Skip to main content

Advertisement

Log in

Bio-inspired grasp control in a robotic hand with massive sensorial input

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The capability of grasping and lifting an object in a suitable, stable and controlled way is an outstanding feature for a robot, and thus far, one of the major problems to be solved in robotics. No robotic tools able to perform an advanced control of the grasp as, for instance, the human hand does, have been demonstrated to date. Due to its capital importance in science and in many applications, namely from biomedics to manufacturing, the issue has been matter of deep scientific investigations in both the field of neurophysiology and robotics. While the former is contributing with a profound understanding of the dynamics of real-time control of the slippage and grasp force in the human hand, the latter tries more and more to reproduce, or take inspiration by, the nature’s approach, by means of hardware and software technology. On this regard, one of the major constraints robotics has to overcome is the real-time processing of a large amounts of data generated by the tactile sensors while grasping, which poses serious problems to the available computational power. In this paper a bio-inspired approach to tactile data processing has been followed in order to design and test a hardware–software robotic architecture that works on the parallel processing of a large amount of tactile sensing signals. The working principle of the architecture bases on the cellular nonlinear/neural network (CNN) paradigm, while using both hand shape and spatial–temporal features obtained from an array of microfabricated force sensors, in order to control the sensory-motor coordination of the robotic system. Prototypical grasping tasks were selected to measure the system performances applied to a computer-interfaced robotic hand. Successful grasps of several objects, completely unknown to the robot, e.g. soft and deformable objects like plastic bottles, soft balls, and Japanese tofu, have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ascari L, Ziegenmeyer M, Corradi P, Gaßmann B, Zoellner M, Dillmann R, Dario P (2006) Can statistics help walking robots in assessing terrain roughness? platform description and preliminary considerations. In: Prooceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation ASTRA2006, ESTEC, Noordwijk, The Netherlands

  • Ascari L, Corradi P, Beccai L, Laschi C (2007) A miniaturized and flexible optoelectronic sensing system for tactile skin. J Micromech Microeng 17(11):2288–298. doi:10.1088/0960-1317/17/11/016, http://ejournals.ebsco.com/direct.asp?ArticleID=4A9A98E0B7D16F0C429C

    Google Scholar 

  • Asuni G, Teti G, Laschi C, Guglielmelli E, Dario P (2005) A bio-inspired sensory-motor neural model for a neuro-robotic manipulation platform. In: Proceedings of the 12th International Conference on Advanced Robotics (ICAR)

  • Asuni G, Teti G, Laschi C, Guglielmelli E, Dario P (2006) Extension to end-effector position and orientation control of a learning-based neurocontroller for a humanoid arm. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2006), Beijing, China, October 9–5, 2006

  • Ayers J, Davis JL, Rudolph A (2002) Neurotechnology for biomimetic robots. MIT Press, Cambridge, MA, USA

    Google Scholar 

  • Beccai L, Roccella S, Ascari L, Valdastri P, Sieber A, Carrozza M, Dario P (2006) Experimental analysis of a soft compliant tactile microsensor to be integrated in an antropomorphic artificial hand. In: Proceedings of ESDA 2006, 8th Biennal ASME Conference on Engineering Systems Design and Analysis

  • Beccai L, Roccella S, Ascari L, Valdastri P, Sieber A, Carrozza M, Dario P (2008) Development and experimental analysis of a soft compliant tactile microsensor for anthropomorphic artificial hand. IEEE/ASME Trans Mechatronics 13(2): 158–68. doi:10.1109/TMECH.2008.918483

    Article  Google Scholar 

  • Bicchi A, John Kenneth Salisbury J, Brock DL (1993) Experimental evaluation of friction characteristics with an articulated robotic hand. In: The 2nd International Symposium on Experimental Robotics II, Springer, Berlin, pp 153–67

  • Burstedt M, Flanagan J, Johansson R, Burstedt M, Johansson R (1999) Control of grasp stability in humans under different frictional conditions during multidigit manipulation. J Neurophysiol 82(5): 2393–405

    CAS  PubMed  Google Scholar 

  • Canepa G, Petrigliano R, Campanella M, De Rossi D (1998) Detection of incipient object slippage by skin-like sensing and neural network processing. Systems Man Cybernet B, IEEE Transactions on 28(3): 348–56

    Article  CAS  Google Scholar 

  • Carrozza M, Cappiello G, Micera S, Edin BB, Beccai L, Cipriani C (2006) Design of a cybernetic hand for perception and action. Biol Cybernet 95: 629–44. doi:10.1007/s00422-006-0124-2

    Article  CAS  Google Scholar 

  • Chua L, Roska T (1993) The CNN paradigm. Circuits and systems. I. Fundamental theory and applications, IEEE Transactions on [see also Circuits and Systems I: Regular Papers, IEEE Transactions on] 40(3): 147–56

    Article  Google Scholar 

  • Chua L, Roska T (2002) Cellular neural networks and visual computing: foundations and applications. Cambridge University Press, London

    Google Scholar 

  • Chua LO, Yang L (1988a) Cellular neural networks: applications. IEEE Trans Circuits Syst 35(10): 1273–290

    Article  Google Scholar 

  • Chua LO, Yang L (1988b) Cellular neural networks: theory. IEEE Trans Circuits Syst 35(10): 1257–272

    Article  Google Scholar 

  • Corradi P, Ascari L, Menciassi A, Laschi C (2008) A micro-optical transducer for sensing applications. Int J Optomechatron 2(4)

  • Cutkosky M, Hyde J (1993) Manipulation control with dynamic tactile sensing. In: 6th ISRR, Hidden Valley, Pennsylvania

  • Dario P, Laschi C, Menciassi A, Guglielmelli E, Carrozza M, Zecca M, Zollo L, Teti G, Beccai L, Vecchi F, et al (2002) A human-like robotic manipulation system implementing human models of sensory-motor coordination. In: Proceedings of 2002 IARP International Workshop on Humanoid and Human Friendly Robotics, pp 97–03

  • Eberman B, Salisbury J (1994) Application of change detection to dynamic contact sensing. Int J Robotics Res 13(5): 369

    Article  Google Scholar 

  • Edin B, Ascari L, Beccai L, Roccella S, Cabibihan JJ, Carrozza M (2008) Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task. Brain Res Bull 75(6):785–95. http://www.sciencedirect.com/science/article/B6SYT-4RW9H04-1/2/438131284d5be7b203946931454a25d1

  • Glossas N, Aspragathos N (2001) Fuzzy logic grasp control using tactile sensors. Mechatronics 11(7): 899–20

    Article  Google Scholar 

  • Holweg E, Hoeve H, Jongkind W, Marconi L, Melchiorri C, Bonivento C (1996) Slip detection by tactile sensors: algorithms and experimental results. In: Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on, vol 4, pp 3234–239

  • Hosoda K, Tada Y, Asada M (2006) Anthropomorphic robotic soft fingertip with randomly distributed receptors. Robot Autonomous Syst 54(2): 104–09

    Article  Google Scholar 

  • Howe RD (1994) Tactile sensing and control of robotic manipulation. J Adv Robot 8: 245–61

    Article  Google Scholar 

  • Howe RD, Cutkosky MR (1989) Sensing skin acceleration for slip and texture perception. In: Proceedings of the 1989 IEEE International Conference on Robotics and Automation, Scottsdale, Arizona, pp 145–50

  • Jenmalm P, Johansson R (1997) Visual and somatosensory information about object shape control manipulative fingertip forces. J Neurosc 17(11): 4486–499

    CAS  Google Scholar 

  • Johansson R, Birznieks I (2004) First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci 7(2): 170–77

    Article  CAS  PubMed  Google Scholar 

  • Johansson R, Edin B (1993) Predictive feed-forward sensory control during grasping and manipulation in man. Biomedical Research 14(4):95–06, revue/Journal Title Biomedical research ISSN 0388-6107 CODEN BRESD5 Editor web page: http://www.med.hokudai.ac.jp/anat-3w/bmr/index.htm

  • Johansson R, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56(3): 550–64

    Article  CAS  PubMed  Google Scholar 

  • Johansson R, Westling G (1987) Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp Brain Res 66(1): 141–54. doi:10.1007/BF00236210

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS (1978) Tactile sensibility in the human hand: receptive field characteristics of mechanoreceptive units in the glabrous skin area. J Physiol 281: 101–25

    CAS  PubMed  Google Scholar 

  • Johansson RS (1996) Sensory control of dexterous manipulation in humans. In: Wing AM, Haggard P, Flanagan JR (eds) Hand and brain: the neurophysiology and psychology of hand movements, pp 381–14

  • Johansson RS, Vallbo AB (1980) Spatial properties of the population of mechanoreceptive units in the glabrous skin of the human hand. Brain Res 184: 353–66

    Article  CAS  PubMed  Google Scholar 

  • Kandel E, Schwartz JH, Jessel T (2000) Principles of neural science, 4th edn. Mc Graw Hill, NY, USA

    Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6): 718–27

    Article  CAS  PubMed  Google Scholar 

  • Kemp C, Edsinger A, Torres-Jara E (2007) Challenges for robot manipulation in human environments [grand challenges of robotics]. Robot Autom Mag IEEE 14(1): 20–9

    Article  Google Scholar 

  • Kemp CC, Aryananda L, Edsinger A, Fitzpatrick P, Natale L, Torres-Jara E (eds) (2006) Proceedings of the Robotics: Science & Systems 2006 Workshop—Manipulation for Human Environments, Philadelphia, PA. http://www.archive.org/details/manipulation_for_human_environments_2006

  • Kis A, Kovacs F, Szolgay P (2006) 3d tactile sensor array processed by cnn-um: a fast method for detecting and identifying slippage and twisting motion. Int J Circuit Theory Appl 34: 517–31

    Article  Google Scholar 

  • Kurita Y, Ikeda A, Ueda J, Ogasawara T (2005) A fingerprint pointing device utilizing the deformation of the fingertip during the incipient slip. Robot IEEE Trans [see also Robotics and Automation, IEEE Transactions on] 21(5): 801–11

    Google Scholar 

  • Macefield V, Häger-Ross C, Johansson R (1996) Control of grip force during restraint of an object held between finger and thumb: responses of cutaneous afferents from the digits. Exp Brain Res 108(1): 155–71. doi:10.1007/BF00242913

    CAS  PubMed  Google Scholar 

  • Ohki Y, Edin B, Johansson R (2002) Predictions specify reactive control of individual digits in manipulation. J Neurosc 22(2): 600–10

    CAS  Google Scholar 

  • Rodriguez-Vazquez A, Linan-Cembrano G, Carranza L, Roca-Moreno E, Carmona-Galan R, Jimenez-Garrido F, Dominguez-Castro R, Meana S (2004) Ace16k: the third generation of mixed-signal simd-cnn ace chips toward vsocs. Circuits Syst I: Regular Papers, IEEE Trans [Circuits Syst I Fundamental Theory Appl, IEEE Trans] 51(5): 851–63

    Article  Google Scholar 

  • Roska T, Hamori J, Labos E, Lotz K, Orzo L, Takacs J, Venetianer P, Vidnyanszky Z, Zarandy A (1993) The use of cnn models in the subcortical visual pathway. Circuits Syst I Fundamental Theory Appl, IEEE Trans [see also Circuits and Systems I: Regular Papers, IEEE Transactions on] 40(3): 182–95

    Article  Google Scholar 

  • Srinivasan M, Whitehouse J, Lammote R (1990) Tactile detection of slip: surface microgeometry and peripheral neural codes. J Neurophysiol 63:1323–2, manca l’ultima pagina, che trovi nel file srinivasan90-p2.pdf

    Google Scholar 

  • Westling G, Johansson RS (1987) Responses in glabrous skin mechanoreceptors during precision grip in humans. Exp Brain Res 66: 128–40

    Article  CAS  PubMed  Google Scholar 

  • WorldRobotics (2006) World Robotics 2006. International Federation of Robotics, Statistical Department. http://www.worldrobotics-online.org/

  • Yamada Y, Maeno T, Fujimoto I, Morizono T, Umetani Y (2002) Identification of incipient slip phenomena based on the circuit output signals of pvdf film strips embedded in artificial finger ridges. In: Proceedings of the SICE Annual Conference, pp 3272–277

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Ascari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ascari, L., Bertocchi, U., Corradi, P. et al. Bio-inspired grasp control in a robotic hand with massive sensorial input. Biol Cybern 100, 109–128 (2009). https://doi.org/10.1007/s00422-008-0279-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0279-0

Keywords

Navigation