Skip to main content

Advertisement

Log in

Performance limitations from delay in human and mechanical motor control

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We discuss natural limitations on motor performance caused by the time delay required for feedback signals to propagate within the human body or mechanical control systems. By considering a very simple delayed linear servomechanism model, we show there exists a best possible speed-accuracy trade-off similar to Fitts’ law that cannot be exceeded when delay is present. This is strictly a delay effect and does not occur for the ideal case of instantaneous feedback. We then examine the performance of the vector integration to endpoint (VITE) circuit as a model of human movement and show that when this circuit is generalized to include delayed feedback the performance may not exceed that of the servomechanism with an equal delay. We suggest the existence of such a limitation may be a ubiquitous consequence of delay in motor control with the implication that the index of performance in Fitts’ law cannot arbitrarily large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Admon-Snir H, Segev I (1993) Signal delay and input synchronization in passive dendritic structures. J Neurophysiol 70: 2066–2085

    Google Scholar 

  • Bullock D, Grossberg S (1988) Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev 95: 49–90

    Article  PubMed  CAS  Google Scholar 

  • Bullock D, Grossberg S (1989) VITE and FLETE: neural modules for the trajectory formation and postural control. In: Hershberger W(eds) Volitional action. North-Holland, Amsterdam, pp 253–297

    Chapter  Google Scholar 

  • Bullock D, Grossberg S (1991) Adaptive neural networks for control of movement trajectories invariant under speed and force rescaling. Hum Mov Sci 10: 3–53

    Article  Google Scholar 

  • Bullock D, Grossberg S (1992) Emergence of tri-phasic muscle activation from the nonlinear interactions of central and spinal neural network circuits. Hum Mov Sci 11: 157–167

    Article  Google Scholar 

  • Bullock D, Cisek P, Grossberg S (1998) Cortical networks for control of voluntary arm movements under variable force conditions. Cereb Cortex 8: 48–62

    Article  PubMed  CAS  Google Scholar 

  • Beamish D, Bhatti SA, MacKenzie IS, Wu J (2006a) 50 years later: a neurodynamic explanation of Fitts’ law. J R Soc Interface 3: 649–654

    Article  PubMed  Google Scholar 

  • Beamish D, MacKenzie IS, Wu J (2006b) Speed-accuracy trade-off of planned arm movements with delayed feedback. Neural Netw 19: 582–599

    Article  PubMed  CAS  Google Scholar 

  • Beamish D, Peskun C, Wu J (2005) Critical delay for overshooting in planned arm movements with delayed feedback. J Math Biol 50(1): 22–48

    Article  PubMed  Google Scholar 

  • Barrett NC, Glencross DJ (1989) Response amendments during manual aiming movements to double-step targets. Acta Psychol 70: 205–217

    Article  CAS  Google Scholar 

  • Burke D, Gracies JM, Mazevet D, Meunier S, Pierrot-Deseilligny E (1994) Non-monosynaptic transmission of the cortical command for voluntary movement in man. J Physiol 480: 191–202

    PubMed  Google Scholar 

  • Cabrera JL, Milton JG (2002) On-off intermittency in a human balancing task. Phys Rev Lett 89: 158702

    Article  PubMed  Google Scholar 

  • Cabrera JL, Milton JG (2004) Human stick balancing: tuning Levy flights to improve balance control. Chaos 14: 691–698

    Article  PubMed  Google Scholar 

  • Cabrera JK, Borman R, Eurich C, Ohira T, Milton JG (2004) State-dependent noise and human balance control. Fluct Noise Lett 4: L107–L117

    Article  Google Scholar 

  • Carr CE, Konishi M (1988) Axonal delay lines for time measurement in the owl’s brainstem. Proc Nat Acad Sci USA 85: 831–8315

    Article  Google Scholar 

  • Cisek P, Grossberg S, Bullock D (1998) A cortico-spinal model of reaching and prioprioception under multiple task constraints. J Cogn Neurosci 10: 425–444

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Vidal JL, Grossberg S, Bullock D (1997) A neural model of cerebellar learning for arm movement control: cortico-spino-cerebellar dynamics. Learn Mem 3: 475–502

    Article  PubMed  CAS  Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47: 381–391

    Article  PubMed  CAS  Google Scholar 

  • Fitts PM (1964) The information capacity of discrete motor responses. J Exp Psychol 67: 103–112

    Article  PubMed  CAS  Google Scholar 

  • Grossberg S, Kuperstein M (1986) Neural dynamics of adaptive sensory-motor control: Ballistic eye movements. Elseview/North-Holland, Amsterdam

    Book  Google Scholar 

  • Hale J (1977) Theory of functional differential equations. Springer, New York

    Google Scholar 

  • Hartzell EJ, Dunbar S, Beveridge R, Cortilla R (1983) Helicopter pilot response latency as a function of the spatial arrangement of instruments and controls. In: George FL (ed.) Proceedings of the 18th annual conference on manual control, Dayton, pp 345-364

  • Hollerback JM, Moore SP, Atkeson CG (1986) Workspace effect in arm movement kinematics derived from joint interpolation. In: Gantchev G, Dimitrov G, Gatev P (eds) Motor Control Plenum Press New York, pp 197–208

  • Insperger T (2006) Act-and-wait concept for continuous-time control systems with feedback delay. IEEE Trans Control Syst Technol 14: 974–977

    Article  Google Scholar 

  • ISO (2002) Reference Number ISO 9241-9:2000(E): Ergonomic requirements for office work with visual display terminals (VTDs)-part 9-requirements for non-keyboard input devices. International Organization for Standardization

  • Keele SW, Posner MI (1968) Processing of visual feedback in rapid movements. J Exp Psychol 77: 155–158

    Article  PubMed  CAS  Google Scholar 

  • Kvalseth TO (1977) A generalized model of temporal motor control subject to movement constraints. Ergonomics 20: 41–50

    Article  Google Scholar 

  • Kvalseth TO (1981) Information capacity of two-dimensional human motor responses. Ergonomics 24: 573–757

    Article  PubMed  CAS  Google Scholar 

  • Leonard CT (1998) The neuroscience of human movement. Mosby-Year Book, Inc., St. Louis

  • Macdonald N (1989) Biological delay systems: linear stability theory. Cambridge University Press, London

    Google Scholar 

  • Macefield G, Gandevia S (1992) Peripheral and central delays in the cortical projections from the human truncal muscles. Brain 115: 123–135

    Article  PubMed  Google Scholar 

  • MacKenzie IS (1989) A note on the information-theoretic basis for Fitts’ Law. J Motor Behav 21: 323–330

    CAS  Google Scholar 

  • MacKenzie IS (1991) Fitts law as a performance model in human-computer interaction. Doctoral dissertation, University of Toronto

  • MacKenzie IS (1993) Lag as a determinant of human performance in interactive systems. In: Proceedings of the ACM conference on huma factors in computing systems. INTERCHI ’93, pp 488-493

  • MacKenzie IS, Soukoreff RW (2004) Towards a standard for pointing device evaluation, perspectives on 27 years of Fitts’ law research in HCI. Int J Hum-Comput Stud 61: 751–789

    Article  Google Scholar 

  • Miall RC (1996) Task dependent changes in visual feedback control: a frequency analysis of human manual tracking. J Motor Behav 28(2): 125–135

    Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9: 1265–1279

    Article  PubMed  Google Scholar 

  • Milton JG (1996) Dynamics of small neural populations. CRM Monograph Series, vol 7, American Mathematical Society, Providence

  • Moreau L, Sontag E (2003) Balancing at the edge of stability. Phys Rev Lett 68: 020901

    Google Scholar 

  • Pauvert V, Pierot-Deseilligny E, Rothwell JC (1998) Role of spinal premotoneurons in mediating corticospinal input to forearm motoneurons in man. J Physiol 508.1: 301–312

    Google Scholar 

  • Sabatini BL, Reghr WG (1996) Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384: 170–172

    Article  PubMed  CAS  Google Scholar 

  • Stratford KJ, Tarczy-Hornoch K, Martin KAC, Bannister NJ, Jack JJB (1996) Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature 382: 258–261

    Article  PubMed  CAS  Google Scholar 

  • Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nature Neuroscience 8: 505–511

    PubMed  CAS  Google Scholar 

  • Widder DV (1971) An introduction to transform theory. Academic Press, New York

    Google Scholar 

  • Woodworth RS (1899) The accuracy of voluntary movement. Psychol Rev 3:1-119 (monograph supplement)

    Google Scholar 

  • Wu J (2001) Introduction to neural dynamics and signal transmission delay. De Gruyter series in nonlinear analysis and applications, vol. 6. Walter de Gruyter

  • Ugawa Y, Genba-Shimizu K, Kanazawa I (1995) Electrical stimulation of the human descending motor tracts at several levels. Can J Neurosc 22: 36–42

    CAS  Google Scholar 

  • Zelaznik HN, Hawkings B, Kisselburgh L (1983) Rapid visual feedback processing in single aiming movements. J Motor Behav 15: 217–236

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Beamish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beamish, D., Bhatti, S., Wu, J. et al. Performance limitations from delay in human and mechanical motor control. Biol Cybern 99, 43–61 (2008). https://doi.org/10.1007/s00422-008-0235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0235-z

Keywords

Navigation