Skip to main content

Advertisement

Log in

The systems analysis approach to mechanosensory coding

  • Review
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

An important problem in neuroscience is to obtain quantitative knowledge of how information is represented, or encoded, in the signals that nerve cells process and transmit. Sensory receptors have provided important models for the study of neural coding because their inputs can often be relatively easily controlled and measured, while the resultant activity is recorded. A variety of engineering concepts have been successfully applied to physiological sciences, particularly those related to control of dynamic systems. Linear systems analysis was one of the earliest methods used to probe sensory coding, and measurements such as step responses and frequency responses have become standard tools for describing sensory functions. Modern systems analysis has evolved to provide accurate and efficient linear identification of encoding in sensory receptors that use either graded potentials or action potentials. It has also led to nonlinear systems analysis, the creation of parametric nonlinear models, and measures of information coding by sensory neurons. These methods promise to provide important new knowledge about sensory systems in the future, especially when complemented with parallel biophysical and molecular studies of sensory neurons. Mechanoreceptors provided some of the earliest preparations for the investigation of neural coding, and both the linear and nonlinear properties of wide variety of vertebrate and invertebrate mechanoreceptors continue to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bendat JS, Piersol AG (1980) Engineering applications of correlation and spectral analysis. Wiley, New York, 302 pp

    Google Scholar 

  • Brown MC, Stein RB (1966) Quantitative studies on the slowly adapting stretch receptor of the crayfish. Kybernetik 3: 175–185

    Article  PubMed  CAS  Google Scholar 

  • Bryant HL, Segundo JP (1976) Spike initiation by transmembrane current: a white noise analysis. J Physiol 260: 279–314

    PubMed  CAS  Google Scholar 

  • Chapman KM, Smith RS (1963) A linear transfer function underlying impulse frequency modulation in a cockroach mechanoreceptor. Nature 197: 699–700

    Article  Google Scholar 

  • Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19: 297–301

    Article  Google Scholar 

  • French AS (1984) The receptor potential and adaptation in the cockroach tactile spine. J Neurosci 4: 2063–2068

    PubMed  CAS  Google Scholar 

  • French AS, Butz EG (1973) Measuring the Wiener kernels of a non-linear system using the fast Fourier transform algorithm. Int J Ctrl 17: 529–539

    Article  Google Scholar 

  • French AS, Holden AV (1971) Alias-free sampling of neuronal spike trains. Kybernetik 8: 165–171

    Article  PubMed  CAS  Google Scholar 

  • French AS, Marmarelis VZ (1999) Nonlinear analysis of neuronal systems. In: Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, Berlin, pp 627–640

    Google Scholar 

  • French AS, Torkkeli PH (1994) The time course of sensory adaptation in the cockroach tactile spine. Neurosci Lett 178: 147–150

    Article  PubMed  CAS  Google Scholar 

  • French AS, Torkkeli PH (2008) The power law of sensory adaptation: simulation by a model of excitability in spider mechanoreceptor neurons. Ann Biomed Eng 36: 153–161

    Article  PubMed  Google Scholar 

  • French AS, Wong RKS (1977) Nonlinear analysis of sensory transduction in an insect mechanoreceptor. Biol Cybern 26: 231–240

    Article  PubMed  CAS  Google Scholar 

  • French AS, Höger U, Sekizawa S-i, Torkkeli PH (2001a) Frequency response functions and information capacities of paired spider mechanoreceptor neurons. Biol Cybern 85: 293–300

    Article  PubMed  CAS  Google Scholar 

  • French AS, Holden AV, Stein RB (1972) The estimation of the frequency response function of a mechanoreceptor. Kybernetik 11: 15–23

    Article  PubMed  CAS  Google Scholar 

  • French AS, Sekizawa S-i, Höger U, Torkkeli PH (2001b) Predicting the responses of mechanoreceptor neurons to physiological inputs by nonlinear system identification. Ann Biomed Eng 29: 187–194

    Article  PubMed  CAS  Google Scholar 

  • Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70: 223–287

    Article  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544

    PubMed  CAS  Google Scholar 

  • Hunter IW, Korenberg MJ (1986) The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol Cybern 55: 135–144

    PubMed  CAS  Google Scholar 

  • Juusola M, French AS (1997) The efficiency of sensory information coding by mechanoreceptor neurons. Neuron 18: 959–968

    Article  PubMed  CAS  Google Scholar 

  • Juusola M, de Polavieja GG (2003) The rate of information transfer of naturalistic stimulation by graded potentials. J Gen Physiol 122: 191–206

    Article  PubMed  Google Scholar 

  • Koles ZJ, Smith RS (1974) Characteristics of the sensory discharge of the muscle spindle in Xenopus laevis. Kybernetik 15: 99–110

    Article  PubMed  CAS  Google Scholar 

  • Korenberg MJ (1991) Parallel cascade identification and kernel estimation for nonlinear systems. Ann Biomed Eng 19: 429–455

    Article  PubMed  CAS  Google Scholar 

  • Landgren S (1952) On the excitation mechanism of the carotid baroreceptors. Acta Physiol Scand 26: 1–34

    Article  PubMed  CAS  Google Scholar 

  • Levin JE, Miller JP (1996) Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 165–168

  • Marmarelis VZ (1993) Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann Biomed Eng 21: 573–589

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis PZ, Marmarelis VZ (1978) Analysis of physiological systems: the white-noise approach. Plenum Press, New York, p 487

    Google Scholar 

  • Marmarelis PZ, Naka KI (1972) White noise analysis of a neuron chain: an application of the Wiener theory. Science 175: 1276–1278

    Article  PubMed  CAS  Google Scholar 

  • Matthews PC, Stein RB (1969) The sensitivity of muscle spindle afferents to small sinusoidal changes in length. J Physiol 200: 723–743

    PubMed  CAS  Google Scholar 

  • Mitsis GD, French AS, Höger U, Courellis S, Marmarelis VZ (2007) Principal dynamic mode analysis of action potential firing in a spider mechanoreceptor. Biol Cybern 96: 113–127

    Article  PubMed  Google Scholar 

  • Moore GP, Perkel DH, Segundo JP (1966) Statistical analysis and functional interpretation of neuronal spike data. Annu Rev Physiol 28: 493–522

    Article  PubMed  CAS  Google Scholar 

  • Perkel DH, Bullock TH (1968) Neural coding. NRP Bull 6: 221–348

    Google Scholar 

  • Pringle JW, Wilson VJ (1952) The response of a sense organ to a harmonic stimulus. J Exp Biol 29: 220–234

    Google Scholar 

  • Rescigno A, Stein RB, Purple RL, Poppele RE (1970) A neuronal model for the discharge patterns produced by cyclic inputs. Bull Math Biophys 32: 337–353

    Article  PubMed  CAS  Google Scholar 

  • Rieke F, Warland DD, de van Ruyter Steveninck R, Bialek W (1997) Spikes. Exploring the neural code. MIT Press, Cambridge, p 395

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana, 117 pp

    Google Scholar 

  • Spekreijse H, Oosting H (1969) Linearizing: a method for analysing and synthesizing nonlinear systems. Kybernetik 7: 22–31

    Article  Google Scholar 

  • Stein RB (1967) The information capacity of nerve cells using a frequency code. Biophys J 7: 797–826

    Article  PubMed  CAS  Google Scholar 

  • Stein RB (1980) Nerve and muscle. Plenum Press, New York, p 265 pp

    Google Scholar 

  • Stein RB, French AS, Holden AV (1972) The frequency response, coherence and information capacity of two neural models. Biophys J 12: 295–322

    Article  PubMed  CAS  Google Scholar 

  • Thorson J, Biederman-Thorson M (1974) Distributed relaxation processes in sensory adaptation. Science 183: 161–172

    Article  PubMed  CAS  Google Scholar 

  • Torkkeli PH, French AS (2002) Simulation of different firing patterns in paired spider mechanoreceptor neurons: the role of Na+ channel inactivation. J Neurophysiol 87: 1363–1368

    PubMed  CAS  Google Scholar 

  • Volterra V (1930) Theory of functions and integral and integro-differential equations. Dover, New York, p 232 pp

    Google Scholar 

  • Warland DD, Landolfa MA, Miller JP, Bialek W (1992) Reading between the spikes in the cercal filiform hair receptors of the cricket. In: Eckman F (eds) Analysis and modeling of neural systems. Kluwer Academic, Boston, pp 327–333

    Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171: 737–738

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. French.

Additional information

This article is part of a special issue on Neuronal Dynamics of Sensory Coding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

French, A.S. The systems analysis approach to mechanosensory coding. Biol Cybern 100, 417–426 (2009). https://doi.org/10.1007/s00422-008-0262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0262-9

Keywords

Navigation