Skip to main content
Log in

Selforganizing memory: active learning of landmarks used for navigation

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We propose a memory architecture that is suited to solve a specific task, namely homing, that is finding a not directly visible home place by using visually accessible landmarks. We show that an agent equipped with such a memory structure can autonomously learn the situation and can later use its memory to accomplish homing behaviour. The architecture is based on neuronal structures and grows in a self-organized way depending on experience. The basic architecture consists of three parts, (i) a pre-processor, (ii) a simple, one-layered feed-forward network, called distributor net, and (iii) a full recurrently connected net for representing the situation models to be stored. Apart from Hebbian learning and a local version of the delta-rule, explorative learning is applied that is not based on passive detection of correlations, but is actively searching for interesting hypotheses. Hypotheses are spontaneously introduced and are verified or falsified depending on how well the network representing the hypothesis approaches an internal error of zero. The stability of this approach is successfully tested by removal of one landmark or shifting the position of one or several landmarks showing results comparable to those found in biological experiments. Furthermore, we applied noise in two ways. The trained network was either due to sensory noise or to noise applied to the bias weights describing the memory content. Finally, we tested to what extent learning of the weights is affected by noisy input given to the sensor data. The architecture proposed is discussed to have some at least superficial similarity to the mushroom bodies of insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arena P, Cruse H, Fortuna L, Lombardo D, Patané L, Rapisarda R (2007) Adaptive bioinspired landmark identification for navigation control. In: Arena P, Rodríguez-Vázquez Á, Liñán-Cembrano G (eds) Bioengineered and bioinspired systems III. Proceedings of SPIE, vol 6592, pp 65920L-1–65920L-12

  • Beer RD (2006) Parameter space structure of continuous-time recurrent neural networks. Neural Comput 18: 3009–3051

    Article  PubMed  Google Scholar 

  • Brooks RA (1991) Intelligence without reason. In: Myopoulos J, Reiter R (eds) Proceedings of the 12th international joint conference on artificial intelligence (IJCAI-91). Morgan Kaufmann, San Mateo, pp 569–595

    Google Scholar 

  • Collett TS, Collett M (2002) Memory use in insect visual navigation. Nat Rev Neurosci 3: 542–552

    Article  PubMed  CAS  Google Scholar 

  • Collett M, Collett TS, Bisch S, Wehner R (1998) Local and global vectors in desert ant navigation. Nature 394: 269–272

    Article  CAS  Google Scholar 

  • Cruse H (2003a) A recurrent network for landmark-based navigation. Biol Cybern 88: 425–437

    PubMed  CAS  Google Scholar 

  • Cruse H (2003b) The evolution of cognition—a hypothesis. Cogn Sci 27: 135–155

    Article  Google Scholar 

  • Cruse H (2006) Neural networks as cybernetic systems, 2nd edn. Minds, Brains & Media. http://www.brains-minds-media.org

  • Feynman R (2001) In: Hawking SW The Universe in a Nutshell. Bantam Press, New York

    Google Scholar 

  • Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308: 662–667

    Article  PubMed  CAS  Google Scholar 

  • Franz MO, Mallot HP (2000) Biomimetic robot navigation. Robot Auton Syst 30: 133–153

    Article  Google Scholar 

  • Gallistel CR, Fairhurst S, Balsam P (2004) The learning curve: implications of a quantitative analysis. PNAS 101(36): 13124–13131

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M, Zhang S, Jennett A, Menzel R, Srinivasan M (2001) The concepts of “sameness” and “difference” in an insect. Nature 410: 930–933

    Article  PubMed  CAS  Google Scholar 

  • Grünewald B (1999a) Morphology of feedback neurons in the mushroom body of the honey bee, Apis mellifera. J Comp Neurol 404: 114–126

    Article  PubMed  Google Scholar 

  • Grünewald B (1999b) Physiological properties and response modulations of mushroom body feedback neurons during olfactory learning in the honey bee Apis mellifera. J Comp Physiol A 185: 565–576

    Article  Google Scholar 

  • Harris KD (2008) Stability of the fittest: organizing learning through retroaxonal signals. Trends Neurosci 31: 130–136

    Article  PubMed  CAS  Google Scholar 

  • Hawking SW (2001) The Universe in a nutshell. Bantam Dell, Westminster

  • Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4: 266–275

    Article  PubMed  CAS  Google Scholar 

  • Hochner B, Shomrat T, Fiorito G (2006) The Octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull 210: 308–317

    Article  PubMed  Google Scholar 

  • Huber F (1960) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirns der Grillen. Z vergl Physiol 44: 60–132

    Article  Google Scholar 

  • Kindermann T (2002) Behavior and adaptability of a six-legged walking system with highly distributed control. Adapt Behav 9: 16–41

    Article  Google Scholar 

  • Kühn S, Beyn W-J, Cruse H (2007) Modelling Memory Functions with Recurrent Neural Networks consisting of Input Compensation Units. I. Static Situations. Biol Cybern 96: 455–470

    Article  PubMed  Google Scholar 

  • Kühn S, Cruse H (2007) Modelling memory functions with recurrent neural networks consisting of input compensation units. II. Dynamic situations. Biol Cybern 96: 471–486

    Article  PubMed  Google Scholar 

  • Li Y, Strausfeld NJ (1999) Multimodal efferent and recurrent neurons in the medial lobes of cockroach mushroom bodies. J Comp Neurol 409: 647–663

    Article  PubMed  CAS  Google Scholar 

  • Makarov VA, Song Y-L, Velarde MG, Hübner D, Cruse H (2008) Elements for a general memory structure: Properties of recurrent neural networks used to form situation models. Biol Cybern 98: 339–351

    Article  Google Scholar 

  • Mataric MJ (2002) Situated robotics. Encyclopedia of Cognitive Science, Nature Publ., Macmillan Reference Limited

  • McFarland D, Bösser T (1993) Intelligent behavior in animals and robots. MIT Press, Cambridge

    Google Scholar 

  • Menzel R, De Marco RJ (2006) Spatial memory, navigation and dance behaviour in Apis mellifica. J Comp Physiol A 192: 889–903

    Article  Google Scholar 

  • Mizunami M, Weibrecht J, Straussfeld N (1998a) Mushroom bodies of the cockroach: Activitiey and identities of neurons recoreded in freely moving animals. J Comp Neurol 402: 501–519

    Article  PubMed  CAS  Google Scholar 

  • Mizunami M, Weibrecht J, Straussfeld N (1998b) Mushroom bodies of the cockroach: their participation in place memory. J Comp Neurol 402: 520–537

    Article  PubMed  CAS  Google Scholar 

  • Möller R (2001) Do insects use templates or parameters for landmark navigation?. J Theor Biol 210(1): 33–45

    Article  PubMed  Google Scholar 

  • Slocum AC, Downey DC, Beer RD (2000) Further experiments in the evolution of minimally cognitive behavior: from perceiving affordances to selective attention. In: Meyer J, Berthoz A, Floreano D, Roitblat H, Wilson S (eds) From animals to animats 6: Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge, pp 430–439

    Google Scholar 

  • Schilling M, Cruse H (2008) The evolution of cognition—from first order to second order embodiment. In: Wachsmuth I, Knoblich G (eds) Modeling communication with robots and virtual humans. Lecture Notes in Artificial Intelligence. Springer, Berlin, pp 77–108

    Chapter  Google Scholar 

  • Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, Heisenberg M (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23: 10495–10502

    PubMed  CAS  Google Scholar 

  • Steels L (1996) Discovering the competitors adaptive behavior 4: 173–199

    Article  Google Scholar 

  • Steels L (1997) A selectionist mechanism for autonomous behavior acquisition. Rob Auton Syst 20: 117–131

    Article  Google Scholar 

  • Steels L (2001) The talking heads experiment. In: Obrist HU, Vanderlinden B (eds) Laboratorium. Dumont Verlag, Cologne, pp 413–419

    Google Scholar 

  • Steinkühler U, Cruse H (1998) A holistic model for an internal representation to control the movement of a manipulator with redundant degrees of freedom. Biol Cybern 79: 457–466

    Article  Google Scholar 

  • Strauss R, Pichler J (1998) Persistence of orientation toward a temporarily invisible landmark in Drosophila melanogaster. J Comp Physiol A 182: 411–423

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Wolf R, Xu S, Heisenberg M (2004) Visual pattern recognition in Drosophila is invariant for retinal position. Science 305: 1020–1022

    Article  PubMed  CAS  Google Scholar 

  • Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189: 579–588

    Article  CAS  Google Scholar 

  • Wessnitzer J, Webb B (2006) Multimodal sensory integration in insects—towards insect brain control architectures. Bioinsp Biomim 1: 63–75

    Article  PubMed  Google Scholar 

  • Widrow B, Hoff M (1960) Adaptive switching circuits. In: Anderson J, Rosenfeld E (1988) Neurocomputing: foundations of Research. MIT Press, Cambridge

    Google Scholar 

  • Zarandy A, Rekeczky C (2005) Bi-i: a standalone ultra high speed cellular vision system. IEEE Circuits Syst Mag 5(2): 36–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holk Cruse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruse, H., Hübner, D. Selforganizing memory: active learning of landmarks used for navigation. Biol Cybern 99, 219–236 (2008). https://doi.org/10.1007/s00422-008-0256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0256-7

Keywords

Navigation