Skip to main content
Log in

Modelled temperature-dependent excitability behaviour of a generalised human peripheral sensory nerve fibre

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The objective of this study was to determine if a recently developed human Ranvier node model, which is based on a modified version of the Hodgkin–Huxley model, could predict the excitability behaviour in human peripheral sensory nerve fibres with diameters ranging from 5.0 to 15.0 μm. The Ranvier node model was extended to include a persistent sodium current and was incorporated into a generalised single cable nerve fibre model. Parameter temperature dependence was included. All calculations were performed in Matlab. Sensory nerve fibre excitability behaviour characteristics predicted by the new nerve fibre model at different temperatures and fibre diameters compared well with measured data. Absolute refractory periods deviated from measured data, while relative refractory periods were similar to measured data. Conduction velocities showed both fibre diameter and temperature dependence and were underestimated in fibres thinner than 12.5 μm. Calculated strength–duration time constants ranged from 128.5 to 183.0 μs at 37°C over the studied nerve fibre diameter range, with chronaxie times about 30% shorter than strength–duration time constants. Chronaxie times exhibited temperature dependence, with values overestimated by a factor 5 at temperatures lower than body temperature. Possible explanations include the deviated absolute refractory period trend and inclusion of a nodal strangulation relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

HH model:

Hodgkin–Huxley model

ANF:

Auditory nerve fibre

AP:

Action potential

ARP:

Absolute refractory period

RRP:

Relative refractory period

GHK:

Goldman–Hodgkin–Katz

References

  • Atkins PW (1995) Physical Chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Baker MD (2002) Electrophysiology of mammalian Schwann cells. Prog Biophys Mol Biol 78: 83–103

    Article  PubMed  CAS  Google Scholar 

  • Bakondi G, Pór Á, Kovács I, Szucs G, Rusznák Z (2008) Voltage-gated K+ channel (Kv) subunit expression of the guinea pig spiral ganglion cells studied in a newly developed cochlear free-floating preparation. Brain Res 1210: 148–162

    Article  PubMed  CAS  Google Scholar 

  • Behse F (1990) Morphometric studies on the human sural nerve. Acta Neurol Scand Suppl 82: 1–38

    Article  Google Scholar 

  • Blight AR (1985) Computer simulation of action potentials and afterpotentials in mammalian myelinated axons: the case for a lower resistance myelin sheath. Neuroscience 15: 13–31

    Article  PubMed  CAS  Google Scholar 

  • Bostock H (1983) The strength–duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. J Physiol (Lond) 341: 59–74

    CAS  Google Scholar 

  • Bostock H, Rothwell JC (1997) Latent addition in motor and sensory fibres of human peripheral nerve. J Physiol (Lond) 498: 277–294

    CAS  Google Scholar 

  • Briaire JJ, Frijns JHM (2005) Unraveling the electrically evoked compound action potential. Hear Res 205: 143–156

    Article  PubMed  Google Scholar 

  • Briaire JJ, Frijns JHM (2006) The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach. Hear Res 214: 17–27

    Article  PubMed  Google Scholar 

  • Bruce IC, White MW, Irlicht LS, O’Leary SJ, Clark GM (1999) The effects of stochastic neural activity in a model predicting intensity perception with cochlear implants: low-rate stimulation. IEEE Trans Biomed Eng 46: 1393–1404

    Article  PubMed  CAS  Google Scholar 

  • Buchthal F, Rosenfalck A (1966) Evoked action potentials and conduction velocity in human sensory nerves. Brain Res 3: 1–122

    Article  Google Scholar 

  • Burke D, Mogyoros I, Vagg R, Kiernan MC (1999) Temperature dependence of excitability indices of human cutaneous afferents. Muscle Nerve 22: 51–60

    Article  PubMed  CAS  Google Scholar 

  • Burke D, Kiernan MC, Bostock H (2001) Excitability of human axons. Clin Neurophysiol 112: 1575–1585

    Article  PubMed  CAS  Google Scholar 

  • Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR (2000) Sodium channel Nav 1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc Natl Acad Sci USA 97: 5616– 5620

    Article  PubMed  CAS  Google Scholar 

  • Carlyon RP, van Wieringen A, Deeks JM, Long CJ, Lyzenga J, Wouters J (2005) Effect of interphase-gap on the sensitivity of cochlear implant users to electrical stimulation. Hear Res 205: 210–224

    Article  PubMed  Google Scholar 

  • Chen WC, Davis RL (2006) Voltage-gated and two-pore-domain potassium channels in murine spiral ganglion neurons. Hear Res 222: 89–99

    Article  PubMed  CAS  Google Scholar 

  • Chiu SY, Ritchie JM, Rogart RB, Stagg D (1979) A quantitative description of membrane currents in rabbit myelinated nerve. J Physiol (Lond) 292: 149–166

    CAS  Google Scholar 

  • Chiu SY, Zhou L, Zhang C-L, Messing A (1999) Analysis of potassium channel functions in mammalian axons by gene knockouts. J Neurocytol 28: 349–364

    Article  PubMed  CAS  Google Scholar 

  • Colombo J, Parkins CW (1987) A model of electrical excitation of the mammalian auditory-nerve neuron. Hear Res 31: 287–312

    Article  PubMed  CAS  Google Scholar 

  • Devaux JJ, Kleopa KA, Cooper EC, Scherer SS (2004) KCNQ2 is a nodal K+ channel. J Neurosci 24: 1236–1244

    Article  PubMed  CAS  Google Scholar 

  • Frankenhaeuser B, Huxley AF (1964) The action potential in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage clamp data. J Physiol (Lond) 171: 302–315

    CAS  Google Scholar 

  • Frijns JHM, ten Kate JH (1994) A model of myelinated nerve fibres for electrical prosthesis design. Med Biol Eng Comput 32: 391– 398

    Article  PubMed  CAS  Google Scholar 

  • Frijns JHM, Mooij J, ten Kate JH (1994) A quantitative approach to modeling mammalian myelinated nerve fibers for electrical prosthesis design. IEEE Trans Biomed Eng 41: 556–566

    Article  PubMed  CAS  Google Scholar 

  • Geuna S, Tos P, Guglielmone R, Battiston B, Giacobini-Robecchi MG (2001) Methodological issues in size estimation of myelinated nerve fibers in peripheral nerves. Anat Embryol 203: 1–10

    Article  Google Scholar 

  • Glueckert R, Pfaller K, Kinnefors A, Rask-Andersen H, Schrott-Fischer A (2005a) The human spiral ganglion: new insights into ultrastructure, survival rate and implications for cochlear implants. Audiol Neurotol 10: 258–273

    Article  Google Scholar 

  • Glueckert R, Pfaller K, Kinnefors A, Schrott-Fischer A, Rask-Andersen H (2005b) High resolution scanning electron microscopy of the human organ of Corti.: a study using freshly fixed surgical specimens. Hear Res 199: 40–56

    PubMed  Google Scholar 

  • Grill WM, Mortimer JT (1996) The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Trans Biomed Eng 43: 161–166

    Article  PubMed  Google Scholar 

  • Halter JA, Clark JW Jr (1991) A distributed-parameter model of the myelinated nerve fiber. J Theor Biol 148: 345–382

    Article  PubMed  CAS  Google Scholar 

  • Hille B (2001) Ionic channels of excitable membrane. Sinauer Associates, Sunderland, Massachusetts

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117: 500–544

    CAS  Google Scholar 

  • Hossain WA, Antic SD, Yang Y, Rasband MN, Morest DK (2005) Where is the spike generator of the cochlear nerve? Voltage- gated sodium channels in the mouse cochlea. J Neurosci 25: 6857–6868

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF (1959) Ion movements during nerve activity. Ann N Y Acad Sci 81: 221–246

    Article  PubMed  CAS  Google Scholar 

  • Kiernan MC, Cikurel K, Bostock H (2001) Effects of temperature on the excitability properties of human motor axons. Brain 124: 816–825

    Article  PubMed  CAS  Google Scholar 

  • Lapicque L (1907) Recherches quantitatifs sur l’excitation electrique des nerfs traitee comme un polarisation. J Physiol (Lond) 9: 622–635

    Google Scholar 

  • Lowitzsch K, Hopf HC, Galland J (1977) Changes of sensory conduction velocity and refractory periods with decreasing tissue temperature in man. J Neurol 216: 181–188

    Article  PubMed  CAS  Google Scholar 

  • Macherey O, Carlyon RP, van Wieringen A, Wouters J (2007) A dual-process integrator-resonator model of the electrically stimulated human auditory nerve. J Assoc Res Otolaryngol 8: 84–104

    Article  PubMed  Google Scholar 

  • Matsuoka AJ, Rubinstein JT, Abbas PJ, Miller CA (2001) The effects of interpulse interval on stochastic properties of electrical stimulation: models and measurements. IEEE Trans Biomed Eng 48: 416–424

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CC, Richardson AG, Grill WM (2002) Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 87: 995–1006

    PubMed  Google Scholar 

  • Miller CA, Abbas PJ, Rubinstein JT (1999) An empirically based model of the electrically evoked compound action potential. Hear Res 135: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Mo Z-L, Adamson CL, Davis RL (2002) Dendrotoxin-sensitive K+ currents contribute to accomodation in murine spiral ganglion neurons. J Physiol (Lond) 542: 763–778

    Article  CAS  Google Scholar 

  • Mogyoros I, Kiernan MC, Burke D (1996) Strength–duration properties of human peripheral nerve. Brain 119: 439–447

    Article  PubMed  Google Scholar 

  • Moore JW, Joyner RW, Brill MH, Waxman SD, Najar-Joa M (1978) Simulations of conduction in uniform myelinated fibers. Relative sensitivity to changes in nodal and internodal parameters. Biophys J 21: 147–160

    Article  PubMed  CAS  Google Scholar 

  • Morse RP, Evans EF (2003) The sciatic nerve of the toad Xenopus laevis as a physiological model of the human cochlear nerve. Hear Res 182: 97–118

    Article  PubMed  Google Scholar 

  • Nadol JB Jr (1988) Comparative anatomy of the cochlea and auditory nerve in mammals. Hear Res 34: 253–266

    Article  PubMed  Google Scholar 

  • Nadol JB Jr (1990) Degeneration of cochlear neurons as seen in the spiral ganglion of man. Hear Res 49: 141–154

    Article  PubMed  Google Scholar 

  • Nadol JB Jr, Burgess BJ, Reisser C (1990) Morphometric analysis of normal human spiral ganglion cells. Ann Otol Rhinol Laryngol 99: 340–348

    PubMed  Google Scholar 

  • Paintal AS (1965) Effects of temperature on conduction in single vagal and saphenous myelinated nerve fibres of the cat. J Physiol (Lond) 180: 20–49

    CAS  Google Scholar 

  • Paintal AS (1966) The influence of diameter of medullated nerve fibres of cats on the rising and falling phases of the spike and its recovery. J Physiol (Lond) 184: 791–811

    CAS  Google Scholar 

  • Rattay F (1990) Electrical nerve stimulation: theory, experiments and applications. Springer, New York

    Google Scholar 

  • Rattay F, Aberham M (1993) Modeling axon membranes for functional electrical stimulation. IEEE Trans Biomed Eng 40: 1201–1209

    Article  PubMed  CAS  Google Scholar 

  • Rattay F, Lutter P, Felix H (2001) A model of the electrically excited human cochlear neuron I. Contribution of neural substructures to the generation and propagation of spikes. Hear Res 153: 43–63

    Article  PubMed  CAS  Google Scholar 

  • Reid G, Bostock H, Schwarz JR (1993) Quantitative description of action potentials and membrane currents in human node of Ranvier. J Physiol (Lond) 467: 247P

    Google Scholar 

  • Reid G, Scholz A, Bostock H, Vogel W (1999) Human axons contain at least five types of voltage-dependent potassium channel. J Physiol (Lond) 518: 681–696

    Article  CAS  Google Scholar 

  • Reid MA, Flores-Otero J, Davis RL (2004) Firing patterns of type II spiral ganglion neurons in vitro. J Neurosci 24: 733–742

    Article  PubMed  CAS  Google Scholar 

  • Rosbe KW, Burgess BJ, Glynn RJ, Nadol JB Jr (1996) Morphologic evidence for three cell types in the human spiral ganglion. Hear Res 93: 120–127

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein JT (1995) Threshold fluctuations in an N sodium channel model of the node of Ranvier. Biophys J 68: 779–785

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein JT, Miller CA, Mino H, Abbas PJ (2001) Analysis of monophasic and biphasic electrical stimulation of nerve. IEEE Trans Biomed Eng 48: 1065–1070

    Article  PubMed  CAS  Google Scholar 

  • Schalow G, Zach GA, Warzok R (1995) Classification of human peripheral nerve fibre groups by conduction velocity and nerve fibre diameter is preserved following spinal cord lesion. J Auton Nerv Syst 52: 125–150

    Article  PubMed  CAS  Google Scholar 

  • Scherer SS, Arroyo EJ (2002) Recent progress on the molecular organization of myelinated axons. J Periph Nerv Sys 7: 1–12

    Article  CAS  Google Scholar 

  • Scholz A, Reid G, Vogel W, Bostock H (1993) Ion channels in human axons. J Neurophysiol 70: 1274–1279

    PubMed  CAS  Google Scholar 

  • Schwarz JR, Eikhof G (1987) Na currents and action potentials in rat myelinated nerve fibres at 20 and 37°C. Pflügers Arch 409: 569–577

    Article  PubMed  CAS  Google Scholar 

  • Schwarz JR, Reid G, Bostock H (1995) Action potentials and membrane currents in the human node of Ranvier. Pflügers Arch Eur J Physiol 430: 283–292

    Article  CAS  Google Scholar 

  • Schwarz JR, Glassmeier G, Cooper EC, Kao T-C, Nodera H, Tabuena D, Kaji R, Bostock H (2006) KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier. J Physiol (Lond) 573: 17–34

    Article  CAS  Google Scholar 

  • Shannon RV (1989) A model of threshold for pulsatile electrical stimulation of cochlear implants. Hear Res 40: 197–204

    Article  PubMed  CAS  Google Scholar 

  • Smit JE (2008) Modelled response of the electrically stimulated human auditory nerve fibre. Ph.D. thesis. University of Pretoria, Pretoria

  • Smit JE, Hanekom T, Hanekom JJ (2008) Predicting action potential characteristics of human auditory nerve fibres through modification of the Hodgkin–Huxley equations. S Afr J Sci 104: 284–292

    Google Scholar 

  • Smit JE, Hanekom T, Hanekom JJ (2009) Modelled temperature-dependent excitability behaviour of a single Ranvier node for a human peripheral sensory nerve fibre. Biol Cybern 100: 49–58

    Article  PubMed  Google Scholar 

  • Stephanova DI, Daskalova M, Alexandrov AS (2005) Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part I. Clin Neurophysiol 116: 1153–1158

    Article  PubMed  CAS  Google Scholar 

  • Taylor JT, Burke D, Heywood J (1992) Physiological evidence for a slow K+ conductance in human cutaneous afferents. J Physiol (Lond) 453: 575–589

    CAS  Google Scholar 

  • Vabnick L, Trimmer JS, Schwarz TL, Levinson SR, Risal D, Shrager P (1999) Dynamic potassium channel distributions during axonal development prevent aberrant firing patterns. J Neurosci 19: 747–758

    PubMed  CAS  Google Scholar 

  • Waxman SG (2000) The neuron as a dynamic electrogenic machine: modulation of sodium-channel expression as a basis for functional plasticity in neurons. Phil Trans R Soc Lond B 355: 199–213

    Article  CAS  Google Scholar 

  • Weiss G (1901) Sur la possibilité de rendre comparables entre eux les appareils servant a l’excitation électrique. Arch Ital Biol 35: 413–446

    Google Scholar 

  • Wesselink WA, Holsheimer J, Boom HBK (1999) A model of the electrical behaviour of myelinated sensory nerve fibres based on human data. Med Biol Eng Comput 37: 228–235

    Article  PubMed  CAS  Google Scholar 

  • White JA (2002) Action potential. In: Ramachandran VS(eds) Encyclopedia of the human brain. Academic press, Amsterdam, pp 1–12

    Google Scholar 

  • Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109: 648–670

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann CE, Burgess BJ, Nadol JB Jr (1995) Patterns of degeneration in the human cochlear nerve. Hear Res 90: 192–201

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Hanekom.

Additional information

At the time of this research J. E. Smit was with the University of Pretoria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smit, J.E., Hanekom, T. & Hanekom, J.J. Modelled temperature-dependent excitability behaviour of a generalised human peripheral sensory nerve fibre. Biol Cybern 101, 115–130 (2009). https://doi.org/10.1007/s00422-009-0324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0324-7

Keywords

Navigation