Skip to main content

Advertisement

Log in

Spike-rate adaptation and neuronal bursting in a mean-field model of brain activity

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Spike-rate adaptation is investigated within a mean-field model of brain activity. Two different mechanisms of negative feedback are considered; one involving modulation of the mean firing threshold, and the other, modulation of the mean synaptic strength. Adaptation to a constant stimulus is shown to take place for both mechanisms, and limit-cycle oscillations in the firing rate corresponding to bursts of neuronal activity are investigated. These oscillations are found to result from a Hopf bifurcation when the equilibrium lies between the local maximum and local minimum of a given nullcline. Oscillations with amplitudes significantly below the maximum firing rate are found over a narrow range of possible equilibriums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1970) Handbook of mathematical functions. Dover

  • Alligood KT, Sauer TD, Yorke JA (1996) Chaos: an introduction to dynamical systems. Springer, Heidelberg

    Google Scholar 

  • Benda J, Herz AVM (2003) A universal model for spike-frequency adaptation. Neural Comp 15:2523

    Article  Google Scholar 

  • Benda J, Longtin A, Maler L (2005) Spike-frequency adaptation separates transient communication signals from background oscillations. J Neurosci 25:2312

    Article  PubMed  CAS  Google Scholar 

  • Bressloff PC (2002) Bloch waves, periodic feature maps, and cortical pattern formation. Phys Rev Lett 89:088101

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system. Academic, New York

    Google Scholar 

  • Gollisch T, Herz AVM (2004) Input-driven components of spike- frequency adaptation can be unmasked in vivo. J Neurosci 24:7435

    Article  PubMed  CAS  Google Scholar 

  • Jirsa VK, Haken H (1996) Field theory of electromagnetic brain activity. Phys Rev Lett 77:960

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principals of neural science. McGraw-Hill, New York

    Google Scholar 

  • Koch C (1999) Biophyics of computation. Oxford University Press, Oxford

    Google Scholar 

  • Lehky SR (1988) An astable multivibrator model of binocular rivalry. Perception 17:215

    Article  PubMed  CAS  Google Scholar 

  • Lorenzon NM, Foehring RC (1992) Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J Neurophys 67:350

    CAS  Google Scholar 

  • Murray JD (1989) Mathematical biology. Springer, Heidelberg

    Google Scholar 

  • Nunez PL (1974) The brain wave equation: a model for EEG. Math Biosci 21:279

    Article  Google Scholar 

  • Rennie CJ, Robinson PA, Wright JJ (1999) Effects of local feedback on dispersion of electrical waves in the cerebral cortex. Phys Rev E 59:3320

    Article  CAS  Google Scholar 

  • Rennie CJ, Robinson PA, Wright JJ (2002) Unified neurophysical model of EEG spectra and evoked potentials. Biol Cybern 86:457

    Article  PubMed  CAS  Google Scholar 

  • Robinson PA (2006) Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations. Phys Rev E 73:041904

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65:041924

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL, O’Connor SC, Wright JJ, Gordon E, Whitehouse RW (2003) Neurophysical modeling of brain dynamics. Neuropsycopharm 28:S74

    Article  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL, O’Connor SC (2004) Estimation of multiscale neurophysiological parameters by electroencephalographic means. Hum Brain Map 23:53

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL, O’Connor SC, Gordon E (2005) Multiscale brain modelling. Phil Trans B 360:1043

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Wright JJ (1997) Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E 56:826

    Article  CAS  Google Scholar 

  • Sanchez-Vives MV, Nowak LG, McCormick DA (2000a) Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J Neurosci 20:4267

    PubMed  CAS  Google Scholar 

  • Sanchez-Vives MV, Nowak LG, McCormick DA (2000b) Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J Neurosci 20:4286

    PubMed  CAS  Google Scholar 

  • Stevens CF (1994) Large scale neuronal theories of the brain. In: Koch C, Davies JL (eds). MIT Press

  • van Rotterdam A, Lopes Da Silva FH, van den Ende J, Viergever MA, Hermans AJ (1982) A model of the spatial-temporal characteristics of the alpha rhythm. Bull Meth Biol 44:283

    Article  Google Scholar 

  • Wilson HR (1999) Spikes, decisions, and actions. Oxford University Press, Oxford

    Google Scholar 

  • Wilson HR, Blake R, Lee S-H (2001) Dynamics of travelling waves in visual perception. Nature 412:907

    Article  PubMed  CAS  Google Scholar 

  • Wilson HR, Cowan JD (1973) A mathematical theory for the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55

    Article  PubMed  CAS  Google Scholar 

  • Wilson HR, Krupa B, Wilkinson F (2000) Dynamics of perceptual oscillations in form vision. Nature Neuro Sci 3:170

    Article  CAS  Google Scholar 

  • Wright JJ, Liley DTJ (1996) Dynamics of the brain at global and microscopic scales: neural networks and the EEG. Behav Brain Sci 19:285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Loxley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loxley, P.N., Robinson, P.A. Spike-rate adaptation and neuronal bursting in a mean-field model of brain activity. Biol Cybern 97, 113–122 (2007). https://doi.org/10.1007/s00422-007-0157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0157-1

Keywords

Navigation