Skip to main content
Log in

A model of cardinality blindness in inferotemporal cortex

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A classifier is cardinality invariant if it can classify more than one token of a single type at a time. We present a convolutional neural network (CNN) model of inferotemporal cortex (IT) and show that it is cardinality invariant. While the CNN is designed with translation invariance in mind, cardinality invariance is an emergent property. We speculate that translation invariance may lead to cardinality invariance in general, and particularly in IT. Recent investigations have shown that cells in IT are indeed cardinality blind. We also explore the implications of a cardinality blind classifier for vision overall, concentrating on visual attention and search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Corbett GG (2000) Number. Cambridge textbooks in linguistics. Cambridge University Press, Cambridge

    Google Scholar 

  • DiCarlo JJ, Maunsell JHR (2003) Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. J Neurophysiol 89: 3264–278

    Article  PubMed  Google Scholar 

  • Duncan J, Humphreys GW (1989) Visual search and stimulus similarity. Psychol Rev 91(3): 433–58

    Article  Google Scholar 

  • Gillam B (2001) Varieties of grouping and its role in determining surface layout. In: Shipley T, Kellman P (eds) From fragments to objects: segmentation and grouping in vision. Elsevier, Amsterdam, pp 247–64

    Chapter  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1): 20–5

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden A (1975) Some evidence for a limited capacity parallel selfterminating process in simple visual search tasks. Acta Psychol 39: 21–1

    Article  Google Scholar 

  • Hubel DH, Wiesel T (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195: 215–43

    CAS  PubMed  Google Scholar 

  • LeCun Y, Bengio Y (1995) Convolutional networks for images, speech, and time-series. In: Arbib MA (eds) The handbook of brain theory and neural networks. MIT Press, Cambridge

    Google Scholar 

  • LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1992) Handwritten digit recognition with a back-propagation network. In: Lisboa PGJ (eds) Neural networks: Current applications. Chapman and Hall, London

    Google Scholar 

  • Logothetis NK, Sheinberg DL (1996) Visual object recognition. Ann Rev Neurosci 19: 577–21

    Article  CAS  PubMed  Google Scholar 

  • Marr D (1982) Vision: A Computational investigation into the human representation and processing of visual information. W.H. Freeman, San Francisco

    Google Scholar 

  • Mesulam MM (1998) From sensation to cognition. Brain 121: 1013–052

    Article  PubMed  Google Scholar 

  • Mozer MC, Sitton M (1998) Computational modeling of spatial attention. In: Pashler HE (eds) Attention. Psychology Press, Hove, pp 341–93

    Google Scholar 

  • Nieder A, Miller EK (2004) A parieto-frontal network for visual numerical information in the monkey. Proc Nat Acad Sci 101(19): 7457–462

    Article  CAS  PubMed  Google Scholar 

  • Riedmiller M (1994) Rprop - description and implementation details. Tech. rep., Institut für Logik, Komplexität und Deduktionssyteme, University of Karlsruhe

  • Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nature Neurosci 2(11): 1019–025

    Article  CAS  PubMed  Google Scholar 

  • Riesenhuber M, Poggio T (2002) Neural mechanisms of object recognition. Current Opin Neurobiol 12: 162–68

    Article  CAS  Google Scholar 

  • Ritter E (1988) A head-movement approach to construct-state noun phrases. Linguistics 26: 909–29

    Article  Google Scholar 

  • Ritter E (1995) On the syntactic category of pronouns and agreement. Natural Lang Linguist Theory 13: 405–43

    Article  Google Scholar 

  • Rumelhart D, Hinton G, Williams R (1986) Learning internal representations by error propagation. In: Parallel distributed processing: explorations in the microstructures of cognition, vol 1: Foundations. MIT Press, Cambridge, chap 8, pp 318–62

  • Serre T, Kouh M, Cadieu C, U Knoblich GK, Poggio T (2005) A theory of object recognition: Computations and circuits in the feedforward path of the ventral stream in primate visual cortex. Tech. Rep. MIT-CSAIL-TR-2005-082, MIT

  • Treisman A (1998) The perception of features and objects. In: Wright R (ed) Visual attention, chap 2. Oxford University Press, pp 27–3

  • Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogni Psychol 12: 97–36

    Article  CAS  Google Scholar 

  • Ungerleider LA, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJ (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–86

    Google Scholar 

  • Zamparelli R (2000) Layers in the determiner phrase. Garland, New York

    Google Scholar 

  • Zoccolan D, Cox DD, DiCarlo JJ (2005) Multiple object response normalization in monkey inferotemporal cortex. J Neurosci 25(36): 8150–164

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayden Walles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walles, H., Knott, A. & Robins, A. A model of cardinality blindness in inferotemporal cortex. Biol Cybern 98, 427–437 (2008). https://doi.org/10.1007/s00422-008-0229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0229-x

Keywords

Navigation