Skip to main content
Log in

A possible mechanism of stochastic resonance in the light of an extra-classical receptive field model of retinal ganglion cells

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Traditionally the intensity discontinuities in an image are detected as zero-crossings of the second derivative with the help of a Laplacian of Gaussian (LOG) operator that models the receptive field of retinal Ganglion cells. Such zero-crossings supposedly form a raw primal sketch edge map of the external world in the primary visual cortex of the brain. Based on a new operator which is a linear combination of the LOG and a Dirac-delta function that models the extra-classical receptive field of the ganglion cells, we find that zero-crossing points thus generated, store in presence of noise, apart from the edge information, the shading information of the image in the form of density variation of these points. We have also shown that an optimal image contrast produces best mapping of the shading information to such zero-crossing density variation for a given amount of noise contamination. Furthermore, we have observed that an optimal amount of noise contamination reproduces the minimum optimal contrast and hence gives rise to the best representation of the original image. We show that this phenomenon is similar in nature to that of stochastic resonance phenomenon observed in psychophysical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benzi R, Parisi G, Sutera A, Vulpiani A (1982) Stochastic resonance in climatic change. Tellus 34: 10–16

    Google Scholar 

  • Canny J (1986) A computational approach to edge detection. IEEE Trans. PAMI 8: 679–698

    Google Scholar 

  • Cordo P, Inglis JT, Verschueren S, Collins JJ, Merfeld DM, Rosenblum S, Buckley S, Moss F (1996) Noise in human muscle spindles. Nature (London) 383: 769–770

    Article  CAS  Google Scholar 

  • Douglass JK, Wilkens L, Pantazelou E, Moss F (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature (London) 365: 337–340

    Article  CAS  Google Scholar 

  • Freund JA (2000) Stochastic Resonance with images and spatially correlated stochastic patterns. In: Freund JA, Poeschel T (eds) Stochastic processes in physics, chemistry and biology. Springer, Berlin, pp 160–171

    Chapter  Google Scholar 

  • Ghosh K, Sarkar S, Bhaumik K (2005) A possible mechanism of zero-crossing detection using the concept of extended classical receptive field of retinal ganglion cells. Biol Cybern 93: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Ghosh K, Sarkar S, Bhaumik K (2006) A possible explanation of the low-level brightness-contrast illusions in the light of an extended classical receptive field model of retinal ganglion cells. Biol Cybern 94: 89–96

    Article  PubMed  Google Scholar 

  • Ghosh K, Sarkar S, Bhaumik K (2007) Understanding image structure from a new multi-scale representation of higher order derivative filters. Image Vis Comput 25: 1228–1238

    Article  Google Scholar 

  • Hochstein S, Spitzer H (1984) Zero crossing detectors in primary visual cortex?. Biol Cybern 51: 195–199

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Wright MJ (1972) Functional organization of the periphery effect in retinal ganglion cells. Vis Res 12: 1857–1879

    Article  PubMed  CAS  Google Scholar 

  • Kuffler SW (1953) Discharge patterns and functional organizations of mammalian retina. J Neurophysiol 16: 37–68

    PubMed  CAS  Google Scholar 

  • Kaplan E, Benardete E (2001) The dynamics of primate retinal ganglion cells. Prog Brain Res 134: 1–18

    Article  Google Scholar 

  • Kitajo K, Nozaki D, Ward LM, Yamamoto Y (2003) Behavioral stochastic resonance within human brain. Phys Rev Lett 90: 218103–218106

    Article  PubMed  CAS  Google Scholar 

  • Levin JE, Miller JP (1996) Broadband neural encoding in the cricket cereal sensory system enhanced by stochastic resonance. Nature (London) 380: 165–168

    Article  CAS  Google Scholar 

  • Ma SD, Li B (1998) Derivative computation by multiscale filters. Image Vis Comput 16: 43–53

    Article  Google Scholar 

  • Marr D, Hildreth E (1980) Theory of edge detection. Proc. R. Soc. Lond. B 207: 187–217

    Article  PubMed  CAS  Google Scholar 

  • Marr D, Ullman S (1981) Directional selectivity and its use in early visual processing. Proc. R. Soc. Lond. B 211: 151–180

    Article  PubMed  CAS  Google Scholar 

  • McIlwain JT (1966) Some evidence concerning the periphery effect in cat’s retina. Exp Brain Res 1: 265–271

    Article  PubMed  CAS  Google Scholar 

  • Nicolis C (1982) Stochastic aspects of climatic transitions—response to a periodic forcing. Tellus 34: 1–9

    Article  Google Scholar 

  • Passaglia CL, Enroth-Cugell C, Troy JB (2001) Effects of remote stimulation on the mean firing rate of cat retinal ganglion cells. J Neurosci 21: 5794–5803

    PubMed  CAS  Google Scholar 

  • Robinson HPC (2004) The biophysical basis of firing variability in cortical neurons. In: Feng JF (eds) Computational neuroscience: a comprehensive approach. Chapman & Hall/CRC, London, pp 159–183

    Google Scholar 

  • Richter J, Ullman S (1986) Non-linearities in cortical simple cell and the possible detection of zero crossings. Biol Cybern 53: 195–202

    Article  PubMed  CAS  Google Scholar 

  • Rodieck RW, Stone J (1965) Analysis of receptive fields of cat retinal ganglion cells. J Neurophysiol 28: 833–849

    Google Scholar 

  • Stocks NG (2000) Suprathreshold stochastic resonance in multilevel threshold systems. Phys Rev Lett 84: 2310–2313

    Article  PubMed  CAS  Google Scholar 

  • Shalden MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr Opin Neurobiol 4: 569–579

    Article  Google Scholar 

  • Simonotto E, Riani M, Seife C, Roberts M, Twitty J, Moss F (1997) Visual perception of stochastic resonance. Phys Rev Lett 78: 1186–1189

    Article  CAS  Google Scholar 

  • Tham C (2007) Stochastic resonances in vision: models and data. Ph.D. Thesis, The University of Manchester, MIMS Eprint 2007.7 (2007). http://www.manchester.ac.uk/mims/eprints

  • Usui S, Stark L (1978) Sensory and motor mechanism interact to control amplitude of pupil noise. Vis Res 18: 505–507

    Article  PubMed  CAS  Google Scholar 

  • Wiesel TN (1960) Receptive fields of ganglion cells in cat’s retina. J Physiol (Lond) 153: 583–594

    CAS  Google Scholar 

  • Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature (London) 373: 33–36

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuntal Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, K., Sarkar, S. & Bhaumik, K. A possible mechanism of stochastic resonance in the light of an extra-classical receptive field model of retinal ganglion cells. Biol Cybern 100, 351–359 (2009). https://doi.org/10.1007/s00422-009-0306-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0306-9

Keywords

Navigation