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Abstract The aim of this work is to investigate the effect
of the shift-twist symmetry on pattern formation processes in
the visual cortex. First, we describe a generic set of
Riemannian metrics of the feature space of orientation pref-
erence that obeys properties of the shift-twist, translation,
and reflection symmetries. Second, these metrics are embed-
ded in a modified Swift–Hohenberg model. As a result we
get a pattern formation process that resembles the pattern
formation process in the visual cortex. We focus on the final
stable patterns that are regular and periodic. In a third step
we analyze the influences on pattern formation using weakly
nonlinear theory and mode analysis. We compare the results
of the present approach with earlier models.
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Variables
G(x, y, v) Elongated Gaussian distribution
R̂(�), T̂ (�) 2 × 2 rotation matrices
d2

s Distance between stimuli, between receptive
fields and stimuli

x, y, z1, z2 Real-valued features
x, z Complex features
v Feature vector
V Feature space – manifold
ĝ, gi j Metric tensor
a, b, c, h Parameter functions of the metric tensor
β, γ, µ, ν Parameter functions in complex coordinates

1 Introduction

Spike rates of neurons in the visual cortex depend on the type
of visual stimulation. The specific properties of each neuron
are typically investigated by exposing the subject to a stim-
ulus with a certain set of features, e.g., orientation, position
in the visual field, and others. The activity of this neuron is
then recorded with respect to the presented stimulus. Optical
imaging experiments show not only that single neurons show
a preference for certain features, but also that each point of
the cortex surface is activated by a set of specific preferred
stimulus features. Neurons with similar stimulus preferences
tend to be grouped together in one small area on the cortical
surface. These preferences typically change continuously as
a function of the position on the cortex surface and form a
structure which shows a two-dimensional pattern (map) of
a certain wavelength. This is represented by a map from the
cortex to the feature space, called the feature map. The image
of this map roughly covers the whole feature space, i.e., all
possible combinations of features (Swindale et al. 2000).
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Feature maps of the cortex are interesting since experi-
ments have shown their dependence on stimuli (e.g., Löwel
1998). Thus, models of feature maps are often seen as a
result of a stimulus-driven self-organizing process (see, how-
ever, Ernst et al. (2001) for an example of a different type
of model). In particular, computational models of feature
maps in the visual cortex have a long history (Malsburg
1973; Swindale 1996). Most models assume that the visual
cortex undergoes an optimization process of two competing
optimization criteria: (1) optimal folding of the map into the
complete space of preferred stimuli (called the short stim-
ulus space herein) and (2) neighborhood preservation. Both
criteria, optimal coverage and neighborhood preservation,
are dependent on assumptions on the underlying metrics of
the stimulus space, and its features, respectively. One type
of mapping algorithm represents the relevant features inter-
nally as scalar values rather than as activity distributions.
These low-dimensional or feature models give useful quali-
tative insights into corresponding adaptation processes. Sim-
ulations of feature models require relatively little numerical
effort. In addition, theoretical results are available for these
kinds of maps (Ritter et al. 1992).

Alternative high-dimensional approaches internally rep-
resent the activity of afferent geniculate fibers as a distribu-
tion over a two-dimensional array of pixels. Thus, features
such as orientation and retinal position are coded implicitly
as properties of activation patterns and can be extracted by a
subsequent analysis of high-dimensional receptive field data
after the learning process.

Focusing on early and intermediate states of development,
maps from low-dimensional models do not differ essentially
from feature maps that are extracted from their high-
dimensional counterpart. In later stages of the development
the pattern usually converges to a stable fixed point, which
is a periodic pattern.

One important goal is to find quantifiable criteria of equi-
valences between models of the visual cortex and those maps
found in the visual cortex. Several investigations (Wolf 2005;
Wolf and Geisel 1998, 2003) have drawn attention to the
occurrence of annihilation processes of pinwheels and the
density of pinwheels in orientation maps. Pinwheels are
points in the orientation map that neighbor all orientations.
They are prominent and easily detectable from the layout of
any orientation map. In particular, the density of pinwheels on
the maps of orientation preferences after long learning pro-
cesses has been investigated in the last cited works. Based
on the analysis of feature models it was shown therein that,
for some classes of model, no stable nonvanishing pinwheel
density exists if the lateral interaction between the neurons
is restricted to nearest-neighbor interactions. However, many
types of stable patterns that contained pinwheels could be
constructed by adding nonlocal nonlinear interaction kernels
to the dynamic equation. The conclusion that was drawn from

these works was that the lateral long-range connections in the
cortex are responsible for the appearance of nonvanishing
pinwheels in adult animals. In this work only local interac-
tions are considered and we assume a four-dimensional man-
ifold of stimulus preferences (henceforth called the stimulus
manifold herein), in which there are two dimensions for the
position of the stimulus preferences in the visual space and
two dimensions for orientation and orientation preference.

The main aim of this work is to understand from a more
analytical point of view earlier numerical results using the
elastic neural net approach (Mayer et al. 2002) in which it
was shown that, depending on the metric applied, two types
of stable patterns were observed. More precisely we inves-
tigated a coupling between the position shift and the orien-
tation preference that affects the metrics. The coupling and
the remaining symmetry constraints have been recently intro-
duced as a shift-twist symmetry (Thomas and Cowan 2003).

In investigations of natural image statistics (Kaschube et
al. 2001) it has been found that spatial correlations in all kinds
of everyday environments (forest, parks, inner city views,
etc.) along co-linear contour segments are larger than across
those segments. Under the assumption that the formation of
both receptive fields and orientation maps are affected, one
would expect some kind of coupling term in the feature met-
rics, reflecting these statistical properties. That the natural
image statistics are indeed affected by the shape of recep-
tive fields is strongly suggested by a model investigating the
receptive field formation at different stages of early postnatal
retinal development (Mayer et al. 2001). In addition, several
experiments have shown that feature maps, including orien-
tation maps, are affected by experience (see, e.g., Sengpiel
et al. 1999).

In Sect. 2 and Appendix C we justify our approach, and in
Sect. 3 we outline how an appropriate metric can be derived
from very basic symmetry constraints.

In Sect. 5 we introduce the Swift–Hohenberg approach
and describe how we modify this approach to embed our
metrics. The Swift–Hohenberg (SH) approach has been used
in Wolf’s work (Wolf 2005; Wolf and Geisel 2003, 1998)
and has been proved to be analytically easier to handle than
other mapping approaches such as self-organizing maps and
elastic nets.

In Sect. 6 we report results from numerical experiments,
using the SH approach for different metrics, and show that
the evolution and the final maps depend on the development.
The results can be explained by Fourier transforming and then
deriving the equations of the components (modes), which is
done in Sect. 7. Based on the analytical mode equations we
investigate for what various types of metrics what patterns
are stable. In Sect. 8 we describe the numerically derived
phase-space structure for the variant metrics. We close with
an outline of our derived periodic patterns and discuss rea-
sons why those patterns do not normally appear in animals.
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2 Advantages of Riemannian feature metrics

In this section we give a simple heuristic example in which
the diagonal Euclidean distance measure of feature coordi-
nates is not appropriate to describe distance relations of a very
basic high-dimensional model of orientation preference.

In our high-dimensional model, the input space is
described as a square array of input fibers. The stimulus set
is chosen as a set of 2D Gaussian distributions ("blobs") in
which one direction is elongated (cf. Fig. 1). We assume a
stimulus manifold V in this high-dimensional space with the
parameters (features) v = {〈x〉, 〈y〉,�, S}. A 2D Gaussian,

G(x, y, v)

= exp

(
−
∥∥∥∥
(

sa(S) 0
0 sb(S)

)
· R̂(�) ·

(
x − 〈x〉
y − 〈y〉

)∥∥∥∥
2
)
, (1)

with R̂(�) being a 2 × 2 rotation matrix of the angle�, and
sa and sb functions of the orientation strength, can be defined
as the activity pattern. In this way the orientation strength S
can be expressed as the differences of the variances of the
Gaussian across and along the preferred orientation. The dis-
tance d2

s between two stimuli G1 and G2 can be defined as

d2
s =
∫

dxdy (G1(x, y, v)− G2(x, y, v + ∆v))2 . (2)

< x > 

S

φ

< y > 

Fig. 1 Model stimulus: A simplified stimulus in the proposed high-
dimensional model is a two-dimensional Gaussian distribution elon-
gated in one direction. The value of the elongation S indicates the
strength of the orientation preference, the angle � of the direction of
the elongation gives the preferred orientation, and averages of the dis-
tribution give the positions x and y in the visual field

c

b

a

Fig. 2 Three high-dimensional stimuli with the same orientation:
One simplified stimulus is translated parallel to and the other perpen-
dicular to the orientation of the third stimulus a. Though both input pro-
files have the same center distance in retinal coordinates, the overlap for
b is smaller than that for c

In the following we assume ‖∆v‖ small and thus d2
s ≈

∆vT ĝ ∆v, where ĝ represents a 4 × 4 metric tensor. Every
entry gi j of this tensor is a function of v.

In this section we restrict ourselves to a heuristic analysis.
For this purpose consider Fig. 2. We see three oval shapes
representing three stimuli a, b, c. In a typical feature-type
approach a distance measure consisting of a diagonal metric
tensor is assumed, i.e., the distance between the stimuli is
d2

s = (〈x1〉 − 〈x2〉)2 + (〈y1〉 − 〈y2〉)2 + d(�1,�2, S1, S2),
where d(�1,�2, S1, S2) is some—for the moment unspec-
ified—distance between the orientations of two stimuli. In
Fig. 2 the orientation preference and orientation strength are
the same for all three stimuli, thus d(�1,�2, S1, S2) van-
ishes; d2

s = (〈x1〉 − 〈x2〉)2 + (〈y1〉 − 〈y2〉)2 remains. Since
the center of b has the same distance to a as c the distance
from this ds2 (i.e., resulting from a diagonal tensor) would
be the same in both cases.

However, the figure shows a larger overlap between a and
c than between a and b. Since a larger overlap indicates a
smaller distance, the distance between a and b should be
smaller than the distance between a and c. Thus, the overlap
and the distance depend on the direction of the displace-
ment and the orientation. In the following section a method
is described to derive such a Riemannian metric that accounts
for this situation. At the same time the metric should be invari-
ant under symmetry operations that are assumed to apply at
least to the above described set of stimulus preferences, and
to some degree also to the situation in the visual cortex.

3 A feature metric based on symmetry considerations

In this section we discuss properties of the stimulus space,
which we assume to be a Riemannian manifold. We formu-
late symmetry transformations under which the Riemannian
metric remains invariant. By formulating those symmetries
the mathematical form of the metric obeying those invari-
ants can be relatively easily narrowed down to a convenient
general shape.
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Fig. 3 Symmetries: the
overlap of the high-dimensional
approach is invariant under
translation (a), inversion of
position difference (b), and
combined rotation of position
difference and orientation
preference (c, case III).
However, the overlap changes if
either the position difference is
rotated independently (c, case I)
or the orientation preference is
rotated independently (c, case II)

a b

c III III

In the following we use for the feature space V the coor-
dinates1

v = [x, y, z1 = S sin(2�), z2 = S cos(2�)], (3)

where x and y indicate the the position of the preferred
stimulus in the visual field,� the orientation of the preferred
stimulus, and ‖z‖ = S the orientation strength. This param-
etrization gives us an appropriate topological mapping to
describe the complete stimulus manifold by one set of param-
eters. In addition, where it is more convenient, the complex
notation of coordinates is used

x = x + iy, (4)

z = z1 + iz2, (5)

where i represents an imaginary unit. In the remaining part
of the section we investigate the metric tensor

d2
s = ∆vT ĝ(v)∆v, (6)

where ĝ represents a symmetric 4×4 matrix of scalar entries
gi j = g ji , of which each can be at this stage an arbitrary
function of v.

In the following, symmetric operations are outlined for
which we assume the feature metric to be invariant:

S1 The distance between two high-dimensional stimuli
is invariant under shifts of the position in the visual space
(Fig. 3a). As a consequence, the tensor should be invari-
ant under translations of x and y. Therefore, none of the
gi j should be functions of x and y. In the visual cortex this
assumption is almost true in the part of the visual cortex that
corresponds to foveal vision.

1 From here on, x and y are used instead of 〈x〉 and 〈y〉, respectively.

S2 The simplified stimulus shows a reflection symme-
try along and across the preferred orientation. This has sev-
eral consequences. For the moment we use that the distance
between two high-dimensional stimuli does not change if
the position shift (dx, dy) is inverted (Fig. 3b). This means
that the terms g13, g14, g23, g24, and their corresponding
counterparts2 become 0.

S3 The distance between two high-dimensional stimuli
does not change if both the orientation and the position differ-
ence are rotated (Fig. 3c) (case III). Please note that the metric
is not necessarily invariant under rotation of the position dif-
ference (case I) and it is not necessarily invariant under the
rotation of both orientation preferences (case II). Thus, the
feature metrics should be invariant under the combined rota-
tion of position x, y and orientation preference z1, z2. This
has two consequences. First, the gi j can only be functions of
‖z‖. Second, the metrics can only be made of the sum of the
following square expressions:

d2
s = a(‖z‖) (dx2 + dy2)+ b(‖z‖)(dz2

1 + dz2
2)

+Cxz + Czz . (7)

The two coupling terms Cxz and Czz are restricted3 to the
form

Cxz = c(‖z‖)
(

z1

z2

)T

T(ψ)
(

dx2 − dy2

2dxdy

)
(8)

Czz = h(‖z‖)
((

z1

z2

)T (
dz1

dz2

))2

(9)

2 Since ĝ is a symmetrical matrix also g31, g41, g32, and g42 = 0.
3 A more detailed discussion of the coupling terms and the effects of
S3 can be found in Appendix B.
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T(ψ) is a two-dimensional matrix of the rotation by an
angle ψ . In simple words ψ indicates the angle at which the
direction of the position displacement [dx, dy] is coupled to
the orientation preference. For the analysis of the coupling
and the derivation of the characteristics of� see Appendix B.

We can further simplify the metrics by regauging the
orientation preference. Thus, z1 and z2 are redefined to(

z1,new

z2,new

)
= T(ψ)

(
z1,old

z2,old

)
. (10)

A little consideration shows that this encoding of the orienta-
tion preference means that the orientation vectors (1, 0) and
(−1, 0) represent stimuli where the symmetry axes from the
S2 symmetry coincide with the x and y axes, respectively.
In this way the matrix T can be diagonalized to the identity
matrix and we get for gi j

ĝ =

⎛
⎜⎜⎝

a + cz1 cz2

cz2 a − cz1

b + hz1z1 h z1z2

hz1z2 b + h z2z2

⎞
⎟⎟⎠ . (11)

3.1 α-Metric

In Appendix C it is shown how any metric that complies
with Eq. (11) can be mapped to a set of equivalence classes
by redefining the orientation strength ‖z‖ and eliminating h.

For any equivalence class we can approximate the ele-
ments of this class to the metric ĝα as (See Appendix A
for the parameter functions in the case of the metric of the
Gaussians outlined in Sect. 2.)

ĝα =

⎛
⎜⎜⎝

1 + αz1 αz2

αz2 1 − αz1

1
1

⎞
⎟⎟⎠ (12)

for small values of ‖z‖. As outlined in the Appendix (Appen-
dices A–C) the present form of the d2

s and the α can be seen
as a mathematically pure form of the situation depicted in
Fig. 2.

Here, the value ofα is a constant that represents a coupling
between orientation and position. We use α in the following
as a parameter in order to test the relevance of the coupling
for the evolution of different patterns. It represents the differ-
ence of the distance along and across the preferred orientation
and obeys at the same time the above mentioned symmetry
constraints. If α is zero the metric is a usual feature metric
and the results of other approaches can be compared. Thus,
except for α = 0, the metrics contain a coupling between
position and orientation preference and are neither diagonal
nor Euclidean. For several reasons it is useful to use complex
coordinates z = z1 + iz2 and x = x + iy. In terms of these
the metric can be expressed as

d2
s = Re(dzd̄z + dxd̄x + αz̄dx2), (13)

where Re(x) denotes the real part of x ∈ C, dz and dx rep-
resent the displacement of two stimuli with infinitesimal dis-
tances. d̄z, d̄x, z̄, and x̄ represent the complex conjugate of
dz, dx, z, and x, respectively.

4 Relation to a metric between V1 complex cell
receptive fields

Reverse correlation methods revealed that the receptive fields
of V1 receptive fields of simple cells are Gabor filters (Jones
and Palmer 1987). Simple cell receptive fields resemble
Gabor filters. That means that they do not obey the reflection
symmetry across the preferred orientation (S2). In addition,
it is difficult to include all features of simple cell receptive
fields in a four-dimensional feature space. However, other
considerations (Mayer et al. 1998) also show that it is very
difficult to construct a high-dimensional self-organizing map
model basing on simple cell receptive fields. Herein pieces of
natural images are used as a stimulus. In effect, Gabor filters
result from this input. However, some basic problems arise
from the representation of the spatial phase upon the map. As
a consequence, stable maps with a retinotopic structure seem
rather difficult if not impossible to create, for reasons that can
be seen from very basic, again metric, considerations. As an
alternative, herein maps of adaptive subspace self-organizing
maps (ASSOMs) are suggested as a more appropriate model
for V1. In an ASSOM each node represents a superposition
of two or more adaptive base vectors. For each stimulus the
closest representative upon the map is defined by the mini-
mum over the superposition of these two basis vectors. As
a consequence, each node behaves in a way that resembles
cortical complex cell receptive fields. The spatial phases of
the Gabor filters are not represented as a feature upon the map
surface, which is probably also true for the real V1 (Pollen
and Ronner 1981; Liu et al. 1991; Freeman et al. 1997). It
is therefore useful to investigate the relation with the metric
that arises from complex receptive field properties. Thus it is
useful to consider the following metric, which can be seen as
derived from these ideas. Thus a complex cell receptive field
of the feature vector v = [x, y, S, φ] can be represented as
a superposition of the two base vectors 	s (reflection sym-
metric) and 	a (antisymmetric):

	s(x, y, v) = exp

(
−
∥∥∥∥
(

x − 〈x〉
y − 〈y〉

)∥∥∥∥
2

/(2σ 2)

)

× cos

(
[x − 〈x〉, y − 〈y〉] R̂(φ)

[
S
0

])
,

(14)
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	a(x, y, v) = exp

(
−
∥∥∥∥
(

x − 〈x〉
y − 〈y〉

)∥∥∥∥
2

/(2σ 2)

)

× sin

(
[x − 〈x〉, y − 〈y〉] R̂(φ)

[
S
0

])
.

(15)

In this way the response λ of a neuron to a high-dimensional
receptive field �(x, y) can be modeled as

λ = min
ψ

∫
‖�(x, y)− 	r (ψ, x, y, v)‖2 dxdy, (16)

where

	r (ψ, x, y, v)=cos(ψ)	a(x, y, v)+sin(ψ)	s(x, y, v). (17)

A corresponding metric can be defined as

d2
s (v,v) = min

ψ1,ψ2

∫
‖	r (ψ1, x, y, v +v/2)

−	r (ψ2, x, y, v +v/2)‖2 dxdy. (18)

Different from the metrics that can be derived from sim-
ple cell receptive fields this type of metric complies with the
symmetry S2.

5 Models

In the context of the models discussed in this work the cortex
is assumed to be a two-dimensional plane in which points
are indexed as r ∈ R2. As outlined in the introduction, we
assume a model of topographical representations of stimu-
lus features. More precisely, we assume that each point of
the cortex surface contains neurons that have receptive field
properties within a subset Wr ⊂ V of the feature space that
is small enough that it can be described sufficiently accurate
by one average feature vector 〈Wr〉 = wr.

In the following the metric as derived in Eq. (12) is used to
find a map wr that is optimal with respect to the two optimiza-
tion criteria mentioned in the introduction: (1) neighboring
neurons represent as near as possible points in the feature
space and (2) one cortical area as a whole is optimized to
fill the complete feature space as densely as possible. Cri-
terion 2 can also be formulated as follows: for each point
in feature space the nearest representation upon the cortical
surface should be as close as possible. Note that both criteria
depend on what is assumed to be the appropriate distance
measure.

As outlined in the introduction, many models of maps of
the visual cortex either implicitly or explicitly optimize their
maps to these two criteria. The aim of our numerical exper-
iments is to find how the map formation process is affected
by applying variant metrics to these models and what stable
patterns emerge after a sufficiently long adaptation process.

In the following we introduce the feature elastic net
(ELN) algorithm, which has been used in previous models,
then for comparison a high-dimensional self-organizing map
(HSOM), and finally a modified Swift–Hohenberg approach.

5.1 Feature ELN

We follow the approach as described in Mayer et al. (2002),
which is a modification of the initial approach described by
Durbin and Willshaw (1987). The metric has been built into
a modified two-dimensional elastic net approach, where the
energy function consists of

Eeln,1 = −A

〈
log

( ∑
r∈N

exp

(
−d2 (v,wr)

2σ 2

))〉
v∈V

(19)

and

Eeln,2 = B
∑
i∈N

∑
‖i−j‖=1

d2 (wi,wr j
)
. (20)

The model was initialized with wr = {n1, n2, ρr1, ρr2},
where ρ is a constant proportionality factor that defines the
relation between the position of the receptive field in the cor-
tex and the position in retinal coordinates, and n1 and n2

represent a small noise component added to the orientation
preference of zero. The cost function Eeln = Eeln,1 + Eeln,2

was optimized using simple gradient descent. N represents a
periodic two-dimensional grid and V the stimulus space. The
parameters A and B control the stiffness of the map and were
chosen to keep the dynamics in a state that showed only weak
orientation preferences (Mayer et al. 2002). Looking more
closely at each of the components of Eeln,1 and Eeln,2 one
can see that Eeln,1 is the component that explicitly optimizes
the entropy of the map points within the stimulus space, that
is, lets the map cover the stimulus space as well as possi-
ble, whereas the second component minimizes the distance
of nearest neighbors in the stimulus space. Thus, in the case
of the elastic net algorithm, both competing optimization cri-
teria mentioned in the introduction appear explicitly as sum-
mands of the energy function. The case of the plane metric
is well investigated and the points of phase transitions are
known; examples are shown in Fig. 4.

5.2 High-dimensional self-organizing map

The self-organizing map algorithm (Kohonen 2001) has often
been used to model pattern formation processes. Different
from the ELN, no general cost function exists and the algo-
rithm is defined by the dynamics

Wr = ε(V − Wr) exp

(
−‖r − r∗‖2

2σ 2
k

)
, (21)
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HSOM ELN

n.c.

c.

Fig. 4 Earlier models with Cxz coupling : Depicted are three model
types: a high-dimensional self-organizing map (HSOM, left), elastic net
(feature approach) (ELN, right). Above: uncoupled (α = 0.0), below
coupled (ELN: α = 0.3). Since the HSOM is high dimensional, a ver-
sion without coupling does not exist. For simulation details see Sects. 5.1
and 5.2

where

r∗ = argminr (V − Wr)
2 (22)

and σk is the neighborhood length of the net, which con-
trols the stiffness of the Kohonen net in a similar way to the
parameter B in the ELN approach above. In the HSOM the
folding in the stimulus manifold is achieved by the iterative
adaptation of the respective winner neuron r∗ towards the
stimulus.

Figure 4 shows an example of an HSOM orientation map
with 64 × 64 neurons; the input space of each neuron was
24 × 24 pixels. The approach had periodic boundary con-
ditions. The neurons were initialized retinotopically with
round Gaussian blobs. Stimulation was done by elongated
2D Gaussian blobs with standard deviations of 7.46 and 2.15.
The neighborhood length was 5.0. The values have been cho-
sen to be near to the nonselective phase (see Riesenhuber et
al. 1998 for details).

5.3 Swift–Hohenberg approach

We start the discussion from the complex Swift–Hohenberg
equation (SHE) (Wolf and Geisel 2003; Cross et al. 1993),
that is,

∂t z = εz − (+ k2
crit)

2z − ‖z‖2z. (23)

The linearized dynamic equations around z = 0 are

∂t z = εz − (∆ + k2
crit)

2z. (24)

Fourier transformation of this linear equation results in

∂t z̃ = εz̃ − (−‖k‖2 + k2
crit)

2z̃, (25)

where z̃(k) is the Fourier transform of z(r). If ε is smaller
than 0, all z̃(k) have dynamics with negative eigenvalues and

thus the state z̃(k) = 0 is stable. For a small positive ε, only
z̃(k) with positive feedback, i.e., z̃(k) with ‖k‖ of around
kcrit, can proliferate. The relation to the two models above
can be seen by writing Eq. (23) as

∂t z = εz − ∆2z − k4
critz − ‖z‖2z − 2k2

crit∆z. (26)

Only the last term on the right-hand side relates to the neigh-
borhood preservation force, whereas the other terms of the
equation are equivalent to the first-order folding of the map
into the stimulus space.

In the following, we consider how the part of the equation
that relates to the neighborhood preservation can be modified
to comply with the α metric.

For the sake of simplicity the other terms that relate to the
folding of the map into the feature space remain as in the
previous case.

We introduce the cost function Esh for which the gradient
descent ∂t w = −δw Esh results in the dynamics of the SHE.
We write the energy in four terms

Esh =
4∑

i=1

Esh,i , (27)

which are

Esh,1 = −ε − k4
crit

2

∫
z2

1 + z2
2 + ξ2

1 + ξ2
2 dr, (28)

Esh,2 = +k2
crit

∫ (
∂w
∂r1

ĝα
∂w
∂r1

T

+ ∂w
∂r2

ĝα
∂w
∂r2

T
)

dr,

(29)

Esh,3 = +1

2

∫
‖∆w‖2dr, (30)

Esh,4 = +1

4

∫ (
z2

1 + z2
2

)2 +
(
ξ2 + ξ2

)2
dr, (31)

where ξ1 = x −ρr1, ξ2 = y −ρr2, and ε and kcrit are param-
eters that determine if any and what wavenumbers become
critical and appear in the resulting orientation preference
maps. See below for a discussion of these parameters in the
case of α = 0.

We make use of our metrics in Eq. (29). Here, the term
δEsh,2 optimizes the neighborhood preservation. It is opti-
mized with respect to the chosen value of α and thus the
coupling between z and x. In this way the term Esh,2 can be
seen as analogous to the term Eeln,2 in the previous model.

By applying the gradient descent, we obtain the dynamic
equations

∂t z = εz − (∆ + k2
crit)

2z − ‖z‖2z − 2αk2
critV, (32)

∂tξ = εξ − (∆ + k2
crit)

2ξ − ‖ξ‖2ξ − 2αk2
critW, (33)
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Fig. 5 Pattern formation process: Results from numerical simula-
tions of an array of 128 × 128 neurons are depicted. The learning rate
was 0.05, ε = 0.1, and α and ρ were 0.2 and 0.15 in the plane wave,

0.35 and 0.15 in the hexagonal, and 0.23 and 0.075 in the rhombic cases.
The value of the model parameter k0 was 1.0; the scale of the simulation
was set to 12 wavelengths of one side of the system

where ξ = ξ1 + iξ2 and

W (ξ, z) = z ∆ξ̄ + ∇ ξ̄ · ∇z + ρ (1,−i) · ∇z, (34)

V (ξ, z) = −1

2
∇ξ · ∇ξ − ρ (1, i) · ∇ξ. (35)

For α = 0 the dynamic equations decouple and we get again

∂t z = εz − (∆ + k2
crit)

2z − ‖z‖2z, (36)

which is identical to the equation for the normal complex SH
equation (as in Eq. (23)).

6 Results

We ran simulations of the Swift–Hohenberg model for a
series of values of the model parameters α, ρ, kcrit , and ε
in a triangular net. The maps were initialized retinotopically,
i.e., x = ρr1 and y = ρr2, and with a small random orienta-
tion preference in z1 and z2. We investigated the progression
of the map formation process with respect to the parameters

used. The SH model tends to become unstable for higher
learning rates due to the biharmonic operator that appears
in the dynamic equations. The model was thus made stable
by filtering out spatial wave numbers of less than 50%, and
those of more than 150%, of kcrit .

The early stages of the development are similar in all cases
(see Fig. 5). At later stages of the development, however, the
patterns become increasingly periodic. We see different pat-
terns evolve for different parameter sets. The final stable pat-
terns can be distinguished by the type of the periodic patterns,
which are in our case: plane wave, hexagonal and, more rare,
rhomboid patterns. In the case of low values ofα, plane-wave
patterns typically emerge. This phenomenon has been inves-
tigated in detail by Wolf and Geisel (1998). For high values
of α, we obtain periodic hexagonal patterns that contain sta-
ble pinwheels. The spectral analysis of the Swift–Hohenberg
models shows a hexagonal pattern; however for some val-
ues one pair of modes seems to be weaker than the other
two pairs. In extreme cases this leads to rhomboid patterns.
Figure 4 shows the resulting maps, after sufficiently long
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Fig. 6 Resulting stable solutions with lowest energy content (base
states). Left: Each pixel of the graph represents a stable pattern. The
color is encoded by C = (

∑
a ‖Ma‖)/maxa(‖Ma‖), where high values

are dark red and low values are blue. Thus, dark red pixels represent

hexagonal patterns, whereas blue pixels represent the plane-wave solu-
tion. The rhombic solutions with four active modes are represented by
orange to red pixels. Right: Energy landscape as obtained from the cor-
responding lowest energy states

development times, from other models of the above men-
tioned earlier investigations. These results are partly
described in an earlier publication (Mayer et al. 2002). The
number of iterations that suffices to reach the fixed point dif-
fers significantly. We used for the ELN 1.2×108, whereas for
the SH fewer then 105 iterations are sufficient). The resulting
pattern depends significantly on the applied metric, indepen-
dent of the model used. One big difference is, however, that
the SH model produces in many cases hexagonal patterns
which never occurred in the previously investigated ELN
models.

7 Mode analysis of the Swift–Hohenberg approach

In the following it is intended to express the dynamics of the
model in terms of the modes Ka and Ma , where

{ξ(r), z(r)} =
∑

a∈R,‖a‖<6

{Ka,Ma} exp(ika · r) (37)

and ka = kcrit{cos(a/3), sin(a/3)}. Replacing ξ and z in the
energy equation, Eq. (27), we get the energy of the modes as
outlined in Appendix E. By applying gradient descent on the
energy equation for the modes, the dynamics can be derived
as

∂t Ka = εKa − 2ρ α k2
crit (ka · (i, 1)) Ma

+αN 2
x + N 3

x , (38)

∂t Ma = εMa − 2ρ α k2
crit (ka · (−i, 1)) Ka

+αN 2
z + N 3

z , (39)

where

N 2
x = + k4

crit

(
K̄a+2 Ma+1 + K̄a+4 Ma+5

)
, (40)

N 2
z = + k4

crit Ka+1 Ka+5, (41)

N 3
z = −

∑
b

eab‖Mb‖Ma −
∑

b

fab Mb Mb+3 M̄a+3, (42)

N 3
x = −

∑
b

eab‖Kb‖Ka −
∑

b

fab Kb Kb+3 K̄a+3, (43)

eab = (2 − δab), (44)

fab = (1 − δab − δa+3,b). (45)

8 Phase-space solutions

The local models described in Sect. 6 that are sufficiently
large tend to converge to the global minimum. Thus, the
analysis of the mode equations focuses on the global minima
of the cost functions for each parameter setting. In Appen-
dix D the stable and metastable states (i.e., the local min-
ima of the cost function) of the dynamic mode equations are
derived for the case α = 0. For the other cases the analysis is
more complex. Therefore, in the scope of this work a numer-
ical analysis is preferred in order to determine the stable
states. Stable states are defined as those with a global mini-
mum value of the cost function with respect to the particular
parameter settings. In the following, we discuss numerical
experiments where the development under different param-
eter settings is tested. Since the mode dynamics tend to get
stuck in a local minimum we started the simulation from three
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different starting conditions (a plane-wave pattern, a rhom-
boid pattern, a hexagonal pattern). These were the results
from earlier numerical investigations and resulted in at least
metastable states for certain parameter settings. Each setting
was started from all four starting conditions, and the result-
ing patterns were then evaluated by measuring the value of
the cost function. In order to visualize each result in a pixel
color, the expression C = (

∑
a ‖Ma‖)/maxa(‖Ma‖) was

evaluated and color coded, cf. Fig. 6, where ρ (retinotopy
parameter) and α (coupling strength) are varied. The other
parameters are constant (k0 = 1, ε = 0.1, the learning rate
was set to 0.05). The numeric integration of the time was
done by Euler integration. The number of modes was six.
Thus C = 6 represented an evenly distributed hexagonal
pattern of the orientation preference. In the figure, this is
represented by a dark red color. A value of C = 1 repre-
sents a plane-wave solution. In each pixel the states with the
lowest energy are depicted. One can see, in the area between
0.06 < ρ < 0.09 and 0.2 < α < 0.25, a kind of smooth
transition from orange to brown, which represents different
types of rhomboid patterns; finally the rhomboid patterns
continuously transform into hexagonal patterns as the value
of α and the retinotopy increases. In contrast to this we see a
sharp edge from plane-wave solutions to hexagonal patterns.

In summary we see, for different values of α and ρ, plane-
wave solutions, hexagonal solutions, and a wide variety of
rhomboid solutions, as well as an almost continuous transi-
tion from rhomboid to hexagonal patterns.

9 Discussion

In the present work we demonstrate how the evolution of
patterns can be affected by assumptions on the underlying
metric of the stimulus space. We investigate this by using
a modified SH model and compare the results derived from
several parameters and several model types. The numerical
results show that the structure is, to a high degree, dependent
on the applied metrics and, to a lesser extent, on the type
of the model, although differences between the investigated
model types exist.

Earlier stages of the development show only small depen-
dence on the applied metrics. At later stages of the develop-
ment we found that significantly different periodic patterns
emerge. In this respect the current work reproduces earlier
theoretical insights (Wolf and Geisel 1998, 2003). In partic-
ular, we get, for both models, nonvanishing pinwheel densi-
ties. At later stages of development, the structure of the pat-
terns and the pinwheel densities change in dependence on the
applied metrics. From our numerical experiments with sev-
eral model types this result seems to depend on the applied
model to a small degree. Moreover, patterns from appropriate
high-dimensional models converge to a similar structure as

feature models with an overcritical value of α, i.e., a strong
coupling between the features of orientation preference and
position in the visual field.

Patterns of orientation preference and ocular dominance
seem to be a useful field of research, providing insight into
the nurture versus nature discussion. There is a view that the
layout should in some way reflect the visual experience of
the animal during the critical time period.4

Still there are open questions: for mathematical reasons
the investigations consider the developmental process near
the phase transition to the nonselective phase. From a biolog-
ical point of view, however, there are no indications that the
developmental process is subject to these conditions. Further,
as in most models, it is assumed that the stimulus statistics
are stationary during the developmental process. Here one
may object that the retina undergoes a maturation process. A
model concerning the development of receptive fields in the
visual cortex shows (Mayer et al. 2001) how the shape of cor-
tical receptive fields is affected by this process. Finally, the
cortex surface is a two-dimensional manifold that is not com-
pletely flat in the sense of Gaussian curvature. Here, it also
seems appropriate to extend the models to non-Euclidean
geometries in the neuron space. Similar models have been
suggested for technical approaches (Ritter 1999). Experi-
ences from these models might be included in further study
of the visual cortex.

The mathematical framework and the mode analysis pro-
vided may be easily merged with other approaches—in par-
ticular with the model of long-range interactions (Wolf and
Geisel 2003)—and then tested against experimental maps.
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Appendix A: Gaussian distributions

With some algebraic manipulations one can calculate the dis-
tance between two Gaussian distributions (compare Eq. 1)

G(x, y, v) = A exp

(
−
∥∥∥∥
(

sa(S) 0
0 sb(S)

)

· R̂(�) ·
(

x − 〈x〉
y − 〈y〉

)∥∥∥∥
2
)
, (46)

4 For some fundamental skills it is known that they can only be achieved
in a relatively brief postnatal time period known as the critical time
period or critical phase. The term “critical” in this context is not directly
related to any kind of dynamical criticality.
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with R(�) being a 2 × 2 rotation matrix of the angle �. We
used the constraints

A = 1 (47)

1 =
∫

G2dxdy (48)

‖z‖ = ‖σ1 − σ2‖ (49)

s1 = 1/2σ 2
1 (50)

s2 = 1/2σ 2
2 . (51)

We then obtain the following results for the functions
a(‖z‖), b(‖z‖), c(‖z‖), and d(‖z‖):

a(‖z‖) = π2

4

(
‖z‖2 + 2

π

)
, (52)

b(‖z‖) = π2

4

(‖z‖2

4
+ 1

π

)
, (53)

c(‖z‖) = π2

2

√
‖z‖2

4
+ 1

π
, (54)

h(‖z‖) = − π3‖z‖2 + 8π2

16
(
π‖z‖2 + 4

) . (55)

It has to be noted that the choice of the constraints in
Eqs. (47–51) affect the coefficient functions a(‖z‖), b(‖z‖),
c(‖z‖), and d(‖z‖). For example, all coefficients scale with
the square of the amplitude A. Thus, if one chooses a different
amplitude A the coefficients change accordingly.

Appendix B: General coupling terms derived from rota-
tion symmetry

We discuss here the effect that symmetry S3 (see Sect. 3) has
upon the metric tensor. After including the symmetries S1
and S2 we have a general metric tensor of the form

ĝ =

⎛
⎜⎜⎝

g11 g12

g12 g22

g33 g34

g34 g44

⎞
⎟⎟⎠ . (56)

Below we will make use of the complex form of the equa-
tion. It is equivalent to write

d2
s = βdxd̄x + γ dzd̄z + νdzdz + µdxdx + c.c., (57)

where all four scalar parameter functions β, γ , ν, and µ can
be functions of z and z̄; the variables d̄z, d̄x, and z̄ represent
the complex conjugates of dz, dx, and z, respectively, and
c.c. represents the complex conjugate.

The four functions β, γ , ν, and µ can obviously be
expressed as functions ofφz and ‖z‖, where z = ‖z‖ exp(iφz)

and z̄ = ‖z‖ exp(−iφz). The infinitesimal expressions are
then accordingly

dz = ‖dz‖ exp(iφdz), (58)

dx = ‖dx‖ exp(iφdx ). (59)

A combined rotation according to symmetry S3 in Sect. 3 is
then

dz = ‖dz‖ exp(iφdz + 2iφ), (60)

dx = ‖dx‖ exp(iφdx + iφ), (61)

z = ‖z‖ exp(iφz + 2iφ), (62)

where φ is used to express a rotation along the symmetry
condition S3. Rotation invariance is then expressed as

∂
[
d2

s

]
∂φ

= 0, (63)

which should be true for any φ in order to comply with S3.
Since the symmetry should be true for all linear combinations
of ‖dz‖, ‖dx‖, we get the four equations

∂φβdxd̄x = 0, (64)

∂φγ dzd̄z = 0, (65)

∂φνdzdz + c.c. = 0, (66)

∂φµdxdx + c.c. = 0. (67)

These equations are fulfilled if the left-hand sides of Eqs.
(64–67) do not depend on φ. Since

dxd̄x = ‖dx‖2, (68)

dzd̄z = ‖dz‖2, (69)

zz̄ = ‖z‖2, (70)

we get

∂φβ = 0 → β(z, z̄) = β(‖z‖), (71)

∂φγ = 0 → γ (z, z̄) = γ (‖z‖), (72)

and for the remaining two terms we get

∂φ [ν(z, z̄)dzdz + c.c.] = 0 → ∂φ

Real
[
ν(z, z̄)‖dz‖2 exp(4iφ)

]
= 0 (73)

∂φ [µ(z, z̄)dxdx + c.c.] = 0 → ∂φ

Real
[
µ(z, z̄)‖dx‖2 exp(2iφ)

]
= 0. (74)

Since the last equations have to be true for any φ even

∂φ

[
ν(z, z̄)‖dz‖2 exp(4iφ)

]
= 0 (75)

∂φ

[
µ(z, z̄)‖dx‖2 exp(2iφ)

]
= 0 (76)

is necessary in order to fulfil the symmetry S3. From these
equations we can obviously deduce the following constant
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expressions:[
ν(z, z̄)‖dz‖2 exp(4iφ)

]
= const. (77)[

µ(z, z̄)‖dx‖2 exp(2iφ)
]

= const. (78)

Since in both equations the terms exp(4iφ) and exp(2iφ)
show a covariant behavior to φ, the corresponding multipli-
cand must be contravariant. The only possible argument to
contravariant expressions is z̄ = ‖z‖ exp(−2iφ). Thus, the
shape of ν and µ must be

ν(z, z̄) = h(‖z‖)z̄2, (79)

µ(z, z̄) = c(‖z‖)z̄. (80)

We cannot exclude beforehand that we have to assume
h(‖z‖) and c(‖z‖) to be complex, i.e., there are actually four
real-valued functions

h(‖z‖) = hr (‖z‖)+ ihi (‖z‖), (81)

c(‖z‖) = cr (‖z‖)+ ici (‖z‖). (82)

Considering d2
s = Real(. . .) as a metric, one can use the

relation

d2
s (z1, z2, dz1, dz2 = 0, dx = 0, dy = 0)

= d2
s (z1, z2,−dz1, dz2 = 0, dx = 0, dy = 0). (83)

From this equation one can get, after some straightforward
calculations, hi = 0; h is a real value and we get in terms of
real variables

Czz = h(‖z‖)
((

z1

z2

)T (
dz1

dz2

))2

. (84)

Finally c(‖z‖) can be expressed as c = c(‖z‖) exp(iψ(‖z‖)).
Then the corresponding coupling term Ccx becomes

Cxz = c(‖z‖)
(

z1

z2

)T

T(ψ(‖z‖))
(

dx2 − dy2

2dxdy

)
. (85)

Note that, at this point, ψ can be a function of ‖z‖. How-
ever, the following part shows that ψ(‖z‖) = const. This
can be seen from the following steps. We use the reflection
symmetries S2. Consider the case when(

z1

z2

)T

T(ψ(‖z‖)) =
(

1
0

)
. (86)

In this case Cxz has the form

Cxz = c(‖z‖)
(

1
0

)T (
dx2 − dy2

2dxdy

)
. (87)

Obviously, this term is reflection symmetric to inverting
(dx, dy) = (1, 0) and (dx, dy) = (0, 1). It is not symmetric
to inversions in any other direction. For other values of ψ
another pair of orthogonal symmetry axes appear. Thus, the
parameter ψ indicates the projections of the symmetry axes

in spatial space. Since these symmetry axes merely depend
on the orientation (arctan(z))—and not on the orientation
strength ‖z‖—it follows thatψ(‖z‖) is constant. Thus, under
the symmetry constraints S1–S3 we get

Cxz = c(‖z‖)
(

z1

z2

)T

T(ψ)
(

dx2 − dy2

2dxdy

)
. (88)

It should be noted that these transformations affect
integrals over the stimulus space. These integrals appear in
the ELN approach and, implicitly, due to the appearance of
a random stimulus, also in Kohonen’s SOM (in the sense of
a Monte Carlo approach). Thus, in contrast to the SH model,
the maps are affected by such transformations.

Appendix C: Regauging the feature metric

The metrics Eq. (11) can be further simplified by rescaling or
regauging the coordinates in the feature space. Of course not
every redefinition is appropriate. In the following we only
discuss redefinitions that

• comply with the symmetries S1–S3,
• do not change the appearance of the orientation maps,

and
• do not affect the dynamics of the Swift–Hohenberg model

in any way except for rescaling the solutions.

We start with a simpler special discussion that is in fact
restricted to linear rescaling of the feature space. The methods
can be applied relatively easily analytically. The disadvan-
tage is that it is only valid near ‖z‖ ≈ 0.

In the second part of this appendix we discuss the more
general case of any ‖z‖.

C.1 Part 1: ‖z‖ ≈ 0

For this part we concentrate on small values of ‖z‖2. In this
case the metric can be approximated by

d2
s = a(z = 0)dxd̄x + c(z = 0)z̄dx2

+ b(z = 0)dzd̄z + O(‖z‖2). (89)

Since the part of d2
s related to h is of order ‖z‖2, it dimin-

ishes faster than the other terms of the equation and shall be
neglected.

We can redefine

dxnew = √a(0)dxold, (90)

dynew = √a(0)dyold, (91)

z1,new = √b(0)z1,old, (92)

z2,new = √b(0)z2,old. (93)
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Then the distance measure becomes

d2
s = Re

(
dxd̄x + αz̄dx2 + dzd̄z

)
, (94)

where α is

α = cold(0)

aold(0)
√

bold(0)
. (95)

The metric tensor then becomes

ĝα =

⎛
⎜⎜⎝

1 + αz1 αz2

αz2 1 − αz1

1
1

⎞
⎟⎟⎠ , (96)

by redefining the orientation strength (‖z‖2).

C.2 Part 2: ‖z‖ � 0

For finite |z| one can consider to map the metric to simpler
metric by redefining |z|. This is then useful if the dynamics
of the model only depends on the metric and not explicitly
on |z|. So, investigating the equivalence class would be suf-
ficient to investigate the corresponding metrics of the same
equivalence class, which has the property h = 0. In this way
the search space can be reduced significantly.

In the following a way is shown to reduce an arbitrary
metric to an equivalence class where the coupling term Czz

vanishes, i.e., the function h(‖z‖) becomes 0.
This is possible if we redefine the orientation strength

ζ = ‖zold‖2 as znew = f̃ (ζ )zold. Thus, we have

z1,new = z1,old f̃ (ζ ), (97)

z2,new = z2,old f̃ (ζ ). (98)

In addition, a constant rescaling of the retinal coordinates
is also possible, as we used in the previous example. Thus,
we have

xnew = xold/C1 (99)

ynew = yold/C1, (100)

after rescaling. This means that the direction of the preferred
orientation remains the same. The aim is now to derive a
metric tensor of the form:

ĝnew =

⎛
⎜⎜⎝

anew + cnewz1,new cnewz2,new
cnewz2,new anew − cnewz1,new

bnew
bnew

⎞
⎟⎟⎠ .
(101)

We use the ansatz

bnew(dz2
1,new + dz2

2,new) = bold(dz2
1,old + dz2

2,old)

+hold(dz1,oldz1,old

+dz2,oldz2,old). (102)

By comparing the coefficients dz2
1,old + dz2

2,old and dz1,old

z1,old + dz2,oldz2,old, we obtain

bold = bnew f̃ 2, (103)

hold = 4bnew( f̃ f̃ ′ + ζ f̃ ′2). (104)

Taking the quotient r(ζ ) = hold/bold, we obtain a quadratic
equation

ζ F2(ζ )+ F(ζ )− r(ζ ) = 0, (105)

where F = f̃ ′/ f̃ . The most convenient form of the solutions
to Eq. (105) is F1,2 = 2r/(1 ± √

1 + 4 ζ r), of which only

F(ζ ) = 2 r(ζ )/
(

1 +√1 + 4 ζ r(ζ )
)

(106)

is continuous at ζ = 0. Since
∫

F = log( f̃ ) we get

f̃ (ζ ) = f (ζ )/C2 = exp

⎛
⎝ ζ∫

0

F(ξ) dξ

⎞
⎠ /C2, (107)

where C2 is a free constant that originates from the integra-
tion, and

f (ζ ) = exp

⎛
⎝ ζ∫

0

2 r(ξ)/
(

1 +√1 + 4 ξ r(ξ)
)⎞⎠ (108)

is introduced for the sake of convenience ( f (0) = 1). The
coefficients anew, bnew, and cnew become

anew(ζ ) = C2
1 aold, (109)

bnew(ζ ) = C2
2 bold/ f 2, (110)

cnew(ζ ) = C2C2
1 cold/ f. (111)

Please note that anew, bnew, and cnew are expressions of ζ ,
that is, ‖zold‖2, and have to be transformed into expressions5

of ‖znew‖2.
The resulting metric under the new coordinates is then

d2
s = Real

(
anewdxdx̄ + bnewdzd z̄ + cnewz̄dx2

)
. (112)

Please note that this metric is an exact transformation.
Finally in order to come back to the first considerations,

the general metric can be considered for a very weak orien-
tation strength (ζ ≈ 0). By choosing

C2
1 = 1/aold(0) (113)

C2
2 = 1/bold(0) (114)

5 It should be noted that analogous considerations do not result in the
elimination of a, or b or c but would result in f̃ = 0.
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we get

ĝnew,ζ≈0 = ĝα=

⎛
⎜⎜⎝

1 + α z1,new α z2,new
α z2,new 1 − α z1,new

1
1

⎞
⎟⎟⎠+O(ζ ),

(115)

where α = const. = cnew(0), which gives the same equation
for α as in the previous discussion for ‖z‖ ≈ 0. Straight-
forward calculations then give the same value for α as in
Eq. (95).

Appendix D: Stability analysis of three types of regular
patterns

Here we investigate marginally stable states (i.e., local min-
ima) of our model, for the plane case (α = 0), and show that
both a rhomboid state and a plane-wave state are marginally
stable at the same time in this case. In this case (α = 0) our
model is identical to previously investigated models: one of
two possible stable configurations that have been overlooked
in previous works (Wolf and Geisel 1998), which are two
types of the rhomboid case. The plane cases are:

• Nonselective case
• Plane-wave solutions
• Rhomboid patterns

The dynamic equations are (cf. Eq. (39))

∂t Ma/N

= εMa/N −
∑

b

eab‖Mb‖Ma −
∑

b

fab Mb Mb+3 M̄a+3, (116)

where

eab = (2 − δab) (117)

fab = (1 − δab − δa+3,b). (118)

Moreover the energy equation of the plane case is (cf. Appen-
dix E)

U = −ε
2

∑
a

‖Ma
2‖ + 1

4

∑
a,b

eab‖Ma
2‖‖Mb

2‖

+ 1

4

∑
a,b

fab Ma Ma+3 M̄b M̄b+3. (119)

The gradient of the cost function results in the learning rule in
Eq. (116). The local minima are fixed points of the dynamics.
For the stability analysis it is useful to separate the complex
variable

Ma = Ma × exp(iφa) (120)

into the positive-definite real-valued amplitude Ma and the
phase φa . The equation of energy Eq. (119) becomes

U = −ε
2

∑
a

M2
a + 1

4

∑
a,b

eabM2
aM2

b

+ 1

4

∑
a,b

fab × Qab × cos(�ab), (121)

where

Qab = MaMa+3 MbMb+3, (122)

�ab = (φa − φa+3)+ (φb − φb+3). (123)

Gradient descent gives for Ma and φa

∂Ma = εMa −
∑

b

eab M2
bMb

−
∑

b

fab MbMb+3Ma+3 cos(�ab), (124)

∂φa =
∑

b

fab MbMb+3MaMa+3 sin(�ab). (125)

Stationary points are all the points that fulfill

∂Ma = 0, (126)

∂φa = 0. (127)

In the following we name examples and check the eigen-
values of the Jacobian matrix. In this way we can find out
whether these points are indeed marginally stable.

D.1 Plane waves

We assume that all modes are equal to zero except for mode
M0. Since the mode M3 is nonexistent (=0), the right-hand
side of Eq. (125) vanishes, as does the second term of the
amplitude equations, and the amplitude equations become

∂M0 = εM0 − M3
0. (128)

The equilibrium point is M0 = √
ε. Its stability can be

accessed easily from the derivative of the equation around
this stationary point—the Jacobian is one dimensional in this
case.

D.2 Rhomboid case

We assume two active mode pairs—a total of four modes—
that all have the same amplitude M0. Since this is different
from the single-mode case, Eq. (125) does not vanish and we
set � jn = ±π ; thus the amplitude equations become

∂tMa = εMa −
∑

b

eab M2
bMa

=
∑

b

fab MbMb+3Ma+3. (129)
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We assume the same amplitude for all modes and get for the
equilibrium point

0 = εM0 −
(∑

b

eab

)
M3

0 +
(∑

b

fab

)
M3

0. (130)

Since
∑

b eab = 7 and
∑

n fab = 2, we get

M0 =
√√√√ε/

((∑
b

eab

)
−
(∑

b

fab

))
=
√
ε

5
. (131)

The stability of the equilibrium state can be seen from the
Jacobian matrix for ma = Ma − M0. We get:

∂ma = ε ma − M2
0

∑
n

(eab(2mb + ma))

+ M2
0

∑
c

( fab(mb + mb+3 + ma+3)). (132)

We remember that ε = 5M2
0 and we finally obtain

∂t ma = M2
0

((∑
b

eab

)
−
(∑

b

fab

))
ma

− M2
0

∑
b

eab(2mb + ma)

+ M2
0

∑
b

fab(mb + mb+3 + ma+3). (133)

Thus

∂t ma = M2
0

(
−2
∑

b

eabmb

+
∑

n

eab(mb + mb+3 + ma+3 − ma)

)
. (134)

Rearranging and sorting according to the coefficients mb and
ma =∑b mbδab we get

∂t ma =
∑

b

Jabmb, (135)

where the Jacobian reads

Jab =−2eab+ fab + fa,b+3+(δa,b+3−δa,b)
∑

c

fac. (136)

Since

eab = 2 − δab, (137)

fab = 1 − δab − δa,b+3, (138)

we get finally

Jab = −2 − 2δab, (139)

which is a negative-definite matrix. Hence rhomboid patterns
are stable.

D.3 Three modes and three antimodes

Finally, it is possible to discuss the stability of three modes
and the corresponding antimodes. Since in the case α = 0 no
relations between the ka appear in the equations, the arrange-
ment of the active modes is arbitrary and not necessarily hex-
agonal. For the equilibrium, we get

�ab = ±3π

2
; M0 =

√
ε

3
. (140)

Further analysis shows that this state is stable. However, one
eigenvalue of the Jacobian is zero.

Appendix E: Energy in terms of modes

Mode equations (Eqs. 38 and 39) can be expressed as the
gradient of a cost function

Ux = −ε
2

∑
a

‖Ka‖2 + 1

4

∑
a,b

eab‖Ka‖2‖Kb‖2

+ 1

4

∑
a,b

fab Ka Ka+3 K̄b K̄b+3, (141)

Uz = −ε
2

∑
a

‖Ma‖2 + 1

4

∑
a,b

eab‖Ma‖2‖Mb‖2

+ 1

4

∑
a,b

fab Ma Ma+3 M̄b M̄b+3, (142)

Uxz = −k4
crit

2

(∑
a

Ka M̄a+1 Ka+2+ K̄a Ma+1 K̄a+2

)
, (143)

Uret = −ρk2
crit

(∑
a

(i,−1) · ka Ka M̄a

)
+ c.c., (144)

U = Ux + Uz + α(Uxz + Uret). (145)

References

Cross MC, Hohenberg PC (1993) Pattern formation outside equilib-
rium. Rev Mod Phys 65(3):851–1112

Durbin R, Willshaw D (1987) An analogue approach to the traveling
salesman problem using an elsatic net algorithm. Nature 326:689–
691

Ernst U, Pawelzik K, Sahar-Pikielny C, Tsodyks M (2001) Intracortical
origin of visual maps. Nat Neurosci 4:431–436

Freeman RD, et al (1997) Clustering of response properties of neurons
in the visual cortex. In: Social Neuroscience, 23:227.1

Jones J, Palmer L (1987) The two-dimensional spatial structure of sim-
ple receptive fields in cat striate cortex. J Neurophys 58:1187–1211

Kaschube M, Wolf F, Geisel T, Loewel S (2001) The prevalance of
colinear contours in the real world. Neurocomputing 38(40):1335–
1339

Kohonen T (2001) Self-organizing maps. Springer, Heidelberg

123



78 Biol Cybern (2008) 99:63–78

Liu Z, Gaska JP, Jacobson LD, Pollen DA (1991) Interneural inter-
action between members od quadrature pairs in the cat’s visual
cortex. Vision Res 32:1193–1198

Löwel S (1998) The layout of orientation and ocular dominance
domains in area 17 of strabismic cats. Eur J Neurosci 10(8):2629–
43

Mayer NM, Herrmann MJ, Theo Geisel (1998) A cortical interpreta-
tion of ASSOMs. In: Proceedings of International Conference on
Artificial Neural Networks (ICANN), vol 2, pp 961–966

Mayer NM, Herrmann JM, Geisel T (2002) Curved feature metrices in
models of visual cortex. Neurocomputing 44–46(C):533–539

Mayer NM, Herrmann JM, Geisel T (2003) Shaping of receptive fields
in visual cortex during retinal maturation. J Comp Neurosci
15(3):307–320

Pollen D, Ronner S (1981) Phase relationships betweeen adjacent sim-
ple cells in the visual cortex. Science 212:1409–1411

Riesenhuber M, Bauer H-U, Brockmann D, Geisel T (1998) Breaking
rotational symmetry in a self-organizing map model for orientation
map development. Neural Comput 10:717–730

Ritter H (1999) Self-organizing maps in non-Euclidean spaces. In:
Oja E, Kaski S (eds) Kohonen Maps, pp 97–108

Ritter H, Martinetz T, Schulten K (1992) Neuronale netze. Addison
Wesley, Bonn

Sengpiel F, Bonhoeffer T, Stawinski P (1999) Influence of experience
on orientation maps in cat visual cortex. Nat Neurosci 2:727–732

Swindale NV (1996) The development of topography in the visual cor-
tex: a review of models. Network 7:161–247

Swindale NV, Shoham D, Grinvald A, Bonhoeffer T, Hübener M
(2000) Optimizing coverage in the cortex. Nat Neurosci 3(8):750–
751

Thomas PJ, Cowan JD (2003) Symmetry induced coupling of cortical
feature maps. Phys Rev Lett 92(18810)

Malsburg Cvd (1973) Self-organization of orientation sensitive cells in
striate cortex. Kybernetik 14:49–54

Wolf F (2005) Symmetry, multistability, and long-range interactions in
brain development. Phys Rev Lett 95(208701)

Wolf F, Geisel T (1998) Spontaneous pinwheel annihilation during
visual development. Nature 395:73–78

Wolf F, Geisel T (2003) Universality in visual cortical pattern forma-
tion. J Phys 97:253–264

123


	Symmetries, non-Euclidean metrics, and patternsin a Swift--Hohenberg model of the visual cortex
	Abstract
	1 Introduction
	2 Advantages of Riemannian feature metrics
	3 A feature metric based on symmetry considerations
	3.1 -Metric

	4 Relation to a metric between V1 complex cell receptive fields
	5 Models
	5.1 Feature ELN
	5.2 High-dimensional self-organizing map
	5.3 Swift--Hohenberg approach

	6 Results
	7 Mode analysis of the Swift--Hohenberg approach
	8 Phase-space solutions
	9 Discussion
	Acknowledgements


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


