Skip to main content
Log in

Tuning bat LSO neurons to interaural intensity differences through spike-timing dependent plasticity

  • Letter to the Editor
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Bats, like other mammals, are known to use interaural intensity differences (IID) to determine azimuthal position. In the lateral superior olive (LSO) neurons have firing behaviors which vary systematically with IID. Those neurons receive excitatory inputs from the ipsilateral ear and inhibitory inputs from the contralateral one. The IID sensitivity of a LSO neuron is thought to be due to delay differences between the signals coming from both ears, differences due to different synaptic delays and to intensity-dependent delays. In this paper we model the auditory pathway until the LSO. We propose a learning scheme where inputs to LSO neurons start out numerous with different relative delays. Spike timing-dependent plasticity (STDP) is then used to prune those connections. We compare the pruned neuron responses with physiological data and analyse the relationship between IID’s of teacher stimuli and IID sensitivities of trained LSO neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aytekin M, Grassi E, Sahota M and Moss CF (2004). The bat head-related transfer function reveals binaural cues for sound localization in azimuth and elevation. J Acoust Soc Am 116(6): 3594–3605

    Article  PubMed  Google Scholar 

  2. Brainard MS, Knudsen EI and Esterly SD (1992). Neural derivation of sound source location: resolution of spatial ambiguities in binaural cues. J Acoust Soc Am 91(2): 1015–1027

    Article  PubMed  CAS  Google Scholar 

  3. Burkitt AN (2006). A review of the integrate-and-fire neuron model: II. inhomogeneous synaptic input and network properties. Biol Cybern 95(2): 97–112

    Article  PubMed  CAS  Google Scholar 

  4. Fuzessery ZM (1996). Monaural and binaural spectral cues created by the external ears of the pallid bat. Hear Res 95(1): 1–17

    Article  PubMed  CAS  Google Scholar 

  5. Gerstner W and Kistler WM (2002). Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Cambridge

    Google Scholar 

  6. Heil P and Irvine DRF (1997). First-spike timing of auditory-nerve fibers and comparison with auditory cortex. J Neurophysiol 78(5): 2438–2454

    PubMed  CAS  Google Scholar 

  7. Joris PX, Smith PH and Yin TC (1994). Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. responses in the tuning curve tail. J Neurophysiol 71(3): 1037–1051

    PubMed  CAS  Google Scholar 

  8. Kempter R, Gerstner W and Hemmen JL (1999). Hebbian learning and spiking neurons. Phys Rev E 59(4): 4498–4514

    Article  CAS  Google Scholar 

  9. Klug A, Khan A, Burger RM, Bauer EE, Hurley LM, Yang L, Grothe B, Halvorsen MB and Park TJ (2000). Latency as a function of intensity in auditory neurons: influences of central processing. Hear Res 148(1-2): 107–123

    Article  PubMed  CAS  Google Scholar 

  10. Krishna BS (2002). An unified mechanism for spontaneous-rate and first-spike timing in the auditory nerve. J Comput Neurosci 13(2): 71–91

    Article  PubMed  Google Scholar 

  11. Leibold C and Hemmen JL (2002). Mapping time. Biol Cybern 87(5-6): 428–439

    Article  PubMed  CAS  Google Scholar 

  12. Leibold C and Van Hemmen JL (2005). Spiking neurons learning phase delays: how mammals may develop auditory time difference sensitivity. Phys Rev Lett 94(16): 168102

    Article  PubMed  Google Scholar 

  13. Park TJ, Grothe B, Pollak GD, Schuller G and Koch U (1996). Neural delays shape selectivity to interaural intensity differences in the lateral superior olive. J Neurosci 16(20): 6554–6566

    PubMed  CAS  Google Scholar 

  14. Park TJ, Monsivais P and Pollak GD (1997). Processing of interaural intensity differences in the lso: role of interaural threshold differences. J Neurophysiol 77(6): 2863–2878

    PubMed  CAS  Google Scholar 

  15. Reed MC and Blum JJ (1990). A model for the computation and encoding of azimuthal information by the lateral superior olive. J Acoust Soc Am 88(3): 1442–1453

    Article  PubMed  CAS  Google Scholar 

  16. Saillant PA, Simmons JA, Dear SP and McMullen TA (1993). A computational model of echo processing and acoustic imaging in frequency-modulated echolocating bats: the spectrogram correlation and transformation receiver. J Acoust Soc Am 94(5): 2691–2712

    Article  PubMed  CAS  Google Scholar 

  17. Sanes DH (1990). An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive. J Neurosci 10: 3494–3506

    PubMed  CAS  Google Scholar 

  18. Sanes DH and Friauf E (2000). Development and influence of inhibition in the lateral superior olivary nucleus. Hear Res 147(1): 46–58

    Article  PubMed  CAS  Google Scholar 

  19. Shi RZ and Horiuchi TK (2007). A neuromorphic VLSI model of bat interaural level difference processing for azimuthal echolocation. IEEE Trans Circuits Syst 54(1): 74–88

    Article  Google Scholar 

  20. Sumner CJ, Lopez-Poveda EA, O’Mard LP and Meddis R (2002). A revised model of the inner-hair cell and auditory-nerve complex. J Acoust Soc Am 111(5): 2178–2188

    Article  PubMed  Google Scholar 

  21. Sumner CJ, O’Mard LP, Lopez-Poveda EA and Meddis R (2003). A non-linear filter-bank model of the guinea-pig cochlear nerve: rates responses. J Acoust Soc Am 113(6): 3264–3274

    Article  PubMed  Google Scholar 

  22. Surlykke A and Moss CF (2000). Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. J Acoust Soc Am 108(5): 2419–2429

    Article  PubMed  CAS  Google Scholar 

  23. Tollin DJ (2003). The lateral superior olive: a functional role in sound source localization. Neuroscientist 9(2): 127–143

    Article  PubMed  Google Scholar 

  24. Walker VA, Peremans H and Hallam JCT (2003). An investigation of active reception mechanisms for echolocators. In: Thomas, JA, Moss, CF, and Vater, M (eds) Echolocation in bats and dolphins, pp 507–514. University of Chicago Press, Chicago

    Google Scholar 

  25. Yost WA (2000). Fundamentals of hearing: an introduction, 4th edn. Academic, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Fontaine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontaine, B., Peremans, H. Tuning bat LSO neurons to interaural intensity differences through spike-timing dependent plasticity. Biol Cybern 97, 261–267 (2007). https://doi.org/10.1007/s00422-007-0178-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0178-9

Keywords

Navigation