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Abstract Neuron models, in particular conductance-based
compartmental models, often have numerous parameters that
cannot be directly determined experimentally and must be
constrained by an optimization procedure. A common prac-
tice in evaluating the utility of such procedures is using a
previously developed model to generate surrogate data (e.g.,
traces of spikes following step current pulses) and then chal-
lenging the algorithm to recover the original parameters (e.g.,
the value of maximal ion channel conductances) that were
used to generate the data. In this fashion, the success or failure
of the model fitting procedure to find the original parameters
can be easily determined. Here we show that some model
fitting procedures that provide an excellent fit in the case
of such model-to-model comparisons provide ill-balanced
results when applied to experimental data. The main reason is
that surrogate and experimental data test different aspects of
the algorithm’s function. When considering model-generated
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surrogate data, the algorithm is required to locate a perfect
solution that is known to exist. In contrast, when considering
experimental target data, there is no guarantee that a perfect
solution is part of the search space. In this case, the optimiza-
tion procedure must rank all imperfect approximations and
ultimately select the best approximation. This aspect is not
tested at all when considering surrogate data since at least
one perfect solution is known to exist (the original parame-
ters) making all approximations unnecessary. Furthermore,
we demonstrate that distance functions based on extracting
a set of features from the target data (such as time-to-first-
spike, spike width, spike frequency, etc.)—rather than using
the original data (e.g., the whole spike trace) as the target for
fitting—are capable of finding imperfect solutions that are
good approximations of the experimental data.

Keywords Neuron · Model · Compartmental ·
Multi-objective Optimization · Firing pattern ·
Automated fitting · Parameter constraining

1 Introduction

Model fitting procedures designed to constrain the parameters
of a neuron model in accordance with a set of target data,
typically the spike firing of the neuron, are complex, multi-
faceted algorithms. Several different such procedures have
been suggested and tested in different contexts in recent
years (Achard and De Schutter 2006; Bush et al. 2005;
Druckmann et al. 2007; Gerken et al. 2006; Keren et al.
2005; Prinz et al. 2003; Vanier and Bower 1999; Weaver
and Wearne 2006). Each of these procedures is composed
of distinct, closely interacting elements. One such element
is the neuron model itself whose parameters are to be con-
strained. Other elements include the distance functions used
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to compare between model results and target data, and the
optimization algorithm that, given a measure of the success
of a set of solutions, suggests further solutions to be evalu-
ated. Each of these elements is a subject of intensive research.
Dozens of different optimization algorithms exist, many dif-
ferent distance functions have been suggested, and the range
of different neuron models that can be explored is of course
limitless. Hence, the number of possible combinations of the
aforementioned elements is staggering. Thus, a reliable test
of the effectiveness of different model fitting procedures is
of great interest.

A direct way to evaluate the effectiveness of a model fitting
procedure is to test the method on the task it is ultimately to
face. Namely, constraining the parameters of a given model in
accordance with a defined set of experimental data. However,
one possible problem with such an approach is that failure
of the method to arrive at an acceptable model might have
more than a single cause. First and foremost, it could be due
to shortcomings in the model fitting procedure. However, it
could also be due to an unfortunate choice of the model itself
and the set of functions associated with it (e.g., the specific
set of ion channel kinetics in the model). The case may be
that there is no set of parameters (e.g., of the value of the
maximal channel conductance) that is capable of generating
an output that matches the target data. Clearly, in this case
the model fitting procedure is not responsible for the failure
to generate an acceptable model.

In order to circumvent this problem, one may alternatively
challenge the fitting method to constrain the parameters of the
model according to data for which we know a priori that an
acceptable result is available. One way to do so is to use surro-
gate data. Indeed, such an approach has been used by several
previous studies (Achard and De Schutter 2006; Keren et al.
2005; Weaver and Wearne 2006). Specifically, an existing
compartmental model with a pre-selected set of ion chan-
nels kinetics and a given set of parameters (e.g., the value
of their maximal conductance) is used to generate surrogate
target data (e.g., in response to a step current pulse of a given
amplitude). The specific parameter values that generated the
data are not disclosed to the model fitting algorithm and it
must search the parameter space anew in order to find solu-
tions that match the target data. In this case, an acceptable
solution (a perfect solution in fact) is guaranteed, namely the
parameter values that were originally used to generate the
surrogate data. We term this approach the “reference model
test” as a previously developed, reference, model with a ref-
erence set of parameters is used to generate the target data.

The reference model test challenges the capability to find
a perfect solution if one exists. While this is an aspect that
should indeed be evaluated, we show in this study that it is
only a necessary, not sufficient, criterion for evaluating the
success of a parameter constraining method. Specifically, we
show that the exact same method is deemed a success in the

reference model test but then fails to obtain well-balanced
acceptable solutions in the more realistic case of constraining
the model in accordance with experimental data. In order to
ascertain that this is not due to a failure of the chosen model,
we modify the method only by changing the distance func-
tion used to compare simulation and target data. We show that
with the new distance function, a multiple objective feature-
based distance function (Druckmann et al. 2007), the model
fitting procedure now succeeds in obtaining successful solu-
tions. We then discuss the reason for the failure of the forget-
ful model to predict the applicability of a distance function
(or model fitting procedure) to the real task of constraining
neuronal models in accordance with experimental data.

2 Methods

2.1 Cell model

Full details of the cell model can be found in Druckmann et al.
(2007). In brief, the cell was represented as a compartmen-
tal, conductance-based model using a detailed reconstructed
morphology of a nest basket cell from layer 2/3 of the rat
primary somatosensory neocortex. Ten ion channels were
incorporated in the model cell soma (for details see the arti-
cle mentioned above). For the sake of simplicity the dendrite
was kept passive. The maximal conductances for the differ-
ent channels as well as the leak conductance in the soma
and dendrite were chosen as free model parameters, for a
total of 12 free parameters. All simulations were performed
in NEURON (http://www.neuron.yale.edu, Carnevale and
Hines 2005).

The simulation of the application of the stimulus pro-
tocol to a detailed neuron model (i.e., the evaluation of a
single parameter set) requires a quite substantial time (typi-
cally minutes). As we would like to explore many thousands
of parameter sets within a reasonable amount of time, we
implemented the algorithm in a fashion that is compatible
with use on parallel clusters running message passing inter-
face (MPI). The optimization procedure ran on two types of
parallel machines: a cluster consisting of 28 Sun ×4100, dual
AMD 64 bit Opteron 280 dual core (total of 112 processors),
running Linux 2.6 and the EPFL BlueGene/L supercomputer
(Adiga et al. 2002). Average run time of a single model fit-
ting procedure on the cluster was approximately one day.
Roughly equivalent runtime was observed when running on
256 processors of the EPFL BlueGene. By parallelizing to
the level of individual stimulus steps, nearly linear speedup
was also achieved for 512 processors.

2.2 Distance functions

In this study, we employ two different classes of distance
functions. First, we consider trace-to-trace comparisons,
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distance functions that aim to have a given model response
perfectly match a given experimental trace; second, feature-
based comparisons, distance functions that aim to bring a
model to accord with a set of values extracted from exper-
imental data. We chose to use the phase plane trajectory
distance function to represent the former class as it is an
advanced form of such comparison designed to overcome the
sensitivity to phase shifts that is typical of trace-to-trace com-
parisons (LeMasson and Maex 2001). We chose to employ
the multiple objective optimization feature-based distance
functions (Druckmann et al. 2007) to represent the latter class
as it has been shown to successfully deal with experimental
data.

Here, we present a brief overview of these distance func-
tions. A detailed description of the distance functions can be
found in the above references. For a given voltage trace, the
phase plane trajectory method is based upon the construc-
tion of a two-dimensional (phase-plane) histogram pitting
the voltage (X-axis) versus its time derivate (Y-axis). For each
point in a trace, a count is added to the bin in the 2D histo-
gram that corresponds to the voltage and voltage-derivative
value of the point. The distance between two traces is calcu-
lated via the difference in bin counts of the two-dimensional
histograms. As we compare between three levels of step cur-
rents simultaneously, there are two simple options. First, the
three values of the individual comparisons can be summed to
end up with a single distance value between model and target
data. Second, each individual comparison distance value can
be considered separately resulting in three distance values.

Feature-based distance functions were designed to deal
with the variability of experimental responses to identical
stimuli (e.g., sequential repetitions of the same current step).
Averaging the raw traces is usually not a viable option as
they typically contain action potentials and thus do not lend
themselves to averaging. Traditional distance functions use
single trace-to-trace comparisons. Yet, as the various voltage
responses to the same stimulus differ amongst themselves, it
is somewhat arbitrary to select a given voltage trace and force
the model to be in full accordance with it and not the other
equally valid voltage traces. However, features of the voltage
trace (such as firing rate, time to first action potential, action
potential width, etc.) can be readily extracted along with their
variability from the target experimental data. Thus, we chose
to use these features as the basis of our distance functions.
Hence the term feature-based distance functions. Specifi-
cally, we measure the distance between a given model trace
and the experimental data by extracting the feature values
and calculating their distance from the experimental mean in
units of experimental variability. The different features are
combined using multiple objective optimization techniques
(see the following section). As the surrogate data contains no
variability, we use a surrogate variability of one percent of
the mean for each feature.

For an example of the application of phase plane trajectory
distance functions to constraining the parameters of neuron
models see Achard and De Schutter (2006). For an exam-
ple of the application of feature-based distance functions see
Druckmann et al. (2007).

2.3 Multiple objective optimization

It seems to us extremely useful (if not essential) to be able
to employ more than one distance function in the model fit-
ting procedure, as we often want to employ a given distance
function for more than a single stimulus and/or use multi-
ple distance functions for each stimulus. In standard single
objective optimization, the resulting values for different dis-
tance functions must be summed in order to arrive at a single
scalar distance value. Unless, by some chance, the ensuing
multiple distance values are scaled relative to each other for
every possible type of comparison, one will end up with
unequal contributions of different distance functions in dif-
ferent contexts (for a more detailed exposition of the prob-
lem see Druckmann et al. 2007). In order to address this
issue, we opt to use the technique of multiple objective opti-
mization (Cohon 1985; Hwang and Masud 1979). In brief,
the main difference between single objective and multiple
objective optimizations lies in the fact that the greater than,
lesser than relationship between two scalar distance func-
tion values in single objective optimization is replaced by
the relationship of dominance. If there are M distance func-
tions fj(x), j = 1, . . . ,M (referred to as objective functions
in the multiple objective optimization literature) then a solu-
tion x1 is said to dominate a solution x2 if both the following
conditions hold:

∀ j : f j

(
x1

)
≤ f j

(
x2

)
(1)

∃k ∈ {1, 2 , . . . ,M} so that fk

(
x1

)
< fk

(
x2

)
(2)

Thus, solution A may dominate solution B, solution B may
dominate solution A, or importantly neither solution domi-
nates the other.

2.4 Optimization algorithms

We employ a class of global optimization algorithms termed
genetic algorithms (Holland 1975) due to their original inspi-
ration from abstracted notions of genetic evolution. These
algorithms are a thriving field of research and have been put
to extensive use in many different fields. Indeed, one can find
a staggering number of algorithm variants and different heu-
ristics (see for example Bäck et al. 1998) making it almost
impossible to perform a comprehensive comparison of all
variants on a specific task. In our exploration of the different
algorithms, we found one specific variant named NSGA-II
(Deb et al. 2002) to be highly effective.
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Each iteration of the optimization procedure tests 300
parameter sets in parallel. By trial and error, we found that
the algorithm typically converges after approximately 1,000
iterations (testing 3 × 105 parameter sets). In order to bet-
ter assure convergence we perform 1,500 iterations. As the
entire optimization procedure is stochastic, we repeat the full
procedure 50 times and combine all solutions. The best solu-
tions are then chosen from this pool.

The feature-based distance functions are used within a
multiple objective optimization framework. We initially
implemented the phase plane trajectory distance functions
both in a single objective version (all three current steps
equally summed) and in a multiple objective version (each
current step as an individual objective). Though we found
that the multiple objective version converged slightly faster,
the large safety factor of 1,500 iterations caused this dif-
ference to be merely quantitative, not qualitative. We thus
chose to keep the phase plane distance functions as origi-
nally employed in their relevant studies and used the single
objective optimization version.

2.5 Model selection

Feature-based distance functions are expressed in readily
interpreted units of experimental standard deviations from
the target data mean. Thus, a threshold for the acceptance
of models can be easily set to, for example, two standard
deviations in each feature. In contrast, the phase plane trajec-
tory distance functions are expressed in arbitrary units. Thus,
choosing a reasonable threshold is rather difficult. Moreover,
the specific value of this threshold is difficult to interpret
as high or low without detailed knowledge of the specific
modeling study (e.g., average error values for best solutions,
sample traces with a given error, etc.).

For the phase plane trajectory distance functions we chose
a value of 0.01 in the case of model-to-model comparisons
and 0.1 in the case of model-to-experimental data compari-
sons. For comparison, the distance value between the middle
intensity experimental trace and the experimental responses
to the weaker and stronger step stimuli are 0.31 and 0.39,
respectively. As these values are in arbitrary units that depend
on the nature of the target data it is difficult to compare these
values to those of other studies. However, we note that the
values correspond approximately to the top one percent of all
solutions. For the feature-based distance functions we chose
a threshold of two standard deviations in the case of experi-
mental and surrogate data.

2.6 Model-to-model comparison (the reference model test)

A common practice used to assure that a successful solu-
tion for the target data can be found in the search space is
using controlled surrogate data. Specifically, several studies

have generated surrogate data by utilizing a previously found
model in the fashion detailed below. First, a given refer-
ence model (typically obtained by a previous manual-
tuning of model parameters) is used to generate the surro-
gate data. Next, the specific reference parameter values (e.g.,
membrane capacitance, channel conductances) of the model
are discarded and the model fitting procedure must search
for these values anew within a given allowed range. With
this method a perfect solution is known to exist, namely, the
parameter values that generated the data in the first place.

2.7 Electrophysiological recordings

Acute brain slices were prepared from the primary somato-
sensory neocortex of 14- to 18-day old Wistar rats. Cells
were targeted under infrared differential intereference con-
trast microscopy and recorded in the current clamp mode
using the patch clamp technique. For full experimental pro-
cedure see Markram et al. (1997). Voltage responses cur-
rent injection were recorded from the cells. In this study
we present data from one cell that has been stimulated with
2 s depolarizing current steps of three different amplitudes
(150, 200, and 250 pA).

3 Results

We begin by implementing the reference model test. In brief,
we use a previously obtained model to generate surrogate
data by applying a simulated current clamp injection and
recording the model voltage response (see Sect. 2). The model
fitting procedure is then applied in order to constrain the
model in accordance with the surrogate data (see Sect. 2).

Figure 1 portrays the relevant voltage responses to the
mid level intensity step current. The surrogate data voltage
trace is plotted in (Fig. 1a). We apply the model fitting proce-
dure with a phase plane trajectory distance function in order
to constrain model parameters in accordance with the target
surrogate data. The response of a typical example of models
found at the end of the parameter constraining procedure to
pass the error threshold (see Sect. 2) is shown in (Fig. 1b).
We then repeat the same parameter constraining procedure
with the exact same elements save that the distance function
is changed from the phase plane trajectory distance function
to a feature-based distance function. The response of a typi-
cal representative of the models that passed the feature-based
distance function error threshold is shown in (Fig. 1c). As can
be seen, the models generated by using both the phase plane
trajectory distance function and the feature-based distance
function (Fig. 1b and c, respectively) both closely resemble
the target surrogate data (Fig. 1a).

We now employ the parameter constraining procedure
to generate models in accordance with experimental, not
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Fig. 1 Fitting model to model-generated surrogate data and to exper-
imental data. a–c Fitting model to model-generated data. a Surrogate
data. Shown is the voltage response of the compartmental neuron model
to a two second long, 200 pAmp step current (bottom most trace dis-
plays current). b Voltage response of the same current step applied to
one of the low error solutions of the phase plane trajectory method (for
precise error values see Sect. 3). c The response of the feature based
distance functions method for one of its low error solutions. Note that
both methods, represented by traces b and c, generate models that are

in close accord with the target data trace a. d–f Fitting model to experi-
mental data. The exact same procedures applied to generate the models
displayed in b and c are repeated only now with experimental data as
the target for fitting. d Experimental voltage response. e Phase plane
trajectory model. f Feature based distance function. Note that the phase
plane trajectory solution is quite dissimilar to the target data while the
feature based distance function solution is in closer accord with the
target data

surrogate data. We apply the exact same parameter constrain-
ing procedure (including all parameters such as parameter
search ranges, iteration number, etc.) using the same model
and ion channel kinetics. Figure 1d–f displays the relevant
voltage responses to the mid level intensity step current. The
experimental data voltage trace is shown in (Fig. 1d). The
voltage response of the model obtained by the phase plane
trajectory distance function with the lowest distance between
target data and model over all fifty repetitions of the parame-
ter constraining procedure (see Sect. 2) is shown in (Fig. 1e).
The voltage response of the model obtained by the feature-
based distance function with the lowest distance, assuming
equal weighting of features, is shown in (Fig. 1f). Note that
neither voltage trace perfectly replicates the target exper-
imental data. The afterhyperpolarization is better matched
by that of the phase plane trajectory model (Fig. 1e). Yet,
the model obtained by the feature-based distance function

(Fig. 1f) is in much closer general accord with the target
data. Both examples are typical representations of low error
models of the respective distance functions. These results
are consistent across nearly all of the 50 repetitions of the
parameter constraining procedure.

The phase plane trajectory distance value between the
traces shown in Fig. 1e and Fig. 1d (in arbitrary units) is 0.09.
For comparison, the distance value between the experimental
trace (Fig. 1d) and the experimental responses to the weaker
and stronger step stimuli are 0.31 and 0.39, respectively. One
can also measure the distance between the model obtained
by the feature-based distance functions and the experimental
trace (Fig. 1f to Fig. 1d) as calculated by the phase plane
trajectory distance function. The resulting value is 0.7. Thus,
although the result found by the feature-based distance func-
tion is in better accord with the experimental data it is consid-
ered poorer by the phase plane trajectory distance function
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Fig. 2 Voltage histograms
comparing experimental data to
the response of the phase plane
trajectory model. a The
histogram of voltage values of
the response shown in Fig. 1d.
The Y-axis denotes number of
voltage points (of 20,000) in a
linear scale. b Same as in a for
the voltage response of the best
phase plane trajectory model.
Note that they appear quite
similar. c, d Histograms shown
in (a, b) but with a log scaled
Y-axis. Note that the number of
counts of voltage values
corresponding to action
potentials (e.g., >−30 mV) is
dominated by the number of
counts in the sub threshold
voltage regime and that in the
supra-threshold regime the
experimental and phase plane
trajectory model differ to a great
degree

0

800

1600

2400

3200

-80 -60 -40 -20 0 20 40
100

101

102

103

104

-80 -60 -40 -20 0 20 40

Experiment Phase Plane Traj. Model

C
ou

nt
 (

nu
m

be
r, 

lin
ea

r 
sc

al
e)

C
ou

nt
 (

nu
m

be
r, 

lo
g 

sc
al

e)

Voltage (mV) Voltage (mV)

a b

c d

Hence, if encountered during the parameter search it would
be rejected in favor of (Fig. 1e). In summary, Figure 1 shows
that a given method can do extremely well on the reference
model test yet fail to obtain a well-balanced model when
attempting to fit experimental data.

Figure 2a shows the voltage value histogram of the exper-
imental trace depicted in (Fig. 1d). As can be seen, the histo-
gram is dominated by the values between approximately −50
and −30 mV, corresponding to sub-threshold voltages. The
action potentials themselves, however, can be noticed as a
minute peak in the right hand tail of the histogram. Figure 2b
shows the same histogram on a log scale. In this depiction,
the voltage values corresponding to action potentials can be
clearly seen. As shown by the log scale the voltage points cor-
responding to action potentials constitute a fraction nearly
two orders of magnitude smaller than those corresponding
to sub threshold values. Thus, any trace-to-trace comparison
that gives equal precedence to all voltage points will end up
implicitly favoring the subthreshold regime. Figure 2c dis-
plays the linear scale voltage value histogram of the trace
shown in (Fig. 1e) that represents a low error solution of the
phase plane trajectory distance function. Figure 2d depicts
the log scale histogram of the same trace. As can be seen, the
linear scale histogram seems to be quite similar to that of the
experimental trace yet the differences are obvious in the log
scale histogram, mainly in the range of voltage pertaining to
action potentials.

Figure 3 depicts the matching phase plane trajectories (see
Methods). Each point in the phase plane is represented by a
grey scale color code based on the number of correspond-
ing data points. Figure 3a portrays the phase plane trajectory
of the experimental trace depicted in (Fig. 1d) in a strongly
scaled fashion. Note that elliptic trajectories corresponding to
action potentials can be clearly seen but many points have sat-
urated black values. Figure 3b depicts the same form of plot
for the best model found with the phase plane trajectory dis-
tance function whose voltage trace is plotted in (Fig. 1e). Note
that with this scaling the trajectories are markedly dissimi-
lar especially in the form of the action potential trajectory.
Figure 3c depicts the phase plane trajectory in a more nat-
urally scaled color code. Namely, white still corresponds
to a count of zero whereas black now corresponds to the
maximum histogram value (∼0.05). The inset portrays an
expanded view of the region of the phase plane with the
higher count values. Figure 3d depicts the model phase plane
trajectory with the same color code. Note that the trajecto-
ries corresponding to action potentials can no longer be read-
ily differentiated from the zero value. Employing this scale,
those bins of the experimental trace that can clearly be dis-
tinguished from the background (also see inset) appear quite
similar to those of the model trace. The dissimilarity of the
scaled phase plane trajectories and similarity of the unscaled
versions is akin to the similarity of the linear and dissimilarity
of the log scale one dimensional histograms in (Fig. 2).
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Fig. 3 Phase plane trajectory plots for the experimental data and for
the response of the phase plane trajectory model. a Scaled phase plane
trajectory plot for experimental response shown in Fig. 1d. Each bin in
the 100×100 two dimensional histogram is coded in grey scale accord-
ing to the number of voltage points in the bin; white color for no points
and black for any value exceeding 0.1% of the total voltage points.
Intermediate values are linearly interpolated. The elliptic trajectories
correspond to action potentials. b Same form of plot as in a, but for the

best phase plane trajectory model. Note that at this scale, a and b are
quite dissimilar. c Unscaled phase plane trajectory plot for experimental
response shown in Fig. 1d. Here the grey scale code corresponds to no
points (white) whereas black corresponds to the maximum histogram
value (∼0.05). Inset represents a zoom into the region with the high-
est bin counts. d Same as in c, but for the best phase plane trajectory
model. Note that in this resolution the phase plane trajectories seem
quite similar

4 Discussion

4.1 Surrogate data versus experimental data

The main difference between the reference model test and
the challenge of constraining a model with respect to exper-
imental data is that in the former case a perfect solution is
guaranteed to exist (namely, the parameter set which gen-
erated the surrogate data). In stark contrast, when consid-
ering data obtained from experiment, in order for a perfect
solution to be part of the search space each of the possibly
dozens of ion channels must be present in the neuron model,
with their dynamics perfectly described and their distribu-
tions across the membrane faultlessly characterized. Even
if such exquisite experimental precision becomes available
some day, many modeling efforts would still choose to use

reduced models for reasons of tractability. This would again
dispel the possibility of a perfect solution existing in the
searchable parameter space.

Clearly, if such a perfect solution does exist, it is guaran-
teed to generate traces that are in exact point-to-point agree-
ment with the target data set. Thus, any distance function, no
matter what form of comparison it embodies, will recognize
it as an ideal solution. Even basic distance functions such as
mean square error, which clearly suffer from grave problems
when used for voltage traces that contain action potentials as
discussed by (LeMasson and Maex 2001), will recognize it
as a perfect solution.

In contrast, if no perfect solution exists, then the distance
function will play a much more critical role. As all solutions
are imperfect approximations, each will have a certain, non-
zero error value. This value is determined by the nature of
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the distance function. Different distance functions will be
sensitive to different discrepancies (for instance, the phase
plane trajectory ignores shifts in time). Thus, all approxi-
mations are ranked according to the values determined by
the nature of the distance functions employed. Ultimately,
only a subset of the possible solutions, those with the lowest
distance values, will be selected. Thus, a poor choice of a
distance function might cause a good approximation to be
rejected or a poor approximation to be accepted.

The nature of the imperfect solutions found to be the best
approximations by the distance function is thus clearly a cru-
cial test for the applicability of a distance function. However,
the reference model test does not challenge this aspect at all.
As at least one perfect solution can be found, the problem
of choosing amongst imperfect solutions should never arise
(unless the convergence of the algorithm is terminated pre-
maturely). Rather, the reference model test only evaluates
the more technical (albeit still useful) question of whether
the fitting method can pick out a perfect solution when such
is known to exist. One way to extend the surrogate data
approach to cases were some approximation must be cho-
sen, while still maintaining knowledge of the parameter val-
ues that generated the target data, is to generate surrogate data
from a given model yet employ the parameter constraining
procedure on a reduced model lacking some of the channels,
or on a model with inaccuracies introduced into the channel
dynamics as performed by Hobbs and Hooper (2008). The
parameter constraining strategy adopted by these authors is
shown to be able to recover model parameters very well in
the reference model test and is shown to be capable of dealing
with the aforementioned inaccuracies. Thus, it holds promise
to be successfully applied to experimental data.

4.2 Trace-to-trace comparison heavily emphasizes
subthreshold regime

For the set of experimental data we considered in this study
we find that, in our hands, those solutions chosen as good
approximations of a given experimental trace by trace-to-
trace comparison distance functions, as represented by
the phase plane trajectory distance functions, are typically
choices that heavily emphasize the subthreshold regime while
more balanced choices between subthreshold and suprathres-
hold accuracy are rejected. We show that this is mainly due to
the fact that the voltage data is dominated by the subthresh-
old regime and that trace-to-trace comparison assigns equal
weight to every point in the voltage trace. Indeed, as action
potentials are very brief events in time (in the order of milli-
seconds), if a cell fires at a rate of approximately 10 Hz then
the voltage points pertaining to action potential will amount
to one or two percent of the total voltage points. Thus, they
are only a marginal contribution to the bulk of the voltage
data. A distance function attempting to match a spiking trace

point-by-point runs the risk of having the resulting models
accurate in the subthreshold range, but in poor agreement
with the experimental data in the suprathreshold range. In
fact, due to this effect, a model that agrees with the experi-
mental data in only the sub-threshold range, with no action
potentials at all, can be potentially considered as more than
95% correct.

Clearly, these distance functions can be modified to at least
partly overcome the above difficulties by different heuristics
such as non-equal voltage point weighting, breaking up of the
full voltage trace into different segments (for instance con-
taining only a single spike), etc. Furthermore, using multiple
objective optimization both feature-based and trace-to-trace
comparisons can be combined and potentially the best of
both worlds could be enjoyed. However, most importantly,
the main point of the present study is not to discuss the util-
ity of different distance functions but rather to highlight the
fact that some methods may successfully pass the reference
model test, yet produce poorer results in the real test of con-
straining model parameters in accordance with experimental
data. Thus, the reference model test should be viewed as a
necessary, not sufficient, test of a parameter fitting method.

4.3 Automated model parameter constraining
in accordance with experimental data

Only a few studies concerning the automated parameter con-
straining of compartmental neuron models have actually
applied their method directly to experimental data
(Druckmann et al. 2007; Prinz et al. 2003; Vanier and Bower
1999) whereas other studies have applied the methods to sur-
rogate model-generated data (Achard and De Schutter 2006;
Bush et al. 2005; Gerken et al. 2006; Keren et al. 2005;
Weaver and Wearne 2006). Intuitively, it makes perfect sense
to test a parameter constraining procedure by applying it to
surrogate data that was generated by a model with known
parameters and then testing whether the procedure is able to
recover the correct parameters. Indeed, this is a useful step in
determining the utility of a parameter constraining procedure
as it is a basic requirement from such a method. However, it
is by no means the decisive step.

Indeed, as demonstrated in the present study, the main
difficulty faced by the optimization procedure when deal-
ing with experimental data resides in the fact that, given a
set of assumed membrane channels, no perfect solution is
likely to exist. Thus, the distance function(s) must rank the
models, that all are but imperfect approximations, accord-
ing to how well they approximate the data. The challenge
is to construct a parameter constraining procedure that will
result in a ranking of the models akin to what an experienced
experimentalist/modeler would decide when comparing the
experiments and the model results, thus offering alternative
to hand-tuning parameter values. This capability is indeed
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far more challenging than merely finding a perfect solution
within a given search space.

It is interesting to note that the three studies mentioned
above that compared model performance to experimental
data relied on error functions that used multiple criteria. The
studies of (Druckmann et al. 2007; Prinz et al. 2003) also
incorporated the fact that neuronal responses to a sequentially
repeated identical input are variable. Finally, the application
of multiple objective optimization suggested by Druckmann
et al. (2007) allows the seamless integration of multiple
distance functions into a single optimization framework that
addresses neuronal variability by using feature-based dis-
tance functions. Importantly, the same feature-based method
could be also used to automatically classify the various firing
patterns of neurons (work in progress).
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