Skip to main content
Log in

Predictive feedback in human simulated pendulum balancing

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In studies of human balance, it is common to fit stimulus-response data by tuning the time-delay and gain parameters of a simple delayed feedback model. Many interpret this fitted model, a simple delayed feedback model, as evidence that predictive processes are not required to explain existing data on standing balance. However, two questions lead us to doubt this approach. First, does fitting a delayed feedback model lead to reliable estimates of the time-delay? Second, can a non-predictive controller provide an explanation compatible with the independently estimated time delay? For methodological and experimental clarity, we study human balancing of a simulated inverted pendulum via joystick and screen. A two-step approach to data analysis is used: firstly a non-parametric model—the closed-loop impulse response—is estimated from the experimental data; second, a parametric model is fitted to the non-parametric impulse-response by adjusting time-delay and controller parameters. To support the second step, a new explicit formula relating controller parameters to closed-loop impulse response is derived. Two classes of controller are investigated within a common state-space context: non-predictive and predictive. It is found that the time-delay estimate arising from the second step is strongly dependent on which controller class is assumed; in particular, the non-predictive control assumption leads to time-delay estimates that are smaller than those arising from the predictive assumption. Moreover, the time-delays estimated using the non-predictive control assumption are not consistent with a lower-bound on the time-delay of the non-parametric model whereas the corresponding predictive result is consistent. Thus while the goodness of fit only marginally favoured predictive over non-predictive control, if we add the additional constraint that the model must reproduce the non-parametric time delay, then the non-predictive control model fails. We conclude (1) the time-delay should be estimated independently of fitting a low order parametric model, (2) that balance of the simulated inverted pendulum could not be explained by the non-predictive control model and (3) that predictive control provided a better explanation than non-predictive control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexandrov AV, Frolov AA, Horak FB, Carlson-Kuhta P, Park S (2005) Feedback equilibrium control during human standing. Biol Cybern 93: 309–322

    Article  PubMed  CAS  Google Scholar 

  • Baron S, Kleinman DL, Levison WH (1970) An optimal control model of human response. Part II: Prediction of human performance in a complex task. Automatica 6: 371–383

    Article  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81(1): 39–60

    Article  PubMed  CAS  Google Scholar 

  • Bottaro A, Casadio M, Morasso PG, Sanguineti V (2005) Body sway during quiet standing: is it the residual chattering of an intermittent stabilization process. Hum Mov Sci 24(4): 588–615 ISSN 0167-9457

    Article  PubMed  Google Scholar 

  • Bottaro A, Yasutake Y, Nomura T, Casadio M, Morasso P (2008) Bounded stability of the quiet standing posture: an intermittent control model. Hum Mov Sci 27(3): 473–495 ISSN 0167-9457

    Article  PubMed  Google Scholar 

  • Bye RT, Neilson PD (2008) The BUMP model of response planning: variable horizon predictive control accounts for the speed-accuracy tradeoffs and velocity profiles of aimed movement. Hum Mov Sci 27(5): 771–798. ISSN 0167-9457

    Article  PubMed  Google Scholar 

  • Cabrera JL, Milton JG (2002) On-off intermittency in a human balancing task. Phys Rev Lett 89(15): 158702

    Article  PubMed  Google Scholar 

  • Craik KJ (1947a) Theory of human operators in control systems: Part 1, the operator as an engineering system. Br J Psychol 38: 56–61

    CAS  Google Scholar 

  • Craik KJ (1947b) Theory of human operators in control systems: Part 2, man as an element in a control system. Br J Psychol 38: 142–148

    Google Scholar 

  • Eaton JW (2002) GNU Octave Manual. Network Theory Limited, Bristol, 2002. ISBN 0-9541617-2-6

  • Fitzpatrick R, Burke D, Gandevia SC (1996) Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances. J Neurophysiol 76(6): 3994–4008

    PubMed  CAS  Google Scholar 

  • Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Fuller AT (1968) Optimal nonlinear control systems with pure delay. Int J Control 8: 145–168

    Article  Google Scholar 

  • Gawthrop PJ (1982) A continuous-time approach to discrete-time self-tuning control. Optim Control Appl Methods 3(4): 399–414

    Google Scholar 

  • Gawthrop PJ, Wang L (2006) Intermittent predictive control of an inverted pendulum. Control Eng Pract 14(11): 1347–1356

    Article  Google Scholar 

  • Gawthrop PJ, Wang L (2007) Intermittent model predictive control. Proc Inst Mech Eng Pt I J Syst Control Eng 221(7): 1007–1018

    Article  Google Scholar 

  • Gawthrop PJ, Wang L (2008) Towards model-based continuous-time identification of the human balance controller. In: Proceedings of the 17th IFAC World Congress, Seoul, Korea, July 2008

  • Gawthrop PJ, Wang L (2009) Constrained intermittent model predictive control. Int J Control 82: 1138–1147 ISSN 0020-7179. Published online 27 January 2009

    Article  Google Scholar 

  • Gawthrop PJ, Lakie MD, Loram ID (2008) Predictive feedback control and Fitts’ law. Biol Cybern 98(3): 229–238 Published online 5 January 2008

    Article  PubMed  Google Scholar 

  • Goodwin GC, Graebe SF, Salgado ME (2001) Control system design. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Johansson R, Magnusson M, Akesson M (1988) Identification of human postural dynamics. IEEE Trans Biomed Eng 35(10): 858–869

    Article  PubMed  CAS  Google Scholar 

  • Kalman RE (1964) When is a linear control system optimal?. Trans ASME J Basic Eng 86: 51–60

    Google Scholar 

  • Kleinman D (1969) Optimal control of linear systems with time-delay and observation noise. Autom Control IEEE Trans 14: 524–527

    Article  Google Scholar 

  • Kleinman DL, Baron S, Levison WH (1970) An optimal control model of human response part i: Theory and validation. Automatica 6: 357–369

    Article  Google Scholar 

  • Kwakernaak H, Sivan R (1972) Linear optimal control systems. Wiley, New York

    Google Scholar 

  • Lakie M, Caplan N, Loram ID (2003) Human balancing of an inverted pendulum with a compliant linkage: neural control by anticipatory intermittent bias. J Physiol 551(1): 357–370

    Article  PubMed  CAS  Google Scholar 

  • Ljung L (1999) System identification: theory for the user. Information and systems science, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Ljung L (2000) System identification toolbox—for use with MATLAB: User’s Guide, 5th edn. The Mathworks Inc., Sherborn

    Google Scholar 

  • Lockhart DB, Ting LH (2007) Optimal sensorimotor transformations for balance. Nat Neurosci 10: 1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Lakie M (2002a) Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements. J Physiol 540(3): 1111–1124

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Lakie M (2002b) Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability. J Physiol 545(3): 1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2005) Active, non-spring-like muscle movements in human postural sway: how might paradoxical changes in muscle length be produced?. J Physiol 564(Pt 1): 281–293

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Gawthrop PJ, Lakie M (2006) The frequency of human, manual adjustments in balancing an inverted pendulum is constrained by intrinsic physiological factors. J Physiol (Lond) 577(1): 403–416 Published on-line 14 September 2006

    Article  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2007a) The passive, human calf muscles in relation to standing: the non-linear decrease from short range to long range stiffness. J Physiol 584(Pt 2): 661–675

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2007b) The passive, human calf muscles in relation to standing: the short range stiffness lies in the contractile component. J Physiol 584(Pt 2): 677–692

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Lakie M, Gawthrop PJ (2009a) Visual control of stable and unstable loads: what is the feedback delay and extent of linear time-invariant control?. J Physiol 587(6): 1343–1365

    Article  PubMed  CAS  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2009b) Paradoxical muscle movement during postural control. Med Sci Sports Exerc 41(1): 198–204

    Article  PubMed  Google Scholar 

  • Marshall JE (1979) Control of time-delay Systems. Peter Peregrinus, London

    Google Scholar 

  • Masani K, Vette AH, Popovic MR (2006) Controlling balance during quiet standing: proportional and derivative controller generates preceding motor command to body sway position observed in experiments. Gait Posture 23(2): 164–172 ISSN 0966-6362

    Article  PubMed  Google Scholar 

  • Maurer C, Peterka RJ (2005) A new interpretation of spontaneous sway measures based on a simple model of human postural control. J Neurophysiol 93: 189–200

    Article  PubMed  Google Scholar 

  • McRuer D (1980) Human dynamics in man-machine systems. Automatica 16: 237–253

    Article  Google Scholar 

  • Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a Smith predictor?. J Motor Behav 25: 203–216

    Google Scholar 

  • Milton JG, Cabrera JL, Ohira T (2008) Unstable dynamical systems: delays, noise and control. EPL (Europhys Lett) 83(4): 48001

    Article  Google Scholar 

  • Milton J, Townsend JL, King MA, Ohira T (2009) Balancing with positive feedback: the case for discontinuous control. Philos Trans R Soc A Math Phys Eng Sci 367(1891): 1181–1193

    Article  Google Scholar 

  • Neilson PD, Neilson MD, O’Dwyer NJ (1988) Internal models and intermittency: a theoretical account of human tracking behaviour. Biol Cybern 58: 101–112

    Article  PubMed  CAS  Google Scholar 

  • Neilson PD, Neilson MD (2005) An overview of adaptive model theory: solving the problems of redundancy, resources, and nonlinear interactions in human movement control. J Neural Eng 2(3): S279–S312

    Article  PubMed  Google Scholar 

  • Newton GC, Gould LA, Kaiser JF (1957) Analytical design of linear feedback controls. Wiley, New York

    Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88(3): 1097–1118

    PubMed  CAS  Google Scholar 

  • Pintelon R, Schoukens J (2001) System identification. A frequency domain approach. IEEE Press, New York

    Google Scholar 

  • Ronco E, Arsan T, Gawthrop PJ (1999) Open-loop intermittent feedback control: practical continuous-time GPC. IEE Proc Part D Control Theory Appl 146(5): 426–434

    Article  Google Scholar 

  • Sage AP, Melsa JJ (1971) Estimation theory with applications to communication and control. McGraw-Hill, New York

    Google Scholar 

  • Skogestad S, Postlethwaite I (1996) Multivariable feedback control analysis and design. Wiley, New York

    Google Scholar 

  • Smith OJM (1959) A controller to overcome dead-time. ISA Trans 6(2): 28–33

    Google Scholar 

  • van der Kooij H, de Vlugt E (2007) Postural responses evoked by platform pertubations are dominated by continuous feedback. J Neurophysiol 98: 730–743

    Article  PubMed  Google Scholar 

  • Van Der Kooij H, Jacobs R, Koopman B, Grootenboer H (1999) A multisensory integration model of human stance control. Biol Cybern 80: 299–308

    Article  PubMed  Google Scholar 

  • Van Der Kooij H, Jacobs R, Koopman B, Van Der Helm F (2001) An adaptive model of sensory integration in a dynamic environment applied to human stance control. Biol Cybern 84: 103–115

    Article  PubMed  Google Scholar 

  • Vince MA (1948) The intermittency of control movements and the psychological refractory period. Br J Psychol 38: 149–157

    CAS  Google Scholar 

  • Wang L, Cluett WR (1997) Frequency-sampling filters: an improved model structure for step-response identification. Automatica 33(5): 939–944

    Article  Google Scholar 

  • Wang L, Gawthrop PJ, Chessari C, Podsiadly T, Giles A (2004) Indirect approach to continuous time system identification of food extruder. J Process Control 14(6): 603–615

    Article  CAS  Google Scholar 

  • Welch TDJ, Ting LH (2008) A feedback model reproduces muscle activity during human postural responses to support-surface translations. J Neurophysiol 99: 1032–1038

    Article  PubMed  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2: 338–347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gawthrop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawthrop, P., Loram, I. & Lakie, M. Predictive feedback in human simulated pendulum balancing. Biol Cybern 101, 131–146 (2009). https://doi.org/10.1007/s00422-009-0325-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0325-6

Keywords

Navigation