Skip to main content
Log in

Developing velocity sensitivity in a model neuron by local synaptic plasticity

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Sensor neurons, like those in the visual cortex, display specific functional properties, e.g., tuning for the orientation, direction and velocity of a moving stimulus. It is still unclear how these properties arise from the processing of the inputs which converge at a given cell. Specifically, little is known how such properties can develop by ways of synaptic plasticity. In this study we investigate the hypothesis that velocity sensitivity can develop at a neuron from different types of synaptic plasticity at different dendritic sub-structures. Specifically we are implementing spike-timing dependent plasticity at one dendritic branch and conventional long-term potentiation at another branch, both driven by dendritic spikes triggered by moving inputs. In the first part of the study, we show how velocity sensitivity can arise from such a spatially localized difference in the plasticity. In the second part we show how this scenario is augmented by the interaction between dendritic spikes and back-propagating spikes also at different dendritic branches. Recent theoretical (Saudargiene et al. in Neural Comput 16:595–626, 2004) and experimental (Froemke et al. in Nature 434:221–225, 2005) results on spatially localized plasticity suggest that such processes may play a major role in determining how synapses will change depending on their site. The current study suggests that such mechanisms could be used to develop the functional specificities of a neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson JC, Binzegger T, Kahana O, Martin KA, Segev I (1999) Dendritic asymmetry cannot account for directional responses of neurons in visual cortex. Nat Neurosci 2(9):820–824

    Article  PubMed  CAS  Google Scholar 

  • Baker CL (1998) Spatial and temporal determinants of directionally selective velocity preference in cat striate cortex neurons. J Neurophysiol 59(5):1557–1574

    Google Scholar 

  • Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit’s retina. J Physiol 178(3):477–504

    PubMed  CAS  Google Scholar 

  • Bi GQ (2002) Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms. Biol Cybern 87:319–332

    Article  PubMed  Google Scholar 

  • Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472

    PubMed  CAS  Google Scholar 

  • Blais B, Cooper LN, Shouval H (2000) Formation of direction selectivity in natural scene environments. Neural Comput 12(5):1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Gardner-Edwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232:357–374

    CAS  Google Scholar 

  • Bliss TV, Lomo T (1970) Plasticity in a monosynaptic cortical pathway. J Physiol (Lond) 207:61P

    Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232:331–356

    CAS  Google Scholar 

  • Buchs NJ, Senn W (2002) Spike-based synaptic plasticity and the emergence of direction selective simple cells: simultation results. J Comput Neurosci 13:167–186

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Otmakhov N, Strack S, Colbran R, Lisman J (1999) Requirements for ltp induction by pairing in hippocampal ca1 pyramidal cell. J Neurophysiol 82:526–532

    PubMed  CAS  Google Scholar 

  • Debanne D, Gahwiler B, Thompson S (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol (Lond) 507:237–247

    Article  CAS  Google Scholar 

  • Emerson RC, Gerstein GL (1977) Simple striate neurons in the cat. II. Mechanisms underlying directional asymmetry and directional selectivity. J Neurophysiol 40(1):136–155

    PubMed  CAS  Google Scholar 

  • Feidler JC, Saul AB, A M, Humphrey AL (1997) Hebbian learning and the development of direction selectivity: the role of geniculate response timings. Network 8:195–214

    Google Scholar 

  • Froemke RC, Poo Mm, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434:221–225

    Article  PubMed  CAS  Google Scholar 

  • Golding NL, Staff PN, Spurston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331

    Article  PubMed  CAS  Google Scholar 

  • Goodwin AW, Henry GH, Bishop PO (1975) Direction selectivity of simple striate cells: properties and mechanism. J Neurophysiol 38(6):1500–1523

    PubMed  CAS  Google Scholar 

  • Hammond P (1978) Directional tuning of complex cells in area 17 of the feline visual cortex. J Physiol 285:479–491

    PubMed  CAS  Google Scholar 

  • Häusser M, Mel B (2003) Dendrites: bug or feature? Curr Opin Neurobiol 13:372–383

    Article  PubMed  CAS  Google Scholar 

  • Heeger DJ (1992a) Half-squaring in responses of cat striate cells. Vis Neurosci 9(5):427–443

    PubMed  CAS  Google Scholar 

  • Heeger DJ (1992b) Normalization of cell responses in cat striate cortex. Vis Neurosci 9(2):181–197

    PubMed  CAS  Google Scholar 

  • Heeger DJ (1993) Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. J Neurophysiol 70(5):1885–1898

    PubMed  CAS  Google Scholar 

  • Hillenbrand U, van Hemmen JL (2001) Does corticothalamic feedback control cortical velocity tuning?. Neural Comput 13(2):327–355

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    PubMed  CAS  Google Scholar 

  • Kouh M, Poggio T (2004) A general mechanisms for tuning: Gain control circuits underlie tuning of cortical orientation. AIM-2004-031 (MIT Technical Report) ftp://www.publications.ai.mit.edu/ai-publications/2004/AIM-2004-031.ps:1–4

  • Kovalchuk Y, Eilers J, Lisman J, Konnerth A (2000) NMDA receptor-mediated subthreshold Ca2+-signals in spines of hippocampal neurons. J Neurosci 20:1791–1799

    PubMed  CAS  Google Scholar 

  • Larkum ME, Zhu JJ, Sakmann B (2001) Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J Physiol (Lond) 533:447–466

    Article  CAS  Google Scholar 

  • Linden DJ (1999) The return of the spike: postsynaptic action potentials and the induction of LTP and LTD. Neuron 22:661–666

    Article  PubMed  CAS  Google Scholar 

  • Livingstone MS (1998) Mechanisms of direction selectivity in macaque V1. Neuron 20(3):509–526

    Article  PubMed  CAS  Google Scholar 

  • Livingstone MS, Conway BR (2003) Substructure of direction-selective receptive fields in macaque V1. J Neurophysiol 89(5):2743–2759

    Article  PubMed  Google Scholar 

  • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  PubMed  CAS  Google Scholar 

  • Mel B (1994) Information processing in dendritic trees. Neural Comput 6:1031–1085

    Google Scholar 

  • Mo CH, Gu M, Koch C (2004) A learning rule for local synaptic interactions between excitation and shunting inhibition. Neural Comput 16(12):2507–2532

    Article  PubMed  Google Scholar 

  • Movshon JA (1975) The velocity tuning of single units in cat striate cortex. J Physiol 249(3):445–468

    PubMed  CAS  Google Scholar 

  • Movshon JA, Thompson ID, Tolhurst DJ (1978) Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J Physiol 283:53–77

    PubMed  CAS  Google Scholar 

  • Nishiyama M, Hong K, Mikoshiba K, Poo M, Kato K (2000) Calcium release from internal stores regulates polarity and input specificity of synaptic modification. Nature 408:584–588

    Article  PubMed  CAS  Google Scholar 

  • Orban G (1984) Neuronal operations in the visual cortex. Springer, Heidelberg

    Google Scholar 

  • Orban GA, Kennedy H, Maes H (1981) Velocity sensitivity of areas 17 and 18 of the cat. Acta Psychol (Amst) 48(1–3):303–309

    Article  CAS  Google Scholar 

  • Pack CC, Conway BR, Born RT, Livingstone MS (2006) Spatiotemporal structure of nonlinear subunits in macaque visual cortex. J Neurosci 26(3):893–907

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew JD, Nikara T, Bishop PO (1968) Responses to moving slits by single units in cat striate cortex. Exp Brain Res 6(4):373–390

    PubMed  CAS  Google Scholar 

  • Poirazi P, Brannon T, Mel B (2003) Arithmetic of subthreshold synaptic summation in a model ca1 pyramidal cell. Neuron 37:977–987

    Article  PubMed  CAS  Google Scholar 

  • Porr B, Wörgötter F (2003) Isotropic sequence order learning. Neural Comput 15:831–864

    Article  PubMed  Google Scholar 

  • Priebe NJ, Ferster D (2005) Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron 45(1):133–145

    Article  PubMed  CAS  Google Scholar 

  • Reid RC, Soodak RE, Shapley RM (1991) Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. J Neurophysiol 66(2):505–529

    PubMed  CAS  Google Scholar 

  • Royer S, Pare D (2003) Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422:518–522

    Article  PubMed  CAS  Google Scholar 

  • Saudargiene A, Porr B, Wörgötter F (2004) How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural Comput 16:595–626

    Article  PubMed  Google Scholar 

  • Saudargiene A, Porr B, Wörgötter F (2005) Local learning rules: predicted influence of dendritic location on synaptic modification in spike-timing-dependent plasticity. Biol Cybern 92:128–138

    Article  PubMed  Google Scholar 

  • Senn W, Buchs NJ (2003) Spike-based synaptic plasticity and the emergence of direction selective simple cells: mathematical analysis. J Comput Neurosci 14:119–138

    Article  PubMed  CAS  Google Scholar 

  • Sherman I, Spitzer H (1995) Model of local velocity in the primary visual cortical cells. J Opt Soc Am A Opt Image Sci Vis 12(6):1198–1207

    PubMed  CAS  Google Scholar 

  • Shon AP, Rao RP, Sejnowski TJ (2004) Motion detection and prediction through spike-timing dependent plasticity. Network 13(3):179–198

    Article  Google Scholar 

  • Sillito AM (1977) Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat’s visual cortex. J Physiol 271(3):699–720

    PubMed  CAS  Google Scholar 

  • Sjöström PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164

    Article  PubMed  Google Scholar 

  • Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18(10):3501–3510

    PubMed  CAS  Google Scholar 

  • Tolhurst DJ, Dean AF (1991) Evaluation of a linear model of directional selectivity in simple cells of the cat’s striate cortex. Vis Neurosci 6(5):421–428

    Article  PubMed  CAS  Google Scholar 

  • Tomita S, Stein V, Stocker TJ, Nicoll RA, Bredt DS (2005) Bidirectional synaptic plasticity regulated by phosphorilation of stargazin-like TARPs. Neuron 45(2):269–277

    Article  PubMed  CAS  Google Scholar 

  • Wenisch OG, Noll J, Hemmen JLv (2005) Spontaneously emerging direction selectivity maps in visual cortex through STDP. Biol Cybern 93(4):239–247

    Article  PubMed  Google Scholar 

  • Wimbauer S, Wenisch OG, van Hemmen JL, Miller KD (1997a) Development of spatiotemporal receptive fields of simple cells: II. Simulation and analysis. Biol Cybern 77(6):463–477

    CAS  Google Scholar 

  • Wimbauer S, Wenisch OG, Miller KD, van Hemmen JL (1997b) Development of spatiotemporal receptive fields of simple cells: I. Model formulation. Biol Cybern 77(6):453–461

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Porr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamosiunaite, M., Porr, B. & Wörgötter, F. Developing velocity sensitivity in a model neuron by local synaptic plasticity. Biol Cybern 96, 507–518 (2007). https://doi.org/10.1007/s00422-007-0146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0146-4

Keywords

Navigation