Skip to main content

Advertisement

Log in

Physiologically based calculation of steady-state evoked potentials and cortical wave velocities

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Steady-state evoked potentials (SSEPs) elicited by sinusoidal stimuli are predicted from a physiologically-based model, including bielectrode and volume conduction effects. Comparison with visual SSEPs yields constraints on phase and latency of the retinothalamic transfer function that are consistent with experiment. Predictions of phase velocities measured as SSEPs cross the cortex are consistent with low values measured for slow waves in sleep, while resonant behavior induced by corticothalamic loops, especially near the alpha peak, contributes to wide scatter in waking-state phase velocity measurements comparable to effects from volume conduction. The common use of bielectrode derivations to compensate for volume conduction effects is examined and shown to be incomplete, tending to lead to underestimates of phase velocity, especially at low frequencies and near the alpha peak, due to incorrect elimination of true long-wavelength contributions to the SSEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (eds) (1965) Handbook of mathematical functions. Dover

  • Bijl GK and Veringa F (1985). Neural conduction time and steady-state evoked potentials. Electroencephalogr Clin Neurophysiol 62: 465

    Article  PubMed  CAS  Google Scholar 

  • Braitenberg V and Schüz A (1998). Cortex: Statistics and geometry of neuronal connectivity, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N and Robinson PA (2006). A unifying explanation of generalized seizures through nonlinear brain modeling and bifurcation analysis. Cerebral Cortex 16: 1296

    Article  PubMed  CAS  Google Scholar 

  • Burkitt GR, Silberstein RB, Cadusch PJ and Wood AW (2000). Steady-state visual evoked potentials and travelling waves. Clin Neurophysiol 111: 246

    Article  PubMed  CAS  Google Scholar 

  • Celesia GG, Peachey NS (1999) In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography, basic principles, clinical applications, and related fields, 4th edn. Williams and Wilkins

  • Falsini B and Porciatti V (1996). The temporal frequency response function of pattern ERG and VEP: changes in optical neuritis. Electroencephalogr Clin Neurophysiol 100: 428

    PubMed  CAS  Google Scholar 

  • Freeman WJ (1975). Mass action in the nervous system. Academic, New York

    Google Scholar 

  • Henderson JA, Phillips AJK and Robinson PA (2006). Multielectrode EEG power spectra: theory and application to approximate correction of volume conduction effects. Phys Rev E 73: 051918

    Article  CAS  Google Scholar 

  • Jirsa VK and Haken H (1996). Field theory of electromagnetic brain activity. Phys Rev Lett 77: 960

    Article  PubMed  CAS  Google Scholar 

  • Kelly DH (1961). Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements. J Opt Soc Am 51: 422

    Article  PubMed  CAS  Google Scholar 

  • Klemm WR, Gibbons WD, Allen RG and Harrison JM (1982). Differences amont humans in steady-state evoked potentials: evaluation of alpha activity, attentiveness and cognitive awareness of perceptual effectiveness. Neuropsychologia 20: 317

    Article  PubMed  CAS  Google Scholar 

  • Lopes da Silva FH, Hoeks A, Smits H and Zetterberg LH (1974). Model of brain rhythmic activity: the alpha rhythm of the thalamus. Kybernetic 15: 27

    Article  CAS  Google Scholar 

  • Massimini M, Huber R, Ferrarelli F, Hill S and Tononi G (2004). The sleep oscillation as a traveling wave. J Neurosci 24: 6862

    Article  PubMed  CAS  Google Scholar 

  • Nunez PL (1974a). The brain wave equation: a model for EEG. Math Biosci 21: 279

    Article  Google Scholar 

  • Nunez PL (1974b). Wave-like properties of the alpha rhythm. IEEE Trans Biomed Eng 21: 473

    Article  Google Scholar 

  • Nunez PL (1995). Neocortical dynamics and human EEG rhythms. Oxford University Press, Oxford

    Google Scholar 

  • Nunez PL and Srinivasan R (2006). Electric fields of the brain: the neurophysics of EEG, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • O’Connor SC and Robinson PA (2003). Wave-number spectrum of electrocorticographic signals. Phys Rev E 67: 051912

    Article  CAS  Google Scholar 

  • Rager G and Singer W (1998). The response of cat visual cortex to flicker stimuli of variable frequency. Eur J Neurosci 10: 1856

    Article  PubMed  CAS  Google Scholar 

  • Regan D (1978). Assessment of visual acuity by evoked potential recording: ambiguity caused by temporal dependence of spatial frequency selectivity. Vis Res 18: 439

    Article  PubMed  CAS  Google Scholar 

  • Regan D (1989). Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, Amsterdam

    Google Scholar 

  • Rennie CJ, Robinson PA and Wright JJ (2002). Unified neurophysical model of EEG spectra and evoked potentials. Biol Cybern 86: 457

    Article  PubMed  CAS  Google Scholar 

  • Robinson DL (1983). An analysis of human EEG responses in the alpha range of frequencies. Int J Neurosci 22: 81

    Article  PubMed  CAS  Google Scholar 

  • Robinson PA (2005). Propagator theory of brain dynamics. Phys Rev E 72: 011904

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ and Wright JJ (1997). Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E 56: 826

    Article  CAS  Google Scholar 

  • Robinson PA, Loxley PN, O’Connor SC and Rennie CJ (2001a). Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. Phys Rev E 63: 041909

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Wright JJ, Bahramali H, Gordon E and Rowe DL (2001b). Prediction of electroencephalographic spectra from neurophysiology. Phys Rev E 63: 021903

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ and Rowe DL (2002). Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65: 041924

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL and O’Connor SC (2004). Estimation of multiscale neurophysiological parameters by electroencephalographic means. Human Brain Mapp 23: 53

    Article  CAS  Google Scholar 

  • Rowe DL, Robinson PA and Rennie CJ (2004). Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. J Theor Biol 231: 413

    Article  PubMed  Google Scholar 

  • Shaw J (2003). The brain’s alpha rhythms and the mind. Elsevier, Amsterdam

    Google Scholar 

  • Sherman SM and Guillery RW (2001). Exploring the thalamus. Academic Press, New York

    Google Scholar 

  • Silberstein RB, Nunez PL, Pipingas A, Harris P and Danieli F (2001). Steady-state visually evoked potential (SSVEP) topography in a graded working memory task. Int J Psychophysiol 42: 219

    Article  PubMed  CAS  Google Scholar 

  • Spekreijse H (1966) Analysis of EEG responses in man evoked by sine-wave modulated light. Junk

  • Stam CJ, Pijn J, Suffczynski P and Lopes da Silva FH (1999). Dynamics of the alpha rhythm: evidence for nonlinearity?. Clin Neurophysiol 110: 1801

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Jones EG and McCormick DA (1997). Thalamus, 2 vols. Elsevier, Amsterdam

    Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Sleigh JW and Liley DTJ (1999). Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition. Phys Rev E 60: 7299

    Article  CAS  Google Scholar 

  • Toi VV, Burckhardt CW and Grounauer P-A (1991). Irregularities in the flicker sensitivity curve. Appl Opt 30: 2113

    Google Scholar 

  • Wilson HR and Cowan JD (1973). A mathematical theory for the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13: 55

    Article  PubMed  CAS  Google Scholar 

  • Wright JJ and Liley DTJ (1996). Dynamics of the brain at global and microscopic scales: neural networks and the EEG. Behav Brain Sci 19: 285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, P.A., Chen, Pc. & Yang, L. Physiologically based calculation of steady-state evoked potentials and cortical wave velocities. Biol Cybern 98, 1–10 (2008). https://doi.org/10.1007/s00422-007-0191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0191-z

Keywords

Navigation