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Abstract
Humans  are  able  to  form  internal  representations  of  the  information  they  process  –  a 
capability which enables them to perform many different memory tasks. Therefore, the neural 
system has to learn somehow to represent aspects of the environmental situation; this process 
is assumed to be based on synaptic changes. The situations to be represented are various as for 
example different types of static patterns but also dynamic scenes. How are neural networks 
consisting of mutually connected neurons capable of performing such tasks?
Here we propose a  new neuronal  structure for artificial  neurons.  This structure allows to 
disentangle the dynamics of the recurrent connectivity from the dynamics induced by synaptic 
changes  due  to  the  learning  processes.  The  error  signal  is  computed  locally  within  the 
individual  neuron.  Thus,  online  learning  is  possible  without  any  additional  structures. 
Recurrent  neural  networks  equipped  with  these  computational  units  cope  with  different 
memory  tasks.  Examples  illustrate  how  information  is  extracted  from  environmental 
situations comprising fixed patterns to produce sustained activity and to deal  with simple 
algebraic relations.
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1 Introduction
From  early  childhood  on  humans  brains  have  a  fundamental  ability:  they  build  up 
representations. Brains and their constituents, the neurons, are specialised to represent aspects 
of the environment which means that these neurons or groups of neurons “stand for” those 
aspects. This information coded within neural circuits can be multifaceted. Information of 
objects like a tree or a chair can as well  be represented as rules,  for example underlying 
grammar in language, or dynamic events like the movement of one person toward another. To 
start  with  we  want  to  focus  on  the  two  first  examples:  We  propose  a  new  neuronal 
architecture that is able to deal with these problems. Its ability to represent dynamic situations 
is treated in a companion paper.
This paper contributes to a larger project the goal of which is to develop a complete memory 
system containing a large number of memory engrams, able to learn, behave and reason using 
this  memory  structure.  This  memory  system will  consist  of  two  parts.  One  represents  a 
collection of many situation models, the other some kind of “Selector net” that is able to 
connect sensory input with the appropriate situation model. Although this Selector net,  of 
course, comprises an important element of the complete system, we will not deal with this 
problem in this paper, but concentrate on the question how individual situation models may be 
constructed and how they can be learned when a situation is given via sensory input. Situation 
models stand for information stored in LTM, but also for information stored in STM or a 
working  memory  (Baddeley,  1986,  1992).   Such  a  working  memory  allows  us  to  hold 
representations of external information actively in memory, at least for a short time, to be able 
to act within and react to the world. In various experiments the properties of working memory 
have been investigated applying so-called delayed response tasks. The pioneer work has been 
done by Fuster and Niki (Fuster and Alexander, 1971; Fuster, 1973; Niki, 1974a, 1974b). In 
continuing this work many studies using electrophysiological recordings show a stimulus-
specific,  enhanced  delay  activity  in  several  brain  areas  (for  reviews  see  Fuster,  1995; 
Miyashita and Hayashi, 2000; Wang, 2001). This sustained internal activity in the absence of 
the external stimulus is argued to be the neural substrate of working memory. An exciting 
example concerning the representation of dynamic scenes is given by Umiltà et al. (2001). So 
called mirror neurons are  shown to be active when a grasping movement  to an object  is 
observed, even when the object is hidden behind an occluder. However, the neuron remains 
silent when the same movement is observed but the monkey knows that there is no object 
hidden behind the occluder.
Another important capability human brains have is representing rules. This becomes apparent 
when regarding language learning. Marcus et al. (1999) have shown that statistical learning 
mechanisms – which are, of course, not called into question to exist – do not exhaust the 
child’s repertoire of learning mechanism. They performed experiments showing that already 7 
month old babies are able to extract simple algebraic relations from acoustic input. The babies 
were able  to  distinguish between three  word  sentences  consisting  of  made-up words  and 
following either the condition “ABA” or “ABB”. As the test words were totally new and the 
sentences were the same length the babies could not distinguish them based on transitional 
probabilities or statistical properties.
Representing such algebraic relations means representing “open-ended abstract relationships 
for which we can substitute arbitrary items. For instance, we can substitute any value of x into 
the equation  2+= xy .” (Marcus et al., 1999; see also Chomsky, 1980; Pinker and Prince, 
1988; Pinker, 1991; Marcus et al., 1995; Marcus, 2001). The point made in the study is that 
humans,  including  young  babies,  are  not  only  capable  of  generalising  due  to  statistical 
learning mechanisms in  order  to  build  correct  sentences  as described,  but  are  capable of 
representing the underlying general rule.
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However,  even  insects  can  cope  with  similar  problems.  Honey  bees  can  solve  “delayed 
matching to sample” tasks which allowed Giurfa et al. (2001) to show that honey bees are 
able to learn the concept of “symmetry”. These authors could further show that honey bees 
are able to learn the concept of “difference” or “oddity” which implied these insects to be able 
to cope with “delayed non-matching to sample” tasks. Drosophila is assumed to be able to 
construct  a  dynamic  representation  of  an  optical  pattern  that  has  disappeared  behind  an 
occluder and expects it to appear again at the other side of that occluder (Strauss and Pichler 
1998).
For many of the different abilities of brains computational models have been proposed. The 
most promising among them are models with recurrently coupled neurons because they seem 
to resemble natural  neuronal assemblies best.  This approach will also be followed in this 
paper.  As  the  tasks  mentioned  require  an  internal  representation  of  the  current  external 
situation,  some form of learning is necessary.  To model example-based learning different 
forms of error backpropagation (Rumelhart et al., 1986; Hertz et al., 1991) are widely used 
training  procedures  for  both  feed-forward  and  recurrent  neural  networks  (RNNs).  But 
backpropagation is often considered to be biologically implausible because the error signal 
has to be provided externally and a specific additional network is required that is able to 
propagate these error signals.
Additionally, most artificial recurrent networks exposed to learning situations suffer from two 
severe problems. On the one hand, training is  particularly difficult  in RNNs because two 
different dynamics are intertwined: There is the dynamics of the RNN itself, the properties of 
which depend on distribution and size of the weights. If, on the other hand, these weights are 
changed additionally due to the learning procedure, a second dynamic process is introduced 
that interacts with the first one. Therefore, neural and synaptic dynamics are coupled in a very 
intricate way (Del Giudice et al., 2003) making the control of the network a hard problem 
(Steil, 1999). This difficulty is often solved by application of off-line training procedures, that 
separate the dynamics of the network from the dynamics of the training procedure like in 
Contrastive Hebbian Learning (Movellan,  1990,  Baldi  and Pineda,  1991;  Xie and Seung, 
2003)  or  training  echo  state  networks  (Jaeger  and  Haas,  2004),  or  by  hand-tuning  the 
parameters (e.g. Seung et al., 2000). But neither a cut-off of the feedback loop nor hand-
tuning seems to be biologically plausible. Online learning algorithms like real-time recurrent 
learning  (e.g.  Williams  and  Zipser,  1989b),  in  contrast,  are  often  very  slow  and 
computationally  very  expensive  concerning  storage  capacity  and  computation  time  (see 
(Williams and Zipser, 1989b; Schmidhuber, 1992; Doya, 1995). Furthermore, they are non-
local and would require a large additional network structure when being applied to biological 
systems.

In this  paper,  we propose a  new biologically  inspired computational  circuit  consisting of 
neuronal  units  called  Input  Compensation  Unit (IC  Unit).  Using  these  units  allows  to 
disconnect the dynamics of the recurrent  network from the dynamics due to  the learning 
procedure. Therefore, these units allow for an easy training of RNNs in an online mode to 
model the two tasks mentioned above – i.e. holding an item in memory which means learning 
the representation of static patterns, and representing simple algebraic relations. Additionally 
it is possible that a network equipped with those units is also able to learn dynamic situations. 
This is described in the companion paper (Kühn and Cruse, 2006). 
The  circuit  acts  within  a  neuronal  unit  and  incorporates  a  learning  rule  that  formally 
corresponds  to  the  delta  rule  (Widrow and Hoff,  1960),  but  does  not  require  a  separate 
network for backpropagating the error. Each neuron only needs local information directly 
available via its synaptic connections. The error is determined within each neuron. Therefore, 
the training procedure is unsupervised as no global trainer is necessary and each neuron relies 
on local information only. Consequently, the computational costs are very low. Thus, our 
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model  overcomes the  main  objections  against  traditional  approaches  in  training  recurrent 
neural networks. A very similar rule has been proposed by (Kalveram, 2000) for training 
feedforward networks. The difference to our approach is discussed below (Section 5). 
The  final  goal  behind  this  approach  is  to  design  a  memory  system  that  contains  the 
representation of many different situations. Such situations may comprise static or moving 
objects or describe connections between a sensory input and a motor output, analogue to so-
called motor primitives as proposed by Wolpert and Kawato (1998), for example. In some 
contrast to these motor primitives, the situation models proposed here are not separable in 
forward models and inverse models, but each situation model combines both aspects in one 
holistic model (see also Cruse 2003).  The units of these RNN models - like those of the 
somewhat more complex MMC nets (Steinkühler and Cruse 1998) - may be interpreted as 
showing  properties  of  mirror  neurons,  or  canonical  neurons  (Gallese  and  Lakoff  2005), 
because no functional separation is possible between neurons being related to perceptual or to 
motor tasks. These units correspond to what Gallese and Lakoff (2005) termed “multimodal 
neurons”.
The  view,  that  different  situations  are  stored  by  specific  networks,  is  supported  by 
physiological findings (Fogassi  et  al.,  2005).  Studying mirror neurons,  i.e.  neurons which 
likewise  represent  sensory as  well  as  motor  aspects,  Fogassi  and colleagues  (2005)  have 
shown that different neurons are activated when identical movements are either observed or 
performed which however belong to a different context (e.g. eating or placing). As mentioned, 
in this paper we do not deal with the question of how cooperation or selection of different 
situation  models  may  be  organised,  but  first  concentrate  on  the  basic  structure  of  such 
situation models.
The situation models proposed here consist of very simple recurrent neural networks which 
may, therefore,  also be suited to serve as models for cognitive properties of animals like 
insects. Thus we follow the general idea of Beer (2003) who proposes to study “minimal 
cognition” first and then try to develop this system to be able to cope with higher cognitive 
functions. An excellent example for this approach is given by Feldman and Narayanan (2004) 
and Narayanan (1999).
In the following (Section 2) we want to specify the tasks in more detail the network should be 
able to deal with. The structure of the circuit proposed is described in Section 3. After having 
presented  the  results  (Section  4)  the  paper  concludes  with  a  discussion  of  the  networks’ 
properties including some biological interpretations.

2 The tasks 

2.1 Learning a static pattern to produce sustained activity 
The first task the network should cope with is to represent a fixed static pattern consisting of 
analogue values that is given as input to produce sustained activity even if the input pattern 
disappears. Specifically, the task is as follows: The recurrent network consists of at least  n 
units. As an example a network for 3=n  is depicted in Figure 1a. Any n-dimensional input 
vector is provided to the network. The learning algorithm should change the weights in a way 
that all units of the network adopt activations that correspond to the input and maintain their 
activation even after the external input is switched off. 
Which values should the weights take if a fixed input vector is presented? Assume that we 
have a network with n units with output values x1, x2, … xn and the input vector consists of the 
components  ( )T

21 ,...,, naaa=a . The task is then to find a weight matrix  W with  aWa ⋅= . 
This means that the weights of the recurrent network should form a matrix that has the vector 
( ) T

21 ,...,, naaa  as  an  eigenvector  corresponding  to  the  eigenvalue  1=λ ,  while  all  other 
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eigenvalues satisfy 1<λ . As we have n2 weights there is a manifold of matrices that fulfil 
this condition, as  n equations determine n degrees of freedom. Therefore,  ( )nn −2  of the  n2 

weights can be chosen arbitrarily. For 3=n  one possible solution is given by matrix W1:

( )















⋅++

333

222

111

3211
aaa
aaa
aaa

aaa (W1)

With ( ) T1,1,1=1 , W1 can be rewritten as ( )[ ] TT1 1aa1 ⋅⋅⋅ . W1 is a skew projector. It projects 
onto { }aspan  along the space that is orthogonal to 1. Such a network does not only stabilise 
an input situation given by vector  ( ) T

321 ,, aaa , but any multiple of this vector. If the initial 
activations of the units are set to values that deviate from this condition, the network relaxes 
to  a  vector  that  obeys  this  relation,  i.e.,  to  a  multiple  of  ( ) T

321 ,, aaa .  The  network  can 
therefore be described as forming an attractor consisting of a two-dimensional subspace that is 
described by the plane  0332211 =++ xaxaxa . This network is only neutrally stable. Neutral 
stability means that if any weight is changed arbitrarily, the activations of the units increase to 
infinity  or  may  decrease  to  zero.  Therefore,  a  learning  mechanism  is  needed  that 
automatically stabilises the weights against disturbances as for example disturbances due to 
synaptic noise.

2.2 Representing simple algebraic relations 
As a further task, the network should be able to store simple algebraic relations. Here, we deal 
with two examples of such relations: First, the results obtained by Marcus et al. (1999) should 
be simulated with the network proposed here. Marcus and colleagues found, that the infants 
tested were able to extract abstract algebra-like rules that represent the relationship between 
variables such as “the first  item X is  the same as the third  item Y”.  Simulations of two 
experiments have to be performed: In the first one the network has to be trained with external 
input of structure “ABA” and in the second one with external input of structure “ABB”. The 
network  can  be  tested  afterwards  (just  like  the  babies)  with  consistent  input,  i.e.  input 
resembling the structure of the training phase, or with inconsistent input. The test input has to 
consist of variables not yet presented during the training phase to prevent learning based on 
transitional probabilities. The babies in the experiments described above paid attention to the 
inconsistent sentences for a longer period of time (for details see Marcus et al., 1999).
The second task to be learnt by the network is more general by nature: It should be able to 
represent simple linear equations. The network should be able to sum up two variables, i.e. to 
represent all possible configurations of x1 and x2 that result in a value 213 xxx += . If we do 
not wish to apply a 3D look-up table for all possible cases, the mechanism, i.e. the underlying 
rule or equation, should be represented which can then be applied to any given values. For 
this specific example, an easy solution is to use two input units x1 and x2, the output of which 
is fed in as input to a third unit, with weights of unity. However, there are two tasks related 
tightly: The task 213 xxx +=  also implies that 231 xxx −=  and 132 xxx −= . Of course, two 
further  independent  nets  could  be  constructed  that  can  solve  these  additional  tasks.  This 
solution would require a kind of selector network that decides which of the three nets should 
be used depending on the task given. 
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A simpler solution is to form one “holistic” network that represents the complete situation and 
can solve all three tasks. This recurrent network is given by the equation ( ) ( )tt xWx ⋅=+1  or, 
for 3=n , by:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )txwtxwtxwtx

txwtxwtxwtx
txwtxwtxwtx

3332321313

3232221212

3132121111

1
1
1

⋅+⋅+⋅=+
⋅+⋅+⋅=+

⋅+⋅+⋅=+

Here, ( )tx  is the vector describing the actual activation of the n units ( 3=n  in our case) and 
( )1+tx  the vector describing the activation in the following time step.  W describes the  n2 

weights  wij ( ni   to1= , nj   to1= ).  If  the weights are chosen appropriately,  this  system has 
stable solutions that fulfil the equation 0321 =−+ xxx . An appropriate weight matrix is given 
by matrix W2:
















−

−

011
101
110

(W2)

The tasks regarded here can be understood as pattern completion tasks: Given any two values 
as input, after relaxation the network will provide all three values x1, x2, and x3 at the output, 
i.e., a correct solution in any case. Therefore, depending on the input variables chosen, any of 
the three subtasks can be solved by this network. A correct solution is even found if only one 
input value is defined. As this latter task is underconstrained, different solutions are possible. 
The solution actually chosen by the network depends on its earlier state. 

3 The model: A recurrent neural network with IC Units

3.1 Structure of IC Units
In this section we explain the architecture of a network that can cope with both tasks specified 
above and can, as will be shown in the companion paper, also learn to represent dynamic 
situations. To explain the structure of the network and to explicate its individual units let us 
consider a network that consists of n recurrently connected units. An example of a three-unit 
network is shown in Figure 1a. 
Each individual neuron  xi ( ni   to1= ) is equipped with a special internal structure (Fig. 1b) 
described in the following. The dendritic tree is partitioned into two regions: One region with 
fixed  synapses,  whose  presynaptic  neurons  belong  to  sensory  neurons  transmitting  the 
external input  ai. To simplify matters each neuron can only be stimulated by one external 
stimulus. As the synaptic weight is fixed it is not specified in Figure 1b and 1c. The second 
dendritic  region  is  characterised  by  active  synapses  wij,  whose  presynaptic  neurons  are 
components of the recurrent network (Fig. 1a) and are recurrently connected to neuron  xi. 
Active synapses are synapses which can be either potentiated or depressed (Montgomery and 
Madison, 2004) and thus are exposed to learning. Therefore, the activation of a single neuron 
is determined by an external component ai and an internal component, the weighted sum of 
the internal recurrent inputs si. The weighted sum of the internal recurrent inputs of neuron xi 

is given by

( ) ( ) ( )txtwts
n

j
jiji ∑

=

⋅=
1

 or, for the complete network, ( ) ( ) ( )ttt xWs ⋅= .
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Such a splitting in an external and a recurrent component can also be found in the model 
described by Del Giudice et al. (2003). Please recall that s describes the internal input, not the 
output of the unit.

[insert Figure 1 about here]

3.2 Training the synaptic weights
The overall goal in both tasks mentioned above is to represent the external situation a (a static 
pattern or several examples following an algebraic relation) perceived via the sense organs 
within the network. ‘Representing the external situation’ can be defined as follows: If the 
weighted sum of the internal recurrent inputs si of neuron xi equals the external input ai, this 
stimulus is represented within the network because then the external input is no longer needed 
to elicit the activation characterising the stimulus ai. In order to reach this goal the synaptic 
weights wij have to be adapted in a learning process.
As has been mentioned above, a major problem with training RNNs is that the dynamics of 
the network are superimposed by the dynamics due to the learning procedure. Both dynamics 
could however be separated, if, during training, the overall output xi would always equal the 
external input (i.e.  ii ax = ) independent of the actual learning state, i.e., independent of the 
actual values of the weights wij. This can be achieved if we determine the output xi by

( ) ( ) ( ) ( ) ( ) ( ) ( )ttststatstatx iiiiiii δ+=−+==+1 (1)
with ( ) ( ) ( )tstat iii −=δ . The corresponding circuit is shown in Fig. 1b (solid lines). 

To attain the overall goal, the weights wij have to be changed such that ( )tstx ii =+ )1(  or, in 
other terms, ( ) 0=tiδ . This can be obtained by application of the learning algorithm 

( ) ( ) ijijij wtwtw ∆+=+1  with ( ) ( )ttxw ijij δε ⋅⋅=∆ (2)
with  0>ε  being the learning rate (for more detailed information about the choice of  ε see 
Appendix).  This  learning  algorithm  formally  corresponds  to  the  delta  rule.  However,  in 
contrast  to the traditional approach, the delta error is here assumed to be determined and 
propagated locally  within each neuron (Fig.  1b,  dashed arrows) as has been proposed by 
Kalveram  (2000)  for  feedforward  networks  or  Jaeger  and  Haas  (2004)  for  echo  state 
networks.  Application of the rule depicted in equation (2) leads to a weight change until 

( ) 0=tiδ , i.e., until the sum si of the weighted recurrent inputs equals the external input ai. We 
call units with this internal structure Input Compensation Units (IC Units), because this circuit 
compensates the effect of the external input, independent of the actual state of the recurrent 
weights.
To be able to address this memory content later, it is necessary to prevent the network to 
automatically adapt to each new input situation. Thus, once the synaptic connections have 
learnt the specific input situation, further learning is stopped. A simple solution is to finish 
learning after the error δi has fallen below a given threshold because then external situation is 
represented within the network. To simplify matters, in the simulations shown here further 

learning is stopped, if the summed squared error  ( ) ( )∑
=

=
n

i
i ttE

1

2δ  of the entire network has 

fallen below a given threshold.
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3.3 Extension of the neuronal structure
To  account  for  working  memory  capabilities,  it  should  also  be  possible  to  sustain  the 
activation once induced by a stimulus. As explained above the overall output of an IC Unit as 
shown in Figure 1b will, however, decay to zero after the external stimulus vanishes. This is 
due to the property of the IC Units, that the output always equals the input. Thus, the network 
cannot remain active to act as working memory.
In order to be able to sustain the activation, the architecture requires an extension. If  ai is 
smaller than  si in a unit shown in Fig. 1b the output activation  xi decreases, because then 
negative δ-values (recall that ( ) ( ) ( )tstat iii −=δ ) are added to si. This effect can, however, be 
avoided if we rewrite equation (1) by using rectifiers, which means that only the positive part 
of the function is transmitted. The rectifier is marked by a + in the following equations. 
For an explanation, we will first consider only positive input values ( ( ) 0≥tai ). If the weights 
are small at the beginning of training, for example zero, which means that ( ) 00 =tsi , we can 
assume that during training the condition  ( ) ( )tats ii ≤≤0  is fulfilled which is  biologically 
plausible.  With  this  assumption,  the  condition  ( ) 0≥tai  can  be  replaced  by  ( ) 0≥tsi  and 
equation (1) can be rewritten:

( ) ( ) ( ) ( )[ ] +−+=+ tstatstx iiii 1 , for ( ) 0≥tsi (3.1)

Following (3.1), xi still corresponds to si, even if ( ) ( )tsta ii < . Therefore, using this rectifier, 
the external input can indeed be switched off after training is finished, i.e.  ( ) 0=tai , and no 
changes occur to the output (if training has not yet been finished completely, the activation of 
the  units  will  slowly  decrease  to  zero,  see  Discussion).  Note,  that  the  rectifiers  do  not 
influence the δ-value used for learning.
Furthermore,  we can generalise this  condition for negative input values ( ( ) 0≤tai ):  If  we 
again assume that the weights are small at the beginning of learning, for example zero, we can 
state ( ) ( )tats ii ≤≤0 , because during learning si will approach ai starting from zero also for 
negative input values  ai.  Correspondingly,  we can now replace the condition  ( ) 0≤tai  by 

( ) 0≤tsi . This leads to the second equation

( ) ( ) ( ) ( )[ ] ++−−=+ tstatstx iiii 1 ,       for ( ) 0≤tsi (3.2)

Both equations (3.1) and (3.2) are depicted in the circuit diagram in Fig. 1c. The condition 
( ) 0≥tsi  and  ( ) 0≤tsi  are represented by the clipping functions. The two rectifiers used in 

equations (3.1) and (3.2) are depicted in the lower part of the circuit (Fig. 1c). This circuit 
fulfils three requirements: 

(i) It allows to apply both positive and negative input values ai. 
(ii) After training is finished, it  maintains its activation after the external input has 

been switched off. 
(iii) It  shows  the  same  training  properties  as  the  linear  version  (Fig.  1b),  if  the 

condition ( ) ( )tats ii ≤≤0  is fulfilled.

The results shown in the following were obtained by using this expanded network. Note that 
the nonlinear expansions applied are only necessary for being able to use the network after 
learning is  finished,  i.e.  in  the testing mode.  The learning procedure as such can still  be 
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described by a linear approach. As before and during training the activations of the neurons 
are only determined by the external input values ai due to their input compensation property, 
the dynamics resulting from the weight changes do not affect the dynamics of the complete 
network and therefore do not cause stability problems.

4 Results

4.1 Learning a static pattern to produce sustained activity
Training the network. Let us first consider the case of a network consisting of three 
units that receives an external, fixed input vector ( ) T

321 ,, aaa . Numerical investigations reveal 
the following results which can also be proven to hold generally (see Appendix in Chapter 
3.6).
If all nine weights including the diagonal weights, by which each neuron influences itself 
directly,  are allowed to be learnt and all  weights are set  to zero at  the beginning, the IC 
learning procedure (Fig. 1, Eq. (2)) provides the solution shown by matrix W3 

( ) ( )( ) TT

332313

322212

312111
2

3
2

2
2

1 11 aaaa ⋅=















⋅++

aaaaaa
aaaaaa
aaaaaa

aaa (W3)

Matrix W3 is the orthogonal projector onto { }aspan . In geometrical terms, the behaviour of 
an individual unit k can be described as follows: Assume the network consists of n units and 
is trained with a vector a. The output of unit k is determined by 

( ) ( ) ( ) ( )txwtxwtxwtx nknkkk +++=+ ...1 2211 , 
which describes a linear function in an ( )1+n -dimensional space. This function corresponds 
to  an  n-dimensional  hyperplane  that  contains  the  origin  and,  after  training,  the  ( )1+n -
dimensional vector  ( ) T

21 ',,..., kn aaaa .  a’k and x’k describe the additional dimension given by 
the output value ( )1+txk . This hyperplane also contains the ( )1−n -dimensional subspace that 
is  contained  in  the  n-dimensional  space  (x1 to  xn).  This  subspace  is  orthogonal  to  vector 
( ) T

21 ,..., naaa . In other words, this hyperplane could be constructed in the following way: The 

hyperplane defined by 0' =kx  is rotated around the vector orthogonal to ( ) T
21 ,..., naaa  until it 

contains the vector  ( ) T
21 ',,..., kn aaaa .  For  2=n  and  2=k ,  this process is schematised in 

Figure 2.

[insert Figure 2 about here]

The network adopts solution W4 (for a proof see Appendix), if during training all diagonal 
weights are constantly set to zero:

( ) ( )
( ) ( )
( ) ( ) 
















++
++
++

0
0

0

2
2

2
132

2
2

2
131

2
3

2
132

2
3

2
121

2
3

2
231

2
3

2
221

aaaaaaaa
aaaaaaaa
aaaaaaaa

(W4)
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In  general,  matrix  W4 is  asymmetric.  The  n-dimensional  hyperplane described by unit k  
contains the origin and the vector  ( ) T

21 ,,..., kn aaaa , but now contains the  kth coordinate axis 

instead of the vector orthogonal to ( ) T
21 ,..., naaa  as was the case for (W3).

Solution  (W4)  is  of  practical  interest,  because  starting  from this  solution,  a  manifold  of 
solutions can be constructed by replacing the diagonal weights by arbitrary positive values di 

first and then normalising all weights of unit i by multiplication with ( )id+11 . Parameters di 

can be interpreted as damping factors: The larger di, the slower the network approaches to a 
stable solution. A special treatment of the diagonal weights is plausible in biological systems, 
because these weights correspond to the only synapses by which the neurons are connected to 
themselves.

Addressing the memory content. After  having  trained  the  network  with  a  certain  input 
vector a this external input can be switched off without changing the output; thus, due to the 
internal connections built up during learning the network keeps the activity induced by the 
external stimuli even if the stimuli are no longer present.
How does the network react to incorrect input? If for a limited period of time an input vector 
is provided to the network that does not correspond to its stored vector, the network relaxes to 
a stable state that corresponds to its stored vector or a multiple thereof, after having switched 
off the input. Therefore, the network has the ability of pattern completion. For a network 
characterised  by  matrix  W3,  the  stable  state  is  reached immediately.  For  matrix  W4 the 
relaxation takes some time depending upon value di ( 0>id ). A given ε-neighbourhood of the 
stable state is reached the faster, the more similar input vector and stored vector (or its nearest 
multiple) are. 

4.2 Representing simple algebraic relations 
Training the network. The second task addressed in the Introduction and Section 2 was 
to learn algebraic rules, as given in the condition ABA or ABB on the one hand and equations 
like 213 xxx +=  on the other hand. Such tasks require that not only one vector is learnt, but a 
solution for all vectors is found that fulfil the respective condition.
Providing a network consisting of IC Units with input vectors following the former condition 
ABA (e.g. ( )5,1,5 , ( )2,3,2 ) leads to weight matrix (W5):

















5.005.0
010
5.005.0

(W5).

Training the network with the second condition applied by (Marcus et al., 1999), namely ABB 
(e.g. ( )1,1,5 , ( )3,3,2 ) another weight matrix is obtained:

















5.05.00
5.05.00

001
(W6).

The solution of this task allows a simple geometrical interpretation. In a 3D-space (x1,x2,x3) 
the solution of the task (A,B,B) is given by a 2D-plane with x2= x3 and any value of x1, i.e. a 

10



plane that is perpendicular to the 21 xx −  plane. Matrix (W6) corresponds to this solution with 
132 == dd , and d1 being infinite ( ( ) 11/ 11 =+dd ).

The second task mentioned in Section 2.2 requires a solution for all vectors fulfilling the 

equation  ∑
=

=
n

i
ii xc

1

0  for given  ∈ic ℝ,  i.e.  all vectors of an  ( )1−n -dimensional hyperplane 

containing the origin. Geometrically, for  3=n , the solution is given by a plane in the 3D 
coordinate system that contains all points given by the coordinates that fulfil  the equation 

0332211 =++ xcxcxc . Therefore, the solution is completely defined if three points are given. 
As  ( )0,0,0  is already a solution, only two further examples (not collinear with  ( )0,0,0 ) are 

sufficient to specify the solution. Generally, the solution for any task described by ∑
=

=
n

i
ii xc

1
0  

with  fixed  coefficients  ∈ic  ℝ is  uniquely  defined  if  1−n  examples  are  presented  to  the 
network that form an ( )1−n -dimensional subspace and do not contain the origin. 
Application of a network with IC Units actually leads to this solution. To illustrate this ability, 
we again use a three unit network. The task to be trained is  213 xxx += . Any two training 
examples fulfilling the equation could be used (e.g.  ( )4,1,5 − ,  ( )3,4,1− ). The same solution 
(W7) is obtained whether the training examples are presented in periodic epochs or in random 
order:
















−

−

323131
313231
313132

(W7)

Here, all nine weights were allowed to learn. Matrix W7 can be interpreted to be a special 
case of matrix W2 that is expanded by application of a damping factor  2=id  as explained 
above. If, however, the diagonal weights are constrained and always set to zero, we obtain a 
solution that corresponds to matrix W2 (see section 2). These results are based on numerical 
investigations; a general proof is still pending.

Addressing the memory content. If a network trained on either of the two conditions ABA 
or  ABB is  provided with a  consistent  input  (e.g.  ( )7,1,7  for  the first  condition ABA),  it 
immediately stabilises at this values even if the values have not been presented to the network 
before, i.e. are totally new. If, in turn, inconsistent input is presented to the network (e.g. 
( )1,1,5  for the first  condition ABA), the activation of the unit  not matching the condition 
asymptotically approaches the correct value. 
To address the memory content after having trained all the weights according to the task of 
representing the summation (or, based on matrix W4, after the application of any positive 
damping factors),  the network is provided with a vector  a the first component  a1 and the 
second component a2 of which are fixed to certain values while the third a3 is set to zero. In 
the end, the third component should be the sum of the other components.
In each case, the network provides a solution that fulfils 213 xxx += . But it is not necessarily 
the case that 11 ax =  and 22 ax = . This condition is fulfilled in two cases: 

(i) 11 ax =  and 22 ax = , if 21 aa >  and 
2

1
2

a
a ≥  

(ii) 11 ax =  and 22 ax = , if 12 aa >  and 
2

2
1

a
a ≥ .
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If, however, 21 aa >  and 
2
1

2
a

a < , we obtain 11 ax =  and 
2

21
22

aaax +−= ; and if 12 aa >  

and 
2

2
1

a
a ≥ , we obtain 

2
21

11
aaax +−=  and 22 ax = .

Therefore,  if  all  )()( iiiai ∨∈  unit  x3 approaches  asymptotically  the  value  213 aax += . 
Nevertheless,  in  the  other  cases  as  mentioned  the  network  still  stabilises  at  a  value  x3 

following the summation task 213 xxx += . Thus, the trained network is able to cope also with 
this pattern completion task. Correspondingly, solving the equation for the other variables is 
possible, too.

5 Discussion
The work presented here forms an essential step towards a broader goal, that is to develop a 
complete memory system which can be used for learning information, for recognition, and for 
retrieving stored information to perform actions, but may also be used for mental simulation. 
Basic  elements  of  such a  complete  memory system are  situation models  that  are  able  to 
represent the relevant information to serve a working memory and/or a long term memory. In 
this section, we discuss the properties and the biological plausibility of the neuronal units (IC 
units) introduced here, we then discuss the properties of the complete networks consisting of 
such IC units  and  compare  them with related  approaches.  Finally,  we discuss  how these 
networks can be used for short term (working) memory and long term memory functions.
In this paper we propose Input Compensation Units (IC Units) as a new internal structure for 
artificial neurons that can be used as a basic building block of recurrent neural networks and 
allows for an efficient training of the synaptic weights. RNNs consisting of these IC Units and 
being trained in the described way have two main advantages over traditional approaches in 
training recurrent neural networks making them biologically more realistic: 
First,  the  learning  algorithm  can  be  applied  online,  i.e.  without  cutting  the  recurrent 
connections,  because  the  learning  dynamics  are  disentangled  from  the  dynamics  of  the 
recurrent network as such. Thus, the individual units behave as if belonging to a feed-forward 
net.  This is possible due to the following properties: As the sum of the weighted internal 
inputs is subtracted from the external input, the output of the neuron always equals the size of 
the external input and is therefore independent of its learning state (Eq. 3.1 and 3.2). In other 
words, as the built-in compensation mechanism always replaces that part of the input signal 
that corresponds to the sum of the recurrent signals, the global dynamics of the network is 
protected  from the  learning dynamics.  Therefore,  no  stability  problems arise  here  due  to 
weight changes. During the training procedure, the weights stabilise at values guaranteeing 
that in the end the summed recurrent input  si equals the external input  ai. After learning is 
completed, and the summed internal input equals the external input, the latter can be switched 
off without changing the activation of the network. 
Second, the synaptic weights of each neuron are adapted using local information only. The 
single neuron does not rely on information about the activation of whole network but only to 
information directly available at its synaptic connections just like real neurons. Consequently, 
the computational costs are very low – in contrast to many other training procedures (e.g. 
Williams and Zipser, 1989a; Schmidhuber, 1992) as no specific network for determination of 
the error and for its backpropagation is needed.
As mentioned in Sect. 2.1, many solutions are possible. One, however trivial, solution for all 
static cases is given by the identity matrix. However, the identity matrix never showed up as a 
result except for such cases in which this matrix was the only solution, i.e. when several input 
vectors were given which did not fulfil the basic equation.
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5.1 Biological plausibility
To implement the mechanism described the neuron has to distinguish between external input 
and input supplied by the recurrent connections of the network. How is this possible in a 
biological network? It is known (e.g. Kandel et al., 2000) that different types of synapses 
exist; the strength of one type does not easily change whereas other synapses show variation 
depending on activity. Additionally, physiological findings show, that the dendritic tree of a 
neuron  is  subdivided into  different  computational  subunits  for  chemical  signals  such  as 
changes in concentration of ions or other second messengers; this compartmentalisation is 
considered to be the basis of local modifications of the dendritic properties to achieve, for 
example,  input-specific  changes  of  synaptic  weights  (Helmchen,  1999)  and  it  is  also 
important from a computational perspective (Mel, 1999). Therefore, a different treatment of 
sensory input to the neuron and the recurrent internal input might well be possible.
Furthermore, some speculations concerning potential molecular mechanisms underlying the 
internal structure of the IC Units are possible; basic building blocks necessary to realise the 
algorithm proposed here can be found in real  neurons (e.g.  Kandel  et  al.,  2000):  Several 
pathways are known that increase and others that decrease the concentration of substances 
that influence the insertion of AMPA receptors in the synaptic membrane, for example. It is 
widely assumed, that the kinetics and magnitude of NMDA receptor mediated Ca2+ signal 
determine the sign of synaptic modification (Kirkwood et al., 1993; Cummings et al., 1996). 
A large increase of Ca2+ favours the activation of kinases which results in a phosphorylation 
of AMPA receptors; a lower increase in contrast favours the activation of phosphatases which 
results in a dephosphorylation of AMPA receptors (e.g. Lisman, 1989; Cormier et al., 2001). 

5.2 Capabilities of the network
Being able to scale the properties of a network with its size is crucially important for a model 
in order to serve as a biologically plausible brain model. The architecture of many models has 
to be additionally constrained to scale it by, for example, restricting the connectivity to local 
neighbourhoods only (Sejnowski et al., 1988). 

The model we used, the building blocks of which are IC Units, does not suffer from scaling 

problems as long as the learning rate ε is chosen small enough according to 
aa ⋅

<< T

20 ε  (see 

Appendix) in the case of training the network to represent static situations. Thus, the more 
units  the  network  has,  the  smaller  the  learning  rate  has  to  be  in  order  to  obtain  stable 
solutions. Therefore, this IC model seems to be promising for further applications and it is 
possible to train more realistic networks consisting of a large number of neurons.

Representing static patterns.  Using these units it is possible to solve several memory tasks. 
First, static input patterns can be applied; due to the built-in learning mechanism the weights 
adapt in a way that the activations of the units remain fixed even after the external input signal 
has been switched off, thus producing sustained activity in the network. 
It  has  been suggested to  use attractor dynamics of coupled neurons provided with strong 
feedback for modelling these states of enhanced activity (Wilson and Cowan, 1973; Amari, 
1977; Hopfield, 1982; Zipser et al., 1993; Amit, 1995; Kühn and Cruse, 2005; for reviews on 
neurocomputational models see Durstewitz et al., 2000; Del Giudice et al., 2003). However, 
the performance of many of  the proposed models is  highly dependent  on fine tuning the 
network parameters such as synaptic strength. If parameters only deviate slightly from the 
tuned values, the networks tend to diverge (Wang, 2001). In contrast, our model does not 
require fine-tuning of the weights as it automatically adapts to the current input situation.
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When providing the network with a vector different from the stored one, the stored vector or a 
multiple of it is reproduced. This property can be interpreted as an error correction mechanism 
(or the capability to generalise) as it has been described for Hopfield nets (Hopfield, 1984; for 
a more detailed comparison with other recurrent neural networks see below).
Additionally, if a part of the vector is not specified by the input, i.e. a component of the input 
vector  is  set  to  zero,  the  network  shows  the  ability  of  pattern  completion:  It  finds  an 
appropriate activation for the unspecified units.

Representing algebraic relations. There has been a heated debate on the claim made by 
Marcus et  al.  (1999) that it  is not possible to replicate their results with simple recurrent 
neural  networks  (see  Seidenberg  and Elman,  1999).  The  problem with  connectionist-like 
models is that they are not able to generalise the abstract patterns to new words and are thus 
dependent on the input choice. They cannot abstract the underlying rule as it is necessary for 
the task described in the Introduction and in Section 2. The model presented here does not 
represent any word explicitly but only the rule of an open-ended abstract relationship, in this 
case  a  simple  algebraic  relation.  If  the  network  is  provided  with  consistent  input  it 
immediately stabilises on these activation values, whereas it needs some time to relax on the 
inconsistent condition. This matches with the results of the experiments performed by Marcus 
et al. (1999). The time the network needs to relax when provided with inconsistent input can 
be interpreted as to correspond to the longer time of attention the infants paid to sentences 
being  inconsistent  with  the  trained  ones  in  the  experiments  carried  out  by  Marcus  et  al. 
(1999). Therefore it is possible to simulate the experimental results obtained by Marcus et al. 
(1999) with networks consisting of IC Units.
Similarly,  such  algebraic  rules  may  also  underlie  other  grammatical  phenomena  as  for 
example building English sentences with plural agreement from an arbitrary set of noun and 
verb phrases. In this sense humans know for example that a correct English sentence can be 
formed by combining any plural noun phrase with any verb phrase with plural agreement: 
From the two phrases “Bart and Lisa”, which is a plural noun phrase, and “played in the 
garden”,  which is  a  verb phrase with plural  agreement,  we can infer  that  “Bart  and Lisa 
played  in  the  garden”  is  a  correct  English  sentence.  Here  as  well,  networks  that  rather 
represent  the abstract  relations between the items than the single words may underlie the 
ability to build correct sentences.

The network can also be trained to represent any linear task ∑
=

=
n

i
ii xc

1

0  when only some (at 

least  1−n )  correct  training  examples  are  presented.  The  network  forms  a  holistic 
representation of this algebraic relation implying the capability of pattern completion also in 
this task: If 1−n  variables are given, the remaining variable is determined by the network. If, 
during recall, fewer variables are given and the task is therefore underdetermined, the network 
still  provides  a  correct  solution.  The  task is  not  solved by using a  look-up table,  but  by 
representing the underlying mechanism. 

The tasks described in Section 4.2 are characterised by homogeneous equations ∑
=

=
n

i
ii xc

1

0 . 

However, this network can also be applied to tasks that require non homogeneous equations 

∑
=

=
n

i
iii hxc

1
 with constant values hi. This corresponds to the introduction of a ‘bias unit’ often 

used in neural networks. The network can simply be extended by such a bias unit by adding a 
unit,  which  is  assumed  to  have  a  constant  activation  of  1.  The  weight  of  this  bias  unit 
corresponds to the value hi and can be trained using the same algorithm explained above.

14



Human’s internal representations are not necessarily static by nature. As already mentioned 
by  Johnson-Laird  (1983)  internal  representations  could  be  dynamic,  i.e.  they  show time-
dependent behaviour. This claim is underpinned by recall experiments showing that memory 
can be influenced by the observed movement (e.g. direction and speed) of an object (Freyd 
and Finke, 1984). Such dynamical systems can also be modelled by a network consisting of 
Input  Compensation Units  as  will  be  explained in  a  companion paper  (Kühn and Cruse, 
2006).

5.3 Comparison with other recurrent neural networks
The underlying idea of the Input Compensation Units corresponds to the clamped phase in 
Contrastive  Learning  (CL)  procedures  (Movellan,  1990;  Baldi  and  Pineda,  1991).  The 
advantages of CL are the possibility to train networks with hidden units on the one hand and 
to use nonlinear activation functions on the other hand. Up to now it has not been tested how 
the IC approach could deal with nonlinearities and hidden units. These are certainly the next 
problems to be tackled. Preliminary investigations are encouraging.
But there are three main differences between the two approaches: First, in all examples of the 
CL approach the weights of the feedback connections are assumed to be symmetric with the 
feedforward connections. In networks consisting of IC Units the weights are not constraint.
Second, in contrast to CL only one phase is applied and no oscillations between a phase with 
a teacher signal and one without a teacher signal are necessary.
Third, in CL the dynamics of the network are separated from the dynamics due to the learning 
procedure by definition as the dynamical equations are first run until convergence to a fixed 
point and then the weights are updated (Xie and Seung, 2003). In doing so, the problem of 
intertwining two interacting dynamics does not arise. But it is biologically not plausible that 
the synapses only then change, after the dynamics of the network has settled. For biological 
systems this “waxing and waning” of the synapses is assumed to not be explicitly uncoupled 
from the network’s activity but on the contrary explicitly dependent on the network’s activity. 
The latter is the case in the neuronal units presented here:  the updating of the weights is 
performed  online,  i.e.  in  each  single  time  step  and  there  is  no  necessity  to  decouple  it 
explicitly from the network. Therefore, the IC approach appears to be nearer to biological 
reality.
The training procedure used here is based on the principle of teacher forcing (e.g. Williams 
and Zipser, 1989a; Doya, 1995; Jaeger and Haas, 2004): the actual output of a unit is replaced 
by the teacher signal in the subsequent computation. This principle permits online learning 
and has been applied by other approaches like real-time recurrent learning for RNNs (e.g. 
Williams  and  Zipser,  1989b).  The  problem with  real-time recurrent  learning  is  that  it  is 
computationally very intensive concerning storage and time and – moreover – the algorithm is 
non-local because each weight needs the knowledge of the complete recurrent weight matrix 
and the error vector. RNNs consisting of IC Units are trained using local information only and 
therefore the computational costs are very low. 
To alleviate  the  problem of  computational  costs,  a  number  of  approaches  have been put 
forward like, for example, the modification of the real-time recurrent learning algorithm by 
Schmidhuber (1992) which reduces at least the computational time but still needs quite large 
storage capacities. 
Kalveram (2000) also proposed a learning algorithm formally corresponding to the delta rule 
like the IC approach incorporated on the level of the individual neuron. This has been applied 
to feedforward networks. The weights of external inputs are trained by providing the unit with 
the desired output. This input corresponds to the fixed external input used here but has to be 
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switched off after training. In contrast our networks comprise memory units that are activated 
via the external input (see also below).
Other examples trying to reduce computational costs are the echo-state networks (Jaeger and 
Haas,  2004)  and,  quite  similar  besides  using  spiking  neurons,  the  liquid-state  machines 
(Maass et al., 2002). These types of networks need more units to equip the reservoir but are 
able  to  learn complex  dynamic  behaviour.  Storing  static  patterns  has  not  been addressed 
within  these  approaches.  It  will  be  shown  in  a  companion  paper  that  learning  dynamic 
patterns is also possible with RNNs consisting of IC Units (Kühn and Cruse, 2006). 

Similarities could be figured out, too, between the IC networks and Hopfield (Hopfield, 1982; 
1984) networks on the one hand and MSBE networks (Cruse, 2006, and below) on the other 
hand.  What  is  the  difference  between  the  weight  matrices  resulting  from  the  training 
procedure presented here to that of those other types of recurrent neural networks? The former 
are defined by symmetric weights and bounded activation functions. The units used here do 
not have bounded activation functions. Symmetric weights could, but do not necessarily result 
from application of the IC algorithm. Symmetric weights arise in matrices W2, W5, W6 and 
W7, but not in W3 and W4. Therefore, application of IC Units does generally not lead to 
Hopfield type networks. 
MSBE  networks  are  derived  in  the  following  way.  If  an  equation  with  n variables 

0
1

=⋅∑
=

n

i
ii xv  is solved for each variable  xi, a set of equations is obtained. If each of these n 

equations is considered to represent the computation performed by the corresponding neuron 

i, the network represents Multiple Solutions for the Basic Equation 0
1

=⋅∑
=

n

i
ii xv  and is termed 

therefore MSBE network. For  3=n , for example, the basic equation  0332211 =++ xvxvxv  
being resolved for x1, x2 and x3 leads to a weight matrix

















0
0

0

3231

2321

1312

vvvv
vvvv
vvvv

(W8)

MSBE networks, like Hopfield networks, can be considered as autoassociators that have the 
property of pattern completion. Unlike Hopfield networks, that show discrete attractors, the 
attractor points of MSBE networks form a smooth, bounded space.
The weights follow the condition  1=⋅ jiij ww .  So the MSBE network is symmetric only for 

321 vvv == .  As described above for (W4), the weight matrix W8 can be extended by the 
introduction of damping factors d1, d2, and d3.
Inspection of the different weight matrices obtained by the learning procedure applied to the 
IC Units reveals that some, but not all matrices fulfil the condition  jiij ww 1= . Matrix W2 

fulfils the condition, matrix W3 only when applying a damping factor  12
3

2
2

2
1

2

−
++

=
aaa

ad i
i  

and W4 when applying 12
3

2
2

2
1

2

−
++

=
aaa

ad i
i . This means that the IC algorithm can but does 

not necessarily produce weight distributions typical for MSBE networks. The latter is the case 
in particular, when in contrast to all examples used here, the weights are not all set to zero at 
the beginning of training. 
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5.4 Working memory and long term memory functions
In  various  experiments  properties  of  the  working  memory  have  been  investigated  (Del 
Giudice et al., 2003). In electrophysiological recordings stimulus-specific, enhanced activity 
can be observed which is assigned to be a feature of active working memory and enables 
animals to hold items in memory for some time. If  no further attention is applied to the 
content of memory, it vanishes after a short time.
This property can also be found in our model: After presenting a static stimulus the activation 
of the artificial neurons is enhanced. During learning the weights approach the final values 
characterising  the  neutrally  stable  state  only  asymptotically.  Therefore,  in  more  natural 
situations, training is finished with non-ideal weight values. Hence, after an input has been 
presented to the network and later switched off, the activation of the network does not remain 
constant, but decreases to zero with a velocity depending on how closely the ideal values have 
been approximated during training (note that the weights themselves maintain their values). 
This property may be considered as corresponding to the function of working memory, the 
content of which disappears if no specific attention is applied to maintain this content for a 
longer time. The velocity of this decrease of activation depends on the quality of learning, i.e., 
on learning time.
At the same time, the network can be considered to represent  a passive memory (Fuster, 
1995). If, after an activated network has been returned to zero activation, the input a1, a2, a3 is 
presented again later, it would immediately activate the network.
As described above the weight values are only changed by means of the learning algorithm 
(Eq.  2),  i.e.,  only  when  an  external  input  is  given.  However,  weights  may  also  decay 
spontaneously (as do synapses), but with a long time constant (e.g. hours or days). Under this 
condition, the IC Units alone were not sufficient to explain long term memory. The following 
additional mechanism could, however, be applied: If the excitation has been strong enough, or 
has been repeated sufficiently often, a special mechanism may come into action that prohibits 
synaptic decay and weights may stay fixed. In other words, the network forms a long term 
memory only after this fixation process has been performed (for a review of observations 
concerning  switches  between  discrete  states  of  synapses  see  Montgomery  and  Madison, 
2004). In contrast to the architecture explained above, this additional mechanism would imply 
that not every input is maintained in the long term memory. Rather the system would be able 
to select frequent or salient information, and only such information is stored permanently.
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6 Appendix: Learning a static pattern to produce sustained 
activity

6.1 Proof of convergence – training all the weights

During the training phase the nn×  weight matrix ( )tW  is updated according to (2) as follows
(A1) ( ) ( ) ( ) ( ) ( )[ ] TT1 aaWIWaWW ⋅⋅−⋅+=⋅⋅+=+ ttttt εδε  ,...2,1,0=t .

We denote by T
Ta
1 aa

aa
P ⋅⋅

⋅
=  the orthogonal projector onto span{a}.

Theorem 1 Under the assumption

(A2)
aa ⋅

<< T

20 ε  

the iteration (A1) converges for any ( ) 00 WW =  to the weight matrix 
(A3) ( ) aa0 PPIWW +−⋅=∞ . 
In particular if ( ) 00 =W  we obtain aPW =∞  as in (W3).

Proof : We use the following well-known result (Berman and Plemmons, 1994).

Theorem 2 Let X be a finite dimensional linear space and let X be the direct sum of two of  
its subspaces X1 and X2, i.e. every XW ∈  can be written in a unique way as 21 WWW +=  
where 2211 , XWXW ∈∈ .
Let XXL →:  be a linear map such that
(i) WWL =⋅  for all 1XW ∈
(ii) L maps X2 into itself and 1<λ  for all eigenvalues λ of L that belong to eigenvectors  

in X2.

Then the iteration
(A4) ( ) ( ) 21 RWLW +⋅=+ tt , ( ) 00 WW =
converges for any XW ∈0  and any 22 XR ∈  to 

( ) 210 WWW +=∞

where ( ) ( ) 20100 WWW +=  is the decomposition of W0 and 22 XW ∈  is the unique solution in 
X2 of the equation

(A5) 222 RWLW +⋅= .

We apply this Theorem 1 to (A1) with X the space of nn×  matrices and
{ } nn −==⋅∈= 2

11 dim, 0: XaWXWX
{ } nn =∈⋅= 2

T
2 dim , : XbabX R . 

The decomposition of XW ∈  is given by 
( ) 21aa WWPWPIWW +=⋅+−⋅=

since ( ) 0a =⋅−⋅ aPIW  and T
a abPW ⋅=⋅  with aW

aa
b ⋅⋅

⋅
= T

1
.

The iteration (A1) has the form (A4) if we define
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(A6) ( ) T
2

T , aaRaaIWWL ⋅⋅=⋅⋅−⋅=⋅ εε .
Note that (i) follows from ( ) WaaIWWL =⋅⋅−⋅=⋅ Tε  for 1XW ∈ .
If 2

T XabW ∈⋅=  then we have
( ) ( )( ) ( ) TTTTTTT 1 abaaaaaabaaIabWL ⋅⋅⋅⋅−=⋅⋅⋅−⋅=⋅⋅−⋅⋅=⋅ εεε ,

therefore aa ⋅⋅−= T1 ελ  is an n-fold eigenvalue of L and 1<λ  holds as we have assumed 
(A2).
Then Theorem 1 is applicable and yields (A3) if we show that (A5) holds for a2 PW = .
 In fact, 2a XP ∈  and 

( ) 2
TT

a
T

aaaa RaaaaPaaIPPPLP =⋅⋅=⋅⋅⋅=⋅⋅−⋅−=⋅− εεε .
❒
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6.2  Proof of convergence – training with constraints
Now we consider the learning rule (A1) where only certain entries of the weight matrix are 
updated. We write this as follows:

(A7) ( ) ( ) ( )( ) T1 aaWIEWW ⋅⋅−⋅+=+ ttt ε
where E is an nn×  matrix with entries 0 or 1 and where we used the Hadamard product BE   
of nn× -matrices given by

(A8) ( ) ijijij BEBE ⋅= .
The  entries  Wij with  1=ijE  are  updated  while  those  with  0=ijE  are  kept  constant.  In 
particular, for the choice

(A9)



















=

011
1

01
110







E

only the weights Wij with ji ≠  are updated.

Theorem 3 Assume that the matrix E has no zero row and let 0>ε  satisfy for all ni ,...,1=

(A10) 2<⋅ idε , where ∑
=

=
1

2

ijE
ji ad .

Then the learning rule (A7) converges for any ( ) 00 WW =  to some limit matrix ∞W . In case 
00 =W  the entries of ∞W  are given by

(A11) ( )
i

ji
ij d

aa ⋅
=∞W  if 1=ijE

and ( ) 0=∞ ijW  otherwise.

In particular, for the pattern matrix E from  (A9) with  3=n  we obtain exactly the matrix  
(W4). In case 1=ijE  for all i,j we recover the results from Theorem 1.

Proof: We apply Theorem 1 again with the setting
{ } { }0 if 0:: ===== ijij EWWWWEWX 

and
(A12) [ ] [ ]T

2
T , aaERaaWEWWL ⋅⋅=⋅⋅⋅−=⋅  εε .

The spaces X1 and X2 are given by
{ }0:1 =⋅∈= aWXWX

( ){ }nR∈⋅== babEWX :T
2  .

First note that WWL =⋅  is obvious for 1XW ∈ .

In X2 we choose basis vectors
(A13) ( ) nii

i ,...,1  ,T =⋅= aeEV 
where ( )0,...1,...,0=ie  is the i-th Cartesian basis vector. Note that 
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( ) ( ) ( ) ( ) k
i

ijk
i

jk
i

ijki d
ij

eaeaeEaV
E

=⋅=⋅⋅=⋅ ∑∑
=1

22

holds and therefore
(A14) i

ii d eaV ⋅=⋅ . 
Since E has no zero row we have 0>id  for all i. Equation (A14) then implies that the vectors 
Vi are linearly independent and moreover we find that the vectors Vi are eigenvectors of L

(A15) ( ) iiii
i

iii dd ⋅−=⋅=⋅⋅⋅−=⋅ ελλε 1  ,T VaeEVVL 

Condition (A10) guarantees that 1<iλ  holds for all eigenvalues.
The decomposition 21 WWW += , 2211 , XWXW ∈∈  is given by

(A16)
( )

21
1

2 :  ,  , WWWaWVW −=⋅=⋅= ∑
= i

i
i

n

i
ii d

bb .

Note that XWWW ∈−= 21  satisfies by (A14)

( )∑ ∑
= =

=⋅⋅−⋅=⋅⋅−⋅=⋅
n

i

n

i

i
iiib

1 1
1 0eaWaWaVaWaW .

The decomposition is unique since 1XW ∈  and 2XVW ∈⋅= ∑
i

iib  implies

∑∑
==

=⋅=⋅⋅=⋅=
n

i

i
i

n

i
ii bb

11

0 beaVaW .

We have now verified the assumptions of Theorem 1.
In order to determine the limit matrix ∞W  we need to solve (A5) with R2 given in (A12). The 
solution is

i

n

i i

i

d
a VW ⋅= ∑

=1
2  

since by (A15)

( ) ( ) 2
111

22 1 RVVVLVWLW =⋅⋅=⋅−⋅=⋅−⋅=⋅− ∑∑∑
===

n

i
iiii

n

i i

i
ii

n

i i

i a
d
a

d
a ελ .

Combining this with (A16) Theorem 1 leads to the limit matrix ∞W  given for 1=ijE  by

(A17) ( ) ( ) ( )( ) jii
i

ijij aa
d

⋅⋅−⋅+=∞ aWWW 00
1

.

In the case 00 =W  this leads to formula (A11).
❒
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Captions

Figure 1: a) Schematic drawing of a three-unit recurrent network; ai is the external input, xi 

the recurrent input and wij are the weights. b) Architecture of one linear IC Unit; si(t) is the 

weighted sum of the recurrent inputs and δi(t) the difference between the external input ai(t) 

and  si(t).  c)  Architecture  of  one  IC  Unit  with  the  nonlinear  extension  (see  text  for 

explanation).

Figure 2: Geometrical illustration for the process of training a two-unit network. The axis 

around which the plane is rotated is denoted by the grey arrow. 
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Figures

Figure 1

Figure 2
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