn and Orban 1988). Earlier work by Mineiro
etal. (1998) has already demonstrated how a neural field
endowed with a fixed asymmetric recurrent connectivity
can exhibit such a sensitivity. However, this network is
constrained to exhibit a single velocity tuning (Mineiro
and Zipser 1998). Consequently, in order to be sensitive
to a broader range of velocities, this network should be
replicated a large number of times with different weight
strengths. This approach has been followed by other
models addressing the problem of stimulus velocity dis-
crimination (Chey et al. 1998). In contrast, the present
model proposes a mechanism relying on sublayers hav-
ing opposite directional tuning, where the precise veloc-
ity tuning is then driven dynamically by the background
input. Indeed, velocity discrimination is a dynamic pro-
cess where a stimulus is first presented to subjects so
that they can internalize its velocity for further discrimi-
nation against other stimuli. In addition, although it has
been shown that visual areas, such as V1 and V2, possess
a wide range of velocity-tuned neurons (Goodwin and
Henry 1975; Orban et al. 1986), these areas are likely
to be located in earlier stages of the whole visual pro-
cess, as compared to area MT. This area sends direct
projections to the parietal cortex, which is suggested to
be the locus of some decisional processing (Wise et al.
1997). Therefore, the information carried by MT is more
likely to be responsible for the discrimination process.
Moreover, in this area, it has been shown that the distri-
bution of velocity-tuned cells appears to be not uniform
but rather centered near some extreme values (Cheng
et al. 1994). These findings seem to confirm our model-
ing approach. It suggests that the brain may be able to

adapt the dynamics of its internal representation toward
that of the stimulus, and hence to build a model to be
used for further discrimination. Finally, for sensitivities
in 2D retinal space, the complexity of our model is of
order O(n3), where n is the number of neurons along
a single dimension, whereas the previously mentioned
approach is of order O(n*) (Chey et al. 1998; Mineiro
and Zipser 1998).

4.2 Sensorimotor transformations and motor control

The transmission time of information across neural
structures is critical for time-dependent tasks such as
movement control. However, the brain is known to suf-
fer from delays arising from the substrate where infor-
mation is encoded, i.e., the neurons. In addition to the
single neuron’s integration time constant, the high den-
sity of the recurrent connectivity among cortical col-
umns and across brain regions, while providing the brain
with high computational power, adds an even stronger
inertia to the information flow and hence increases the
overall system time constant. Both neurophysiological
and modeling studies have already described the con-
sequences in response latency of intralayer recurrent
and center-surround connectivity during simple stim-
ulus-response tasks (Panzeri et al. 2001; Raiguel et al.
1999). Moreover, the recurrent connectivity has another
side effect, not captured by these studies, which is the
difficulty of moving from one attractor state to another.

This problem has several implications regarding
recently proposed neural mechanisms that may be the
basis of sensorimotor transformations (Burnod et al.
1999; Deneve et al. 1999; Salinas and Thier 2000; Sauser
and Billard 2005; Scherberger and Andresen 2003).
Indeed, these approaches rely on populations of neu-
rons encoding basis functions and grouped within gain
fields, which are neural substrates connected recipro-
cally and which receive changing inputs from several
external sources. For example, to compute the location
of a visual target in body-centered coordinates, the brain
is supposed to merge information related to the target
location in retinal space, to the displacement of the eyes
relative to the head, and to the direction of the head
in body-centered coordinates. Then, despite the inertia
resulting from the recurrent connectivity, the desired
information must be read out from this mixed repre-
sentation with a latency as short as possible. Neverthe-
less, the brain successfully performs that operation. For
instance, in the visual cortices of the monkey, neurons
have been found to fire even before a saccade brings
a stimulus into their receptive field (Nakamura and
Colby 2002; Unema and Goldberg 1997). This suggests
that this neural activity may correspond to a predictive
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updating of the visual representation. This mechanism
might explain, at least partially, why eye tracking of
predictable targets such as one’s own hand can be per-
formed with almost no latency (Miall and Reckess 2002;
Vercher et al. 1991). Neurophysiological findings also
indicate that large groups of neurons in the cerebellum
display a preferential tuning to arm position and move-
ment direction. These neurons also fire with almost no
latency when compared to real arm dynamics (Fu et al.
1997; Roitman et al. 2005). Together, these results highly
suggest that the brain may use internal forward models
in order to predict the consequences of upcoming move-
ments.

Based on these biological results and hypotheses, our
model proposes a neural mechanism that links the veloc-
ity tuning properties of groups of neurons to their abil-
ities to update their own sensory representation through
velocity integration. For instance, by using such a mech-
anism, the overall integration time of gain fields would
be reduced drastically and thus would result in more
efficient sensorimotor transformations. Moreover, neu-
rons having a preferential tuning to position and velocity
like those of our model have been found in the cere-
bellum (Roitman et al. 2005), a brain area suggested
to be involved in both the inverse and forward control
of movements (Miall and Reckess 2002; Vercher and
Gauthier 1988; Wolpert and Kawato 1998). Therefore,
in addition to the suggested role of neurons of the cer-
ebellum and of motor cortices in the direct control of
movements (Georgopoulos 1996; Schweigenhofer et al.
1998; Todorov 2000), their sensitivity to nonlinear mix-
tures of information, such as arm position and velocity,
may also suggest an intrinsic dynamic process within a
cortical column. As proposed by our model architecture,
their firing might be used directly within their internal
representation for a rapid and predictive-like updating,
which therefore would not need to wait for slow sensory
feedbacks.

4.3 Shared representations: motor imagery and
imitation

Our model also has some implications concerning motor
imagery and imitation-related mechanisms. First, motor
imagery is the ability to mentally imagine oneself or
someone else performing a movement. Recent find-
ings suggest that this mental operation is performed in
motor terms, i.e., by activating parts of the motor cor-
tices that would be effectively involved in overt move-
ment execution (Fogassi and Gallese 2002; Jeannerod
and Decety 1995; Porro et al. 1996). Computationally,
this hypothesis implies that some motor areas, receiving
projections from proprioceptive feedback during nor-
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mal motor execution, should also be able to process
motor commands without being influenced by this afore-
mentioned information. Under this problematic issue,
our model analysis provides some insight as to a poten-
tial neural mechanism resolving this problem. Indeed,
it suggests that the same neural substrate, by increas-
ing its global excitation level, can detach itself from the
efferent sensory inputs, and hence perform this imag-
ery task freely. By lowering this excitation, the external
inputs can lock the network back to the actual sensory
state, resetting its internal representation. In addition,
our model may also, to some extent, contribute to the
explanation of the neural mechanisms underlying illu-
sory perception of one’s own body resulting from epilep-
tic seizures, such as the autoscopic phenomenon (Blanke
and Mohr 2005; Blanke et al. 2002). Indeed, since epilep-
tic seizures are defined as an abnormal synchronization
of electrical neuronal activity, this would correspond in
our model to an abnormally high excitation of the net-
work. Let us consider, for example, the proprioceptive
and the vestibular systems, which are responsible for the
representation of self-body schema and self-localization
in space. An epileptic seizure affecting these systems
would produce in an “unlocking” or loss of control of
the network representation from the real sensory state.
As mentioned by the authors of these studies, such an
effect may result in a disintegration of self processing in
brain areas related to self and others (Blanke and Mohr
2005). Backpropagating this conflicting information to
visual areas may produce the reported hallucinations.
Furthermore, shared representations have also been
found when considering movement observation and exe-
cution. Indeed, recent neurophysiological studies indi-
cate that both the observation and the execution of
actions activate a shared complex of brain areas, usually
called the mirror neuron system (Iacoboni et al. 1999;
Rizzolatti et al. 2001). The discovery of this network of
brain regions has led to several very attractive hypothe-
ses related to the underlying neural mechanisms of imi-
tation and of theory of mind (Arbib 2002; Decety and
Sommerville 2003; Gallese and Goldman 1988; Keysers
and Perrett 2004; Wolpert et al. 2003). It is, for instance,
suggested that when we observe another human being
performing an action, we unconsciously simulate the
same action with our own representation of our body
and world. This may allow us, to some extent, to predict
what the outcome of that observed movement will be.
However, as with the problem of the shared represen-
tation during motor imagery, this calls for explanations
as to what happens when we simultaneously execute an
action and observe others, and as to how the brain min-
imizes conflicts arising from these potentially contra-
dictory sources of information. Again, a partial answer
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may be derived from our modeling framework. In con-
trast to motor imagery, sensory feedback is here needed
by motor areas to realize normal performance. Never-
theless, our model also provides here a computational
hypothesis. As shown in Sect. 3.5, when the network
receives sensory feedback that is compatible with the
background input controlling its intrinsic dynamics, it
can track and keep locking to that reafferent input, even
if a distractor such as an observed movement of oth-
ers is present. Moreover, our model also predicts that
errors may increase with the decreasing ability of the
network to update its internal representation accurately
with speed. At very high movement velocities, the pat-
tern of errors should reflect a bias toward a boundary
corresponding to the internal limit for movement inte-
gration.

Finally, our modeling study also gives some insights
on a plausible neural medium for learning by imita-
tion through motor resonance (Gallese and Goldman
1988; Oztop et al. 2006; Wolpert et al. 2003). This princi-
ple has been proposed to explain the mirror response
of the neurons in premotor areas by suggesting that
the perception of others’ movements and actions acti-
vates in parallel our internal representations of motor
plans. Through competition, the plan corresponding best
would be selected and may further be used for predic-
tion of movement outcome, action understanding, and
imitation. Since our model can potentially represent any
state space, it may implement a motor plan by setting
its intrinsic dynamics to correspond to that of the motor
plan. Then, the state of a demonstrator’s movement may
drive the network. And finally, by monitoring the mean
energy of the neural ensemble that is maximal when
the internal dynamics match that of the external input,
it may thus be possible for the brain to select the best
among activated motor plans. Moreover, as already sug-
gested by earlier modeling works (Demiris and Hayes
2002; Oztop et al. 2006; Wolpert et al. 2003), imitation
processes may use such a comparison value given here
by our energy function to perform a gradient ascent on
that function. Within this framework, movement imi-
tation would consist in maximizing the energy of the
shared representation of self and others’ movements.

5 Conclusion

This paper describes an extension of classical dynamic
neural field models, which are known to exhibit mar-
ginal attractor states corresponding to compact activity
packets on the neural surface. Our extension provides
additional properties to these models. One such prop-
erty is to allow the network to modify its intrinsic

dynamics using external commands provided, for
instance, by motor efference copies or forward models.
Consequently, the typical marginal and static attractor
states of such models become marginal linear trajecto-
ries in neural space. This property allows the updating
of the internal representation in a predictive fashion,
without the need to wait for slow sensory feedbacks.
Moreover, the model dynamic properties were analyzed
with a special focus on the interactions between exter-
nal stimuli and the network intrinsic dynamics. Finally,
the biological plausibility of the model and its impli-
cations concerning several brain computational mecha-
nisms were discussed in light of neurophysiological and
behavioral data. The discussed topics include velocity
tuning to visual stimuli, sensory discrimination, senso-
rimotor transformations, motor control, motor imagery,
and imitation.
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A A coupled attractor model

In this paper, the following continuous attractor network
dynamics are considered;

tu(r,s,t) = —u(r,s,t) + h(s, 1) + x(,s, )
+# [WE—r)—AVWaE—1)-§]
xf(u@,s',0n)drds’, (17)

where u(r,s, ) is the membrane potential of a neuron
with time constant t, preferentially tuned to r, a vari-
able in stimulus space %, and to s € %,;. We consider
both a ring and a torus attractor (Table 1). f(u) is the
activation function chosen to be the linear threshold
function: max (0, u). W is a center-surround, symmetric,
and Gaussian-like recurrent weights kernel, A > 0 a
scaling factor, and V the gradient operation along r. As
will be shown later, a resulting effect of the second term
of the recurrent connectivity is that the neuron’s sensi-
tivity to the variable s implicitly corresponds to a pre-
ferred movement direction along the other variable r.
The external inputs are decomposed into two parts: the
background input (s, ¢) and the stimulus inputs x(r, s, f).

In what follows, our interest is primarily in the dynam-
ics of the interactions between the proposed network
and its external inputs. These interactions will be shown
to modify the attractor states of the network. We will
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begin by introducing the case where the background
input alone is sufficient to drive the network marginal
attractor states to become marginal linear trajectories in
the space Z. Then, we will consider how a stimulus input
should be defined in order to drive the network toward
its own motion dynamics. We will first define a nonlinear
form of input, since its derivation from the background
input form is the most straightforward. Then, we will
slightly modify this input description by defining a lin-
ear form of it, which is more suitable for transferring
information across neural populations. Indeed, this lin-
ear form of input will further help us to derive adequate
synaptic projections so that, within a larger network of
neural populations, instances of our model may transfer
their encoded information across each other. Further,
since such network dynamics can only be described fully
analytically for certain rare special cases (Amari 1977;
Sauser and Billard 2005; Xie et al. 2002; Zhang 1996), we
will assume some linear approximations around equi-
librium points. We start by considering general stable
solutions as existing and then develop our mathemati-
cal argument based on them. Indeed, the nature of the
marginally stable solutions of such systems, known as
activity bumps, has already been long described in the
literature (Amari 1977; Salinas and Thier 2000; Sauser
and Billard 2005; Wilson and Cowan 1973; Xie et al.
2002; Zhang 1996).

A.1 Static case

Before addressing inhomogeneous background inputs
along s, let us begin by addressing the static case, where
the background input is balanced and where no spa-
tial input is applied to the network, i.e., respectively,
h(s,t) = hp and x(r,s,t) = 0. Omitting the system vari-
ables, we consider a marginally stable and static solution
given by u* and f* = f(u*). In this case, since the system
is constant in s, the second term of the recurrent con-
nectivity vanishes through the closed integral, which, by
rewriting Eq. (17), gives

u* — %W * f*ds' = hy, (18)

where * denotes the convolution operation along r.
Then, in order to extract the homogeneous term /¢ from
the solutions, we define a normalization of these solu-
tions by the following substitution:

u* =hoU; and f*=ho Fy, (19)

where Ugj(r) and F{j(r) are solutions only defined on r.
Further, rewriting Eq. (18) gives

U5—1=§I§W*F5ds’. (20)
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From this, the multiplicative effect of the background
homogeneous input /g on the solutions of the system
can be observed. This property is the basis of the non-
linear behavior of the neural fields in general (Salinas
and Thier 2000; Sauser and Billard 2005). This implies
that we can restrict our analysis, without loss of gener-
ality, by considering normalized solutions of the system,
since A only acts as a scaling factor.

A.2 Velocity integration

We are now interested in how the background input may
drive a stable activity packet toward a similar but travel-
ing bump with velocity v* along the space defined on r.
A usual transformation performed in such a situation is
to focus on a frame of reference moving with the bump
so that, in this new frame, it appears static (Xie et al.
2002; Zhang 1996). We consider the following variable
substitution:

¢

F=r— /V*(t/)dl’. (21)
0

In this new frame, it(x, s, 1) = —v*(¢)-Vu(x¥,s, 1) +u(x,s, 1),

where V is the gradient operator along r. This leads
Eq. (17) to become

— v (0) - Vu(r,s, )
+ti(r,s,t) = —u(x,s, t) + h(s,t) + x(¥,s,1)

+ # [WE—F) —AVW@E-F)-¢]
xf(u@,s',0)drds . (22)

As mentioned earlier in the static case, a constant input

h(s,t) = hp leads the system to be constant along s,
which suppresses the second term of the recurrent con-
nectivity. Moreover, as can be guessed, this term will be
responsible for compensating the new term on the left-
hand side of Eq. (22). Therefore, we need to break the
symmetry by adding ho(7) -s, an asymmetric term, to the
driving background input such that

h(s,t) = ho[1 4 ho(t) - ], (23)

where hg corresponds to the normalized strength of the
asymmetry breaking relative to the constant term hg. If,
for a while, we omit terms containing a gradient expres-
sion in Eq. (22), an approximate solution &* along s can
be found, which is equivalent to Eq. (19) up to a constant
given by the asymmetric term in Eq. (23). In a compact
form, the solution of the system can be written as

i (¥,8,1) = ho[ho(0) - s + U], (24a)
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where U*(¥) is given by Eq. (20). Then, from Eq. (19),
where the output function f* is proportional to the back-
ground homogenous input, we assume in this case that
an approximate f* can still be obtained by such a nonlin-
ear transformation. We hence consider a linear approxi-
mation around the equilibrium point, i.e., the static case,
which is given by

[X(@,s,t) = ho [1+ yoho(1) - s] F(F), (24b)
where g corresponds to the linear approximation factor,
which, except for rare cases, may not be found analyti-
cally. It corresponds to the slope of the relation between
the asymmetry of the background input and the velocity
of the network response. It strictly depends on the recur-
rent weight profile, whose convolution is hard to solve
analytically (Zhang 1996). Now, we return to the full
form of Eq. (22) and show how the background input
should be set in order for the network representation
to exhibit the desired traveling activity profile. Let us
begin by considering the recurrent synaptic drive. First,
developing its symmetric part gives

%W *f*ds/ (Zib) ho §1§ Wx[1+ yoflo -§'] F(’)'ds/
= hy [%W*F(’)’ds/ + VO¢W*F6[IA10 . s/]ds/]
20 .
@D oL — 1) + 01 = ho (U~ 1),

Similarly, considering its asymmetric component, we
obtain

- %ww .o xfrds’ 2 _pon §1§ VW s % [1 + poho - '] Fids’
= —\hy |:§1§ VW .s s F*ds

+ yoggVW-s/ *FE[fl(yS’]ds/]

“xho [0 + who - V[W x Fg]]

20 < .
@ phoho - VUL — 1)

= 7)»)/0}10];0 . VUa.
And, finally, the complete recurrent synaptic drive is
given by
yﬁ [W = 2VW - §'] % f*ds’ = ho [Ug —1—pho- VU5] .
(25)
Then, by substituting Egs. (23), (24a), and (25) into the
system Eq. (22), we find that the velocity of the activity

blob is determined by the asymmetric component of the
background input, following

vio by e b~ v, (26)
T A Y0

Further, because the approximate linear relationship
between the external commands and the network
response is unbounded, let us determine the integration
limit of the network. Indeed, since the network integra-
tion property relies on a competition across the sublay-
ers, the maximum intrinsic speed is reached strictly when
a single sublayer has a positive activation. In the ring
attractor case, this specific network state occurs when
the asymmetry in the background input A(s, ) is suffi-
ciently strong to completely inhibit one of the sublayers.
However, in the torus case, because of the continuous
nature of the space % spanned by the sublayers, one
sublayer may eventually drive the network alone only
for ||f10|| — 00. As a consequence, regarding the net-
work dynamics, the close integral along s of the recur-
rent connectivity may be removed. The full recurrent
synaptic drive thus becomes

[WE—F) - AVW@E—F) s ] f*F,5,0. (27)
where s’ denotes the only active sublayer given by s =
ﬁg/ ||f10||. This recurrent drive has already been shown
to lead a traveling activity peak to move with a con-
stant velocity equal to A/t and with direction s’ (Zhang
1996). This is thus the integration limit that our model
can reach.

B Stimulus input
B.1 General input form

In this section, we are interested in how a stimulus input
that conveys information related to the spatial localiza-
tion of a stimulus may drive the network representation
to reflect the motion dynamics of that input. We con-
sider a stimulus located at r, (¢) in the stimulus space and
moving in phase with the network intrinsic velocity v*(¢),
ie., I,(t) = v*(?). The shape G of the stimulus input is
assumed to be a Gaussian-like shape centered on its cur-
rent location r,, (). Moreover, in order to compensate for
the neural dynamics and for the effect of the network
recurrent connections, an additional differential term
and a scaling factor are respectively needed to define a
“well-behaving” input, i.e., one that does not turn into
an asymmetric activity peak in the network representa-
tion when moving within the neural field. It is defined by

x(,s,t) = h[G(r —xr, () —1i,(®) - VG(r —x,O)][1 + € ¥, (®) - 5],
(28)

where € is a temporary constant. As can be noticed while

looking at the network dynamics, the second differential
term here compensates for the similar term in Eq. (22).
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Then, considering the asymmetry in the strength of the
input relative to the neuron preferred movement
direction, it modifies the network intrinsic dynamics in
a similar way to that of the background input (Eq. (23)).
Moreover, we also assume that the velocity term 1, (¢) of
the stimulus input can be expressed in a form compara-
ble to that of the background homogenous input given
by Egs. (23) and (26) such that
0 =i, (29)
where ﬁ1 (f) is a directional vector similar to ho (1) defined
previously. It determines the strength of the stimulus
asymmetry and, thus, the stimulus velocity. y; is like yp

and corresponds to a linear approximation factor. Then,
rewriting Eq. (28) using (29) and writing € = t/Ayp gives

x(t,s,0) = hi[G(r = 1,()) = Ay (©) - VG (r—1,0))][1 + hy (1) - 5]
(30)

In the moving frame of reference, using the substitution
given in Eq. (21), the stimulus input equation becomes

x(E,8,0) = hi [G(F — ) =y (0) - VG(F - ) ][1 + @ -],
(31)

where I, is constant since we would like the stimulus
to move according to ¥,(f) = v*(f). Again, similarly to
the background input case described before [Egs. (24a)
and (24b)], we also assume here a linear approximation
of the network activity around the equilibrium point. In
addition, we also assume that a superposition of solu-
tions may result from both forms of inputs, i.e., A(s, )
and x(f, s, t). This leads to a family of solutions given by

it = ho [U§ + ho -s] + hy [U + hy - sG] (32a)
f*=ho[1+yoho -s] F§ + by [+ yihy -s] Ff,  (32b)
where

14U = gﬁw « Fids’ (33a)
G U = §I§W « Fids’. (33b)

From these equations we can determine the value that
the parameters of the stimulus input should take in order
to respect the network dynamics. Again developing the
system Eq. (22) results here in

—tv-Vi*+ " =h+x+ %[W—kVW-s’]*f*ds/

(23),(26),(3:(;),(32),(33)
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—xyoho [RoV U + V[l -sG + Utl]
+ho[ho - s + Ug] + hi[hy - sG + Uf]
= ho[1 +ho - s] + 1[G + Ay VG][1 + Ayihy - 5]
+ho [Ug —1— oo - VUa]

+hi U = G =y - VIUT = G|

<
X)/()ﬁ() [h1V[ﬁ1 -sG+ UI]]Z)\.)/llAll [hlV[ﬁl -sG+ UI]]

And thus we find that

! Aol
Therefore, in order for the network intrinsic dynamics to
follow its input, the asymmetric breaking of the network
along s must match that of the stimulus input.

B.2 Linear input form

From now on, the form of the stimulus input is defined
using a velocity-dependent scaling factor, which needs
a nonlinear operation to be constructed. In what fol-
lows, we will thus try to define a different form of input
containing only linear terms. Indeed, as will be shown
further, this form of input will help us to derive an
expression for the synaptic projections across instances
of our model, which will allow them to completely trans-
fer information they are encoding. Let us rewrite the
stimulus input in the moving frame of reference, as
defined in Eq. (31), by replacing the velocity-dependent
nonlinear factor with a velocity-dependent linear term
such that

x(E,5,0) = hy [G(F — F)) —Ayho(0) - VG (¥ — F,) + nho () - 5],
(35)

where 1 > 0 is a scaling factor. Then, in a similar fash-
ion to the previous sections, we also consider a family of
solutions given by

ii* = ho [Uy +ho - s] + hi[nho - s] + h Uj (36a)
f* = ho[1+ yho - |y + hi[y nho - ] F§ + h F}, (36b)

where the system of Egs. (33) still apply. Again, inserting
these equations into the system dynamics (22) gives

— v Vi + ut =h+x+ &]g[W—)\VW-s’]*f*ds/

(23),(26),(3),(35),(36)
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—y ho [hoV U + h1 VU]
+ho[U§ +ho - s] + hi[nho - s] + b UT
= ho[1+ho-s] + 1[G —ry hgVG +nhy -]
+ho [ Ug =1 = 2yho - VUG |
—iy nhihg - VU + hy [Uf — G]

e
V[Ur - G] = VU, (37)
Therefore, in order for the network intrinsic dynamics
to follow that of the input, the gradient of the stimulus-
related solution [U} — G] must be proportional to that
of the homogeneous background input Uj. However,
depending on the shape of G, this may not necessarily
be the case. Nevertheless, since the solutions U} are the
result of an equilibrium between the input and the drive
of the recurrent weights, we can assume that the latter
dominate. As a result, both sides of Eq. (37) can be con-
sidered to be very similar and hence proportional. We
can thus find an approximate value for 5 such that
V[U - G] = nVUj, (38)
which, subsequently, using the system of Egs. (33) is
equivalent to

V%W*F{ds/ A nVng*ngs’. (39)

B.3 Synaptic projections

In this section, we are interested in synaptic projections
across populations. Indeed, since the model we propose
might be integrated in a larger network of neural popu-
lations, we must determine how these populations may
transfer information they are encoding. We consider
here two neural populations, A and B. In what follows,
these names will be used as indices in order to clearly
identify the corresponding variables and parameters of
each population. The synaptic projections W refer to a
full directional connectivity between populations A and
B. Itis given by

xg(t,8,1) = # W (r,s,v',8)f (uy (', 8, 1)) dr'ds’ (40)

such that input x; is fed to population B. Moreover,
W will be defined so that information related to both
position and velocity will be transferred from popula-
tion A to B, such that p, = ps and p, = p,, where p; is
the population vector of population i defined in the main
text by Eq. (2). Throughout this section, we consider the

following convolution weights:

Was(r,5.8,8) = [ Wi =) = 1 VWar = 1) -8 + s o |,
(41)

where Wy is a center-surround, Gaussian-like convolu-
tion kernel (see Appendix C for a precise definition).
Similarly to the fundamental input shape G of the linear
input form [Eq. (35)], the convolution through the pro-
jection weights will produce a fundamental input shape,
denoted by G .. Moreover, since the recurrent weights
preferentially link neurons sharing similar tuning prop-
erties, this guarantees that the position-related infor-
mation p, of population A is correctly transferred to
population B. Then, since the activity profile f; of popu-
lation A [Eq. (36)b] is composed of a linear combination
of two terms F{ and Fy , we assume that the input shape
G can be wrltten as

ho§£WT*F*ds +h1§£WT*F*ds (42)
———

ABO GABI

where Gy, and Gy, correspond, respectively, to the

contribution of the background and the stimulus input

of population A to the input x; feeding population B.
Further, from Eq. (39) we know that there exists an

na such that
VG i VGyy . (43)

Then, by constraining the weight convolution kernel

such that
%Gmodr = %Gmldr = O,

(44)

ngT rdr=0 =

both sides of Eq. (43) can be integrated and we then
find

G, X 112Gy » (45)
which implies
G = (ho 4 nahy) GAB() . (46)

Further, we can define an exact input form equivalent to
Eq. (35) with which we can match the projection through
the weights W . It is given by

xg(r,8,1) = (ho + nAhl)[GABO (r = pa(®) — Apyshy, ()
VG (1 = Pa(D) + iy 0) - ], (47)

where ny may be different from 5, since these constants
depend on the recurrent weights of their respective pop-
ulations and on the shape of their respective inputs, i.e.,
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G and Gy. Similarly, the population’s intrinsic param-
eters, such as y and A, may also be different.®> Thus let
us define the relationship between them using the con-
straint on the velocity information transfer:

. . (26) AaYar AsYB 2
P.=DPs < [; AhAo = %hBo . (48)

We can then look for a . satistying the following equa-
tion:

55 W % J2ds = (47), (49)

where f is given by rewriting Eq. (36b) with the corre-
sponding population indices:

]?,: :hO[1 + VABAO‘S]FZO + [VAnAﬁAo's]FZO + le

(50)
Developing the left-hand side of Eq. (49) gives

%[WT—AAVWT-s/+ums-s/]*f:ds (51)
(50) h h *

= ho[Gasy — AayahayVGay+  masyahay s FAO]

+hy [GABl — VA BAOVGABl + NatbasVa ﬁAO - S # FZO]

(46) . .
A (ho 4+ by 1) [Gasy — Aava gV Gasg + iasya hag - S#FZO]

(48) ~ ABYB
& (hg+h1 13) [Gang — s g ¥ G + s g .S#FZO]

A

And finally, by comparing Egs. (47) and (51), it remains

- Aa Ui}

N — —. 52
Hoo Mg VB#FZO (52)

Therefore, using the synaptic projections W, described
by Eq. (41), a population A can transfer its encoded
information related to both position and velocity to
another population B.

C Simulation parameters

In our experiments, in order to implement our model,
precise forms of the recurrent weights and the stimu-
lus input were defined. We used a common periodical
Gaussian kernel function ¢ known as the von Mises dis-
tribution, normalized so that 4 () e [0,1]. It is given
by

cos(0)—1
202

9(0) = ¢ where x = e 1o, (53)

1-—

3 For simplicity, we assume T to be constant across the popula-
tions.
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Table 2 Simulation parameters

Parameters values

Ring o =1, ay =2, a; =2,0 =03,1 =0.1,
attractor hy=1,h =1, =0.1
Discretization along %: 128 neurons
Ps: 2 sublayers
Torus o =1, ay =1, a;=2,0 =03,1 =0.1,
attractor hy=1,h =1, =0.1

Discretization along %: 32 x 32 neurons
Y- 8 sublayers

The synaptic weights and the external input shapes were
then defined by

N
Wr,r) = ayw |:H§¢((r —r)-e)— 1j| (54)
i=1
N
Wi, ¥) = ar |:H%((r —1)-e)— 8:| (55)
i=1
and
N
G(r,1) = ag |:H§¢((r —10(0) - &) — 3] : (56)
i=1

respectively, where N € {1,2} corresponds to the dimen-
sion of the network domain %; e; denotes the ith com-
ponent of the canonical base such that e; = (1,0) and
e = (0,1) in two dimensions; ay, ar, and ag € R are
scaling factors; and § = [¥ removes the constant com-
ponent of ¢. The simulations were performed using the
fourth-order Runge—Kutta numerical algorithm for the
resolution of dynamic systems. Except where explicitly
defined in the description of each experiment, the simu-
lation parameters that were used in this paper are given
in Table 2.
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