Skip to main content
Log in

Mathematical modelling of neuronal dendritic branching patterns in two dimensions: application to retinal ganglion cells in the cat and rat

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Sholl’s analysis has been used for about 50years to study neuron branching characteristics based on a linear, semi-log or log—log method. Using the linear two- dimensional Sholl’s method, we call attention to a relationship between the number of intersections of neuronal dendrites with a circle and the numbers of branching points and terminal tips encompassed by the circle, with respect to the circle radius. For that purpose, we present a mathematical model, which incorporates a supposition that the number of dendritic intersections with a circle can be resolved into two components: the number of branching points and the number of terminal tips within the annulus of two adjoining circles. The numbers of intersections and last two sets of data are also presented as cumulative frequency plots and analysed using a logistic model (Boltzmann’s function). Such approaches give rise to several new morphometric parameters, such as, the critical, maximal and mean values of the numbers of intersections, branching points and terminal tips, as well as the abscissas of the inflection points of the corresponding sigmoid plots, with respect to the radius. We discuss these parameters as an additional tool for further morphological classification schemes of vertebrate retinal ganglion cells. To test the models, we apply them first to three groups of morphologically different cat’s retinal ganglion cells (the alpha, gamma and epsilon cells). After that, in order to quantitatively support the classification of the rat’s alpha cells into the inner and outer cells, we apply our models to two subgroups of these cells grouped according to their stratification levels in the inner plexiform layer. We show that differences between most of our parameters calculated for these subgroups are statistically significant. We believe that these models have the potential to aid in the classification of biological images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RGC:

Retinal ganglion cell

References

  • Alder HL, Roesler EB (1972) Introduction to probability and statistics. W.H. Freeman, San Francisco

    Google Scholar 

  • Bassingthwaighte JB, Liebovitch LS, Eest RJ (1994) Fractal physiology. Oxford University Press, New York

    Google Scholar 

  • Berry M, Sadler M, Flinn R (1986) Vertex analysis of neuronal tree structures containing trichotomous nodes. J Neurosci Meth 18: 167–77

    Article  CAS  Google Scholar 

  • Boycott BB, Wässle H (1974) The morphological types of ganglion cells of the domestic cat’s retina. J Physiol (London) 240: 397–19

    CAS  Google Scholar 

  • Caserta F, Eldres WD, Fernández E, Hausman RE, Staford LR, Bulderev SV et al (1995) Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J Neurosci Meth 56: 133–44

    Article  CAS  Google Scholar 

  • Chan-Palay V (1977) Cerebellar dentate nucleus: organization, cytology and transmitters. Springer, Berlin

    Google Scholar 

  • Cook JE (1996) Spatial properties of retinal mosaics: an empirical evaluation of some existing measures. Vis Neurosci 13: 15–0

    Article  CAS  PubMed  Google Scholar 

  • Dreher B, Sefton AJ, Ni SYK, Nisbett G (1985) The morphology, number, distribution and central projections of class I retinal ganglion cells in albino and hooded rats. Brain Behav Evol 26: 10–8

    Article  CAS  PubMed  Google Scholar 

  • Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13: 950–96

    Article  PubMed  Google Scholar 

  • Eayrs JT (1955) The cerebral cortex of normal and hypothyroid rats. Acta Anat (Basel) 25: 160–85

    Article  CAS  Google Scholar 

  • Gutierrez H, Davies AM (2007) A fast and accurate procedure for deriving the Sholl profile in quantitative studies of neuronal morphology. J Neurosci Meth 16: 24–0

    Article  Google Scholar 

  • Hald A (1952) Statistical theory with engineering applications. Wiley, New York

    Google Scholar 

  • Hoel PG (1966) Introduction to mathematical statistics. Wiley, New York

    Google Scholar 

  • Jarvinen MK, Powley TL (1999) Dorsal motor nucleus of the vagus neurons: a multivariate taxonomy. J Comp Neurol 403: 359–77

    Article  CAS  PubMed  Google Scholar 

  • Jelinek HF, Cesar RM Jr, Leandro JJG (2003) Exploring wavelet transforms for morphological differentiation between functionally different cat retinal ganglion cells. Brain Mind 4: 67–0

    Article  Google Scholar 

  • Jelinek HF, Cesar RM Jr, Leandro JJG, Spence I (2004) Automated morphometric analysis of the cat retinal alpha/Y, beta/X and delta ganglion cells using wavelet statistical moment and clustering algorithms. J Integr Neurosci 3: 415–32

    Article  PubMed  Google Scholar 

  • Jelinek HF, Elston GN, Zietsch B (2005) Fractal analysis: pitfalls and revelations in neuroscience. In: Losa GA, Merlini D, Nonnenmacher TF, Weibel ER (eds) Fractals in biology and medicine IV. Birkhäuser, Basel, pp 85–4

    Chapter  Google Scholar 

  • Jelinek HF, Steinke AB (1996) Determination of the fractal dimension of cat retinal ganglion cells using a new method on the world wide web. Proc Austr Neurosci Soc 7: 139

    Google Scholar 

  • Lowndes M, Stanford D, Stewart MG (1990) A system for the reconstruction and analysis of dendritic field. J Neurosci Meth 31: 235–45

    Article  CAS  Google Scholar 

  • Mandelbrot BB (2004) The fractal geometry of nature, 20th edn. W.N. Freemen, New York

    Google Scholar 

  • Milošević NT, Ristanović D (2007) The Sholl analysis of neuronal cell images: Semi-log or log–log method?. J Theor Biol 245: 130–40

    Article  PubMed  Google Scholar 

  • Neale EA, Bowers LM, Smith TG Jr (1993) Early dendrite development in spinal cord cell cultures: a quantyitative study. J Neurosci Res 34: 54–6

    Article  CAS  PubMed  Google Scholar 

  • Peichl L (1989) Alpha and delta ganglion cells in the rat retina. J Comp Neurol 286: 120–39

    Article  CAS  PubMed  Google Scholar 

  • Peichl LE, Buhl H, Boycott BB (1987) Alpha ganglion cells in rabbit retina. J Comp Neurol 263: 25–1

    Article  CAS  PubMed  Google Scholar 

  • Perry VH (1979) The ganglion cell layer of the retina of the rat: a Golgi study. Proc R Soc Lond B 204: 363–75

    Article  CAS  PubMed  Google Scholar 

  • Pu M, Berson DM, Pan T (1994) Structure and function of retinal ganglion cells in innervating the cat’s geniculate wing: an in vivo study. J Neurosci 14: 4338–358

    CAS  PubMed  Google Scholar 

  • Ristanović D, Milošević NT (2007) A confirmation of Rexed’s laminar hypothesis using the Sholl linear method complemented by nonparametric statistics. Neurosci Lett 414: 286–90

    Article  PubMed  Google Scholar 

  • Ristanović D, Milošević NT, Štulić V (2006) Application of modified Sholl analysis to neuronal dendritic arborisation of the cat spinal cord. J Neurosci Lett 158: 212–18

    Article  Google Scholar 

  • Rodieck RW, Brening RK (1983) Retinal ganglion cells: properties, types, genera, pathways and trans-species comparisons. Brain Behav Evol 23: 121–64

    Article  CAS  PubMed  Google Scholar 

  • Scheibel ME, Scheibel AB (1968) Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res 9: 32–8

    Article  CAS  PubMed  Google Scholar 

  • Schierwagen AK (1990) Scale-invariant diffusive growth: a dissipative principle relating neuronal form to function. In: Smith JM, Vida G (eds) Organizational constraints on the dynamics of evolution. Manchester University Press, Manchester, pp 167–89

    Google Scholar 

  • Schoenen J (1982) The dendritic organization of the human spinal cord: the dorsal horn. Neuroscience 7: 2057–087

    Article  CAS  PubMed  Google Scholar 

  • Sholl DA (1953) Dendritic organization of the neurons in the visual and motor cortices of the cat. J Anat 87: 387–06

    CAS  PubMed  Google Scholar 

  • Ten Hoopen M, Reuver HA (1970) Probabilistic analysis of dendritic branching patterns of cortical neurons. Kybernetik 6: 176–88

    Article  CAS  PubMed  Google Scholar 

  • Ten Hoopen M, Reuver HA (1971) Growth patterns of neuronal dendrites—an attempted probabilistic description. Kybernetik 8: 234–39

    Article  CAS  PubMed  Google Scholar 

  • Uylings HBM, Ruiz-Marcos A, van Pelt J (1986) The metric analysis of three-dimensional dendritic tree patterns: a methodological review. J Neurosci Methods 18: 127–51

    Article  CAS  PubMed  Google Scholar 

  • Uylings HBM, van Pelt J (2002) Measures for quantifying dendritic arborisation. Network: Comput Neural Syst 13: 397–14

    Article  Google Scholar 

  • Uylings HBM, van Pelt J, Verwer RVH, McConnell P (1989) Statistical analysis of neuronal population. In: Copowasky JJ (eds) Computrer techniques in neuroanatomy. Plenum, New York, pp 241–64

    Google Scholar 

  • van Pelt J (1997) Effect of pruning on dendritic tree topology. J Theor Biol 186: 17–1

    Article  PubMed  Google Scholar 

  • Verwer RWH, van Pelt J (1990) Analysis of binary trees when occasional multifurcations can be considered as aggregates of bifurcations. Bull Math Biol 52: 629–41

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan Ristanović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ristanović, D., Milošević, N.T., Jelinek, H.F. et al. Mathematical modelling of neuronal dendritic branching patterns in two dimensions: application to retinal ganglion cells in the cat and rat. Biol Cybern 100, 97–108 (2009). https://doi.org/10.1007/s00422-008-0271-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0271-8

Keywords

Navigation