Skip to main content

Advertisement

Log in

The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational modelling study

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The influence of cortical feedback on thalamic visual responses has been a source of much discussion in recent years. In this study we examine the possible role of cortical feedback in shaping the spatiotemporal receptive field (STRF) responses of thalamocortical (TC) cells in the lateral geniculate nucleus (LGN) of the thalamus. A population-based computational model of the thalamocortical network is used to generate a representation of the STRF response of LGN TC cells within the corticothalamic feedback circuit. The cortical feedback is shown to have little influence on the spatial response properties of the STRF organization. However, the model suggests that cortical feedback may play a key role in modifying the experimentally observed biphasic temporal response property of the STRF, that is, the reversal over time of the polarity of ON and OFF responses of the centre and surround of the receptive field, in particular accounting for the experimentally observed mismatch between retinal cells and TC cells in respect of the magnitude of the second (rebound) phase of the temporal response. The model results also show that this mismatch may result from an anti-phase corticothalamic feedback mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LGN:

Lateral geniculate nucleus

PY:

Cortical pyramidal cell

RE:

Reticular cell

RE nucleus:

Thalamic reticular nucleus

RF:

Receptive field

RGC:

Retinal ganglion cell

STRF:

Spatiotemporal receptive field

TC:

Thalamocortical cell

V1:

Primary visual cortex

References

  • Adams NC, Lozsádi DA, Guillery RW (1997) Complexities in the thalamocortical and corticothalamic pathways. Eur J Neurosci 9(2):204–209

    Article  PubMed  CAS  Google Scholar 

  • Anderson JS, Carandini M, Ferster D (2000) Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J Neurophysiol 84(2):909–926

    PubMed  CAS  Google Scholar 

  • Atick JJ, Redlich AN (1990) Towards a theory of early visual processing. Neural Comput 2:308–320

    Article  Google Scholar 

  • Bal T, Debay D, Destexhe A (2000) Cortical feedback controls the frequency and synchrony of oscillations in the visual thalamus. J Neurosci 20(19):7478–7488

    PubMed  CAS  Google Scholar 

  • Bickle J, Bernstein M, Heatley M, Worley C, Stiehl S (1999) A functional hypothesis for LGN-V1-TRN connectivities suggested by computer simulation. J Comput Neurosci 6(3):251–261

    Article  PubMed  CAS  Google Scholar 

  • Cai D, DeAngelis GC, Freeman RD (1997) Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J Neurophysiol 78(2):1045–1061

    PubMed  CAS  Google Scholar 

  • Castro-Alamancos MA, Calcagnotto ME (2001) High-pass filtering of corticothalamic activity by neuromodulators released in the thalamus during arousal: in vitro and in vivo. J Neurophysiol 85(4):1489–1497

    PubMed  CAS  Google Scholar 

  • Contreras D, Curro Dossi R, Steriade M (1993) Electrophysiological properties of cat reticular thalamic neurones in vivo. J Physiol 470:273–294

    PubMed  CAS  Google Scholar 

  • Crick F (1984) Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci USA 81(14):4586–4590

    Article  PubMed  CAS  Google Scholar 

  • Dan Y, Atick J, Reid R (1996) Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. J Neurosci 16:3351–3362

    PubMed  CAS  Google Scholar 

  • DeAngelis GC, Ohzawa I, Freeman RD (1993) Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. II. Linearity of temporal and spatial summation. J Neurophysiol 69(4):1118–1135

    PubMed  CAS  Google Scholar 

  • DeAngelis GC, Ohzawa I, Freeman RD (1995) Receptive-field dynamics in the central visual pathways. Trends Neurosci 18(10):451–458

    Article  PubMed  CAS  Google Scholar 

  • DeAngelis GC, Ghose GM, Ohzawa I, Freeman RD (1999) Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. J Neurosci 19(10):4046–4064

    PubMed  CAS  Google Scholar 

  • Denham MJ, Borisyuk RM (2000) A model of theta rhythm production in the septal-hippocampal system and its modulation by ascending brain stem pathways. Hippocampus 10(6):698–716

    Article  PubMed  CAS  Google Scholar 

  • Destexhe A (1999) Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents?. Eur J Neurosc 11(6):2175–2181

    Article  CAS  Google Scholar 

  • Destexhe A, Contreras D, Steriade M (1998) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J Neurophysiol 79(2): 999–1016

    PubMed  CAS  Google Scholar 

  • DiCarlo JJ, Johnson KO (2000) Spatial and temporal structure of receptive fields in primate somatosensory area 3b: effects of stimulus scanning direction and orientation. J Neurosci 20(1): 495–510

    PubMed  CAS  Google Scholar 

  • Dong D, Atick J (1995) Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus. Network 6:159–178

    Article  Google Scholar 

  • Gentet LJ, Ulrich D (2003) Strong, reliable and precise synaptic connections between thalamic relay cells and neurones of the nucleus reticularis in juvenile rats. J Physiol 546(3):801–811

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CD, Kelly JP (1975) The projections of cells in different layers of the cat’s visual cortex. J Comp Neurol 163(1):81–105

    Article  PubMed  CAS  Google Scholar 

  • Ghazanfar AA, Nicolelis MA (2001) The structure and function of dynamic cortical and thalamic receptive fields. Cerebral Cortex 11(3):183–193

    Article  PubMed  CAS  Google Scholar 

  • Golomb D, Kleinfeld D, Reid RC, Shapley RM, Shraiman BI (1994) On temporal codes and the spatiotemporal response of neurons in the lateral geniculate nucleus. J Neurophysiol 72(6):2990–3003

    PubMed  CAS  Google Scholar 

  • Hayot F, Tranchina D (2001) Modeling corticofugal feedback and the sensitivity of lateral geniculate neurons to orientation discontinuity. Vis Neurosci 18(6):865–877

    PubMed  CAS  Google Scholar 

  • Hirsch JA, Gallagher CA, Alonso JM, Martinez LM (1998) Ascending projections of simple and complex cells in layer 6 of the cat striate cortex. J Neurosci 18(19):8086–8094

    PubMed  CAS  Google Scholar 

  • Hirsch JA, Martinez LM, Alonso M, Desai K, Pillai C, Pierre C (2002) Synaptic physiology of the flow of information in the cat’s visual cortex in vivo. J Physiol 540(1):335–350

    Article  PubMed  CAS  Google Scholar 

  • Hubel D, Wiesel T (1961) Integrative action in the cat’s lateral geniculate body. J Physiol 155:385–398

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    PubMed  CAS  Google Scholar 

  • Huertas MA, Groff JR, Smith GD (2005) Feedback inhibition and throughput properties of an integrate-and-fire-or-burst network model of retinogeniculate transmission. J Computat Neurosci 19(2):147–80

    Article  Google Scholar 

  • Kirkland KL, Sillito AM, Jones HE, West DC, Gerstein GL (2000) Oscillations and long-lasting correlations in a model of the lateral geniculate nucleus and visual cortex. J Neurophysiol 84(4):1863–1868

    PubMed  CAS  Google Scholar 

  • Landisman CE, Connors BW (2007) VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback. Cerebr Cortex Advance Access published on 26 March 2007

  • Landisman CE, Long MA, Beierlein M, Deans MR, Paul DL, Connors BW (2002) Electrical synapses in the thalamic reticular nucleus. J Neurosci 22(3):1002–1009

    PubMed  CAS  Google Scholar 

  • Le Masson G, Renaud-Le Masson S, Debay D, Bal T (2002) Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature 417(6891):854–858

    Article  PubMed  CAS  Google Scholar 

  • Lesica NA, Stanley GB (2004) Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. J Neurosci 24:10731–10740

    Article  PubMed  CAS  Google Scholar 

  • Liu XB, Jones EG (1999) Predominance of corticothalamic synaptic inputs to thalamic reticular nucleus neurons in the rat. J Comp Neurol 414(1):67–79

    Article  PubMed  CAS  Google Scholar 

  • Mastronarde D (1987) Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. J Neurophysiol 57:357–380

    PubMed  CAS  Google Scholar 

  • Marrocco R, McClurkin J, Alkire M (1996) The influence of the visual cortex on the spatiotemporal response properties of lateral geniculate nucleus cells. Brain Res 737:110–118

    Article  PubMed  CAS  Google Scholar 

  • Mayer J, Schuster HG, Claussen JC (2006) Role of inhibitory feedback for information processing in thalamocortical circuits. Phys Rev E 73(3 Pt 1):031908

    Article  CAS  Google Scholar 

  • McAlonan K, Brown VJ, Bowman EM (2000) Thalamic reticular nucleus activation reflects attentional gating during classical conditioning. J Neurosci 20(23):8897–8901

    PubMed  CAS  Google Scholar 

  • Miller LM, Escabi MA, Read HL, Schreiner CE (2002) Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. J Neurophysiol 87(1):516–527

    PubMed  Google Scholar 

  • Montero VM (1991) A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus. Exp Brain Res 86(2):257–270

    Article  PubMed  CAS  Google Scholar 

  • Montero VM (2000) Attentional activation of the visual thalamic reticular nucleus depends on ‘top–down’ inputs from the primary visual cortex via corticogeniculate pathways. Brain Res 864(1): 95–104

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P, Kaplan E (1995) Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling. J Neurophysiol 74:1222–1243

    PubMed  CAS  Google Scholar 

  • Murphy PC, Duckett SG, Sillito AM (1999) Feedback connections to the lateral geniculate nucleus and cortical response properties. Science 286(5444):1552–1554

    Article  PubMed  CAS  Google Scholar 

  • Reid RC, Soodak RE, Shapley RM (1991) Directional selectivity and spatiotemporal structure of the receptive field of simple cells in cat striate cortex. J Neurophysiol 66:505–529

    PubMed  CAS  Google Scholar 

  • Reid RC, Alonso JM (1995) Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378(6554):281–284

    Article  PubMed  CAS  Google Scholar 

  • Reid RC, Shapley RM (2002) Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. J Neurosci 22(14):6158–6175

    PubMed  CAS  Google Scholar 

  • Reid RC, Victor JD, Shapley RM (1997) The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis Neurosci 14(6):1015–1027

    Article  PubMed  CAS  Google Scholar 

  • Ringach DL (2004) Mapping receptive fields in primary visual cortex. J Physiol 558(3):717–728

    Article  PubMed  CAS  Google Scholar 

  • Sillito AM, Jones HE (2002) Corticothalamic interactions in the transfer of visual information. Philos Trans R Soc Lond B Biol Sci 357:1739–1752

    Article  PubMed  Google Scholar 

  • Suffczynski P, Kalitzin S, Pfurtscheller G, da Silva FH (2001) Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. Int J Psychophysiol 43(1):25–40

    Article  PubMed  CAS  Google Scholar 

  • Terman D, Bose A, Kopell N (1996) Functional reorganization in thalamocortical networks: transition between spindling and delta sleep rhythms. Proc Nat Acad Sci USA 93(26):15417–15422

    Article  PubMed  CAS  Google Scholar 

  • Truccolo W, Dong D (2001) Dynamic temporal decorrelation: an information-theoretic and biophysical model of the functional role of the lateral geniculate nucleus. Neurocomput 38–40:993–1001

    Article  Google Scholar 

  • Tsodyks MV, Skaggs WE, Sejnowski TJ, McNaughton BL (1997) Paradoxical effects of external modulation of inhibitory interneurons. J Neurosci 17(11):4382–4388

    PubMed  CAS  Google Scholar 

  • Turner JP, Anderson CM, Williams SR, Crunelli V (1997) Morphology and membrane properties of neurons in the cat ventrobasal thalamus in vitro. J Physiol 505(3):707–726

    Article  PubMed  CAS  Google Scholar 

  • Uhlrich DJ, Tamamaki N, Sherman SM (1990) Brainstem control of response modes in neurons of the cat’s lateral geniculate nucleus. Proc Nat Acad Sci USA 87(7):2560–2563

    Article  PubMed  CAS  Google Scholar 

  • Ulrich D, Huguenard JR (1996) Gamma-aminobutyric acid type B receptor-dependent burst-firing in thalamic neurons: a dynamic clamp study. Proc Nat Acad Sci USA 93(23):13245–13249

    Article  PubMed  CAS  Google Scholar 

  • Usrey WM, Reppas JB, Reid RC (1999) Specificity and strength of retinogeniculate connections. J Neurophysiol 82:3527–3540

    PubMed  CAS  Google Scholar 

  • Van Horn SC, Erisir A, Sherman SM (2000) Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. J Comp Neurol 416(4):509–520

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Bickford ME, Van Horn SC, Erisir A, Godwin DW, Sherman SM (2001) Synaptic targets of thalamic reticular nucleus terminals in the visual thalamus of the cat. J Comp Neurol 440(4):321–341

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Jones HE, Andolina IM, Salt TE, Sillito AM (2006) Functional alignment of feedback effects from visual cortex to thalamus. Nat Neurosci 9(10):1330–1336

    Article  PubMed  CAS  Google Scholar 

  • Weese GD, Phillips JM, Brown VJ (1999) Attentional orienting is impaired by unilateral lesions of the thalamic reticular nucleus in the rat. J Neurosci 19(22):10135–10139

    PubMed  CAS  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24

    PubMed  CAS  Google Scholar 

  • Yousif NAB, Denham MJ (2005) A population-based model of the nonlinear dynamics of the thalamocortical feedback network displays intrinsic oscillations in the spindling (7–14 Hz) range. Eur J Neurosc 22:3179–3187

    Article  Google Scholar 

  • Zhu J, Uhlrich D, Lytton W (1999) Burst firing in identified rat geniculate interneurons. Neuroscience 91:1445–1460

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nada Yousif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yousif, N., Denham, M. The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational modelling study. Biol Cybern 97, 269–277 (2007). https://doi.org/10.1007/s00422-007-0171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0171-3

Keywords

Navigation