Skip to main content
Log in

The inverted pendulum model of bipedal standing cannot be stabilized through direct feedback of force and contractile element length and velocity at realistic series elastic element stiffness

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Control of bipedal standing is typically analyzed in the context of a single-segment inverted pendulum model. The stiffness K SE of the series elastic element that transmits the force generated by the contractile elements of the ankle plantarflexors to the skeletal system has been reported to be smaller in magnitude than the destabilizing gravitational stiffness K g . In this study, we assess, in case K SE + K g  <  0, if bipedal standing can be locally stable under direct feedback of contractile element length, contractile element velocity (both sensed by muscle spindles) and muscle force (sensed by Golgi tendon organs) to alpha-motoneuron activity. A theoretical analysis reveals that even though positive feedback of force may increase the stiffness of the muscle–tendon complex to values well over the destabilizing gravitational stiffness, dynamic instability makes it impossible to obtain locally stable standing under the conditions assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander RMcN, Bennett-Clark HC (1977) Storage of elastic strain energy in muscle and other tissues. Nature 265: 114–117

    Article  PubMed  CAS  Google Scholar 

  • Anderson JH (1974) Dynamic characteristics of Golgi tendon organs. Brain Res 67: 531–537

    Article  PubMed  CAS  Google Scholar 

  • Bahler AS (1967) Series elastic component of mammalian skeletal muscle. Am J Physiol 213: 1560–1564

    PubMed  CAS  Google Scholar 

  • Barin K (1989) Evaluation of a generalized model of human postural dynamics and control in the sagittal plane. Biol Cybern 61: 37–50

    Article  PubMed  CAS  Google Scholar 

  • Bernstein N (1967) Coordination and regulation of movements. Pergamon Press, New York

    Google Scholar 

  • Bobbert MF, Huijing PA, van Ingen Schenau GJ (1986) An estimation of power output and work done by the human triceps surae muscle–tendon complex in jumping. J Biomech 19: 899–906

    Article  PubMed  CAS  Google Scholar 

  • Cordo PJ, Flores-Vieira C, Verschueren SM, Inglis JT, Gurfinkel V (2002) Position sensitivity of human muscle spindles: single afferent and population representations. J Neurophysiol 87: 1186–1195

    PubMed  Google Scholar 

  • Crago PE, Hauk J, Rymer WZ (1982) Sampling of total muscle force by tendon organs. J Neurophysiol 47: 1069–1083

    PubMed  CAS  Google Scholar 

  • Diener HC, Dichgans J, Guschlbauer B, Mau H (1984) The significance of proprioception on postural stabilization as assessed by ischemia. Brain Res 296: 103–109

    Article  PubMed  CAS  Google Scholar 

  • Diener HC, Horak FB, Nashner LM (1988) Influence of stimulus parameters on human postural responses. J Neurophysiol 59: 1888–1905

    PubMed  CAS  Google Scholar 

  • Dietz V, Gollhofer A, Kleiber M, Trippel M (1992) Dependency on load receptors, regulation of bipedal stance. Exp Brain Res 89: 229–231

    Article  PubMed  CAS  Google Scholar 

  • Edwards WT (2007) Effect of joint stiffness on standing stability. Gait Posture 25: 432–439

    Article  PubMed  Google Scholar 

  • Fitzpatrick RC, Burke D, Gandevia SC (1996) Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances. J Neurophysiol 76: 3994–4008

    PubMed  CAS  Google Scholar 

  • Fitzpatrick RC, Taylor JL, McCloskey DI (1992) Ankle stiffness of standing humans in response to imperceptible perturbation: reflex and task-dependent components. J Physiol 454: 533–547

    PubMed  CAS  Google Scholar 

  • Gatev P, Thomas S, Kepple T, Hallett T (1999) Feedforward ankle strategy of balanace during quiet stance in adults. J Physiol 514: 915–928

    Article  PubMed  CAS  Google Scholar 

  • Gurfinkel VS, Osevets SM (1972) Dynamics of the equilibrium of the vertical posture in man. Biophysics 17: 496–506

    Google Scholar 

  • Haftel VK, Bichler EK, Nichols TR, Pinter MJ, Cope TC (2004) Movement reduces the dynamic response of muscle spindle afferents and motoneuron synaptic potentials in rat. J Neurophysiol 91: 2164–2171

    Article  PubMed  Google Scholar 

  • Hof AL (1998) In vivo measurement of the series elasticity release curve of human tricpes surae muscle. J Biomech 31: 793–800

    Article  PubMed  CAS  Google Scholar 

  • Hogan N, Bizzi E, Mussa-Ivaldi FA, Flash T (1987) Controlling multijoint motor behavior. Exerc Sports Sci Rev 15: 153–190

    Article  CAS  Google Scholar 

  • Horak FB, Macpherson JM (1996) Postural orientation and equilibrium. In: Rowell LB, Shepherd JT(eds) Handbook of physiology. Exercise regulation and integration of multiple systems. Oxford, New York, pp 255–292

    Google Scholar 

  • Houk JC, Henneman E (1967) Responses of Golgi Tendon organs to active contractions of the soleus muscle of the cat. J Neurophysiol 30: 466–481

    PubMed  CAS  Google Scholar 

  • Hsu WL, Scholz JP, Schoner G, Jeka JJ, Kiemel T (2007) Control and estimation of posture during quiet stance depends on multijoint coordination. J Neurophysiol 97: 3024–3035

    Article  PubMed  Google Scholar 

  • Hurwitz A (1895) Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt. Math Ann 46: 273–284

    Article  Google Scholar 

  • Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Progr Neurobiol 38: 335–378

    Article  CAS  Google Scholar 

  • Joseph J, Nightingale A (1952) Electromyography of muscle sof posture: leg muscles in males. J Physiol 117: 484–491

    PubMed  CAS  Google Scholar 

  • van der Kooij H, Jacobs R, Koopman B, Grootenboer H (1999) A multisensory integration model of human stance control. Biol Cybern 80: 299–308

    Article  PubMed  Google Scholar 

  • Kuo A (1995) An optimal control model for analyzing human postural balance. IEEE Trans Biomed Eng 42: 87–101

    Article  PubMed  CAS  Google Scholar 

  • Lockhart DB, Ting LH (2007) Optimal sensorimotor transformations for balance. Nat Neurosci 10: 1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Lakie M (2002a) Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness in insufficient for stability. J Physiol 545: 1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Lakie M (2002b) Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements. J Physiol 540: 1111–1124

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2005a) Active, non-spring-like muscle movements in human postural sway: how might paradoxical changes in muscle length be produced?. J Physiol 564: 281– 293

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2005b) Human postural sway results from frequent, ballistic bias impulses by soleus and gastrocnemius. J Physiol 564: 295–311

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2007) The passive, human calf muscle in relation to standing: the short range stiffness lies in the contractile component. J Physiol 584: 677–692

    Article  PubMed  CAS  Google Scholar 

  • Mauritz KH, Dietz V (1980) Characteristics of postural instability induced by ischaemic blocking of leg afferents. Exp Brain Res 38: 117–119

    Article  PubMed  CAS  Google Scholar 

  • Morasso PG, Sanguineti V (2001) Ankle muscle stiffness alone cannot stabilize balance during quiet standing. J Neurophysiol 88: 2157–2162

    Google Scholar 

  • Nashner LM (1976) Adapting reflexes controlling the human posture. Exp Brain Res 26: 59–72

    Article  PubMed  CAS  Google Scholar 

  • Nichols TR, Houk JC (1973) Reflex compensation for variations in the mechanical properties of a muscle. Science 181: 182–184

    Article  PubMed  CAS  Google Scholar 

  • Nichols TR (1989) The organization of heterogenic reflexes among muscles crossing the ankle joint in the decerebrate cat. J Physiol 410: 463–477

    PubMed  CAS  Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in hman postural control. J Neurophysiol 88: 1097–1118

    PubMed  CAS  Google Scholar 

  • Pinter IJ, van Swighem R, van Soest AJ, Rozendaal LA (2006) Postural sway cannot be described using a one-segment inverted pendulum model. Gait Posture 24: S98–S99

    Article  Google Scholar 

  • Pratt CA (1995) Evidence of positive force feedback among hindlimb extensors in the intact standing cat. J Neurophysiol 73: 2578–2583

    PubMed  CAS  Google Scholar 

  • Prilutsky BI, Herzog W, Leonard TR, Allinger TL (1996) Role of the muscle belly and tendon of soleus, gastrocnemius and plantaris in mechanical energy absorption and generation during cat locomotion. J Biomech 29: 417–434

    Article  PubMed  CAS  Google Scholar 

  • Prochazka A, Gillard D, Bennett DJ (1997) Implications of positive feedback control of movement. J Neurophysiol 77: 3237–3251

    PubMed  CAS  Google Scholar 

  • Prochazka A, Gillard D, Bennett DJ (1997) Positive force feedback control of muscles. J Neurophysiol 77: 3226–3236

    PubMed  CAS  Google Scholar 

  • Proske U, Morgan DL (1987) Tendon stiffness: methods of measurement and significance for the control of movement. A review. J Biomech 20: 75–82

    Article  PubMed  CAS  Google Scholar 

  • Rack PMH (1981) Limitations of somatosensory feedback in control of posture and movement. In: Handbook of Physiology. The Nervous System. Motor Control. American Physiological Society, Bethesda, pp 229–256

  • Routh EJ (1877) A treatise on the stability of a given state of motion. Macmillan, London

    Google Scholar 

  • Rozendaal LA, van Soest AJ (2005) Joint stiffness requirements in a multi-segment stance model. In: Proceedings of XXst ISB Conference, Cleveland

  • Rozendaal LA, van Soest AJ (2007) Multi-segment stance can be stable with zero local ankle stiffness. In: Proceedings of XXIst ISB Conference, Taipei

  • van Soest AJ, Bobbert MF (1993) The contribution of muscle properties in the control of explosive movements. Biol Cybern 69: 195–204

    Article  PubMed  Google Scholar 

  • van Soest AJ, Haenen WP, Rozendaal LA (2003) Stability of bipedal stance: the contribution of cocontraction and spindle feedback. Biol Cybern 88: 293–301

    Article  PubMed  Google Scholar 

  • Verdaasdonk BW, Koopman HFJM, van Gils SA, van der Helm FCT (2004) Bifurcation and stability analysis in musculoskeletal systems: a study in human stance. Biol Cybern 91: 48–62

    Article  PubMed  CAS  Google Scholar 

  • Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K (1998) Stiffness control of balance in quiet standing. J Neurophysiol 80: 1211–1221

    PubMed  CAS  Google Scholar 

  • Winter DA, Patla AE, Rietdyk S, Ishac MG (2001) Ankle muscle stiffness in the control of balance during quiet standing. J Neurophysiol 85: 2630–2633

    PubMed  CAS  Google Scholar 

  • Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. In: Bourne JR(eds) Crit Rev Biomed Eng 17. CRC Press, Boca Raton, pp 359–411

    Google Scholar 

  • de Zee M, Voigt M (2001) Moment dependency of the series elastic stiffness in the human plantar flexors measured in vivo. J Biomech 34: 1399–1406

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. “Knoek” van Soest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Soest, A.J.“., Rozendaal, L.A. The inverted pendulum model of bipedal standing cannot be stabilized through direct feedback of force and contractile element length and velocity at realistic series elastic element stiffness. Biol Cybern 99, 29–41 (2008). https://doi.org/10.1007/s00422-008-0240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0240-2

Keywords

Navigation