Skip to main content

Advertisement

Log in

Parameters for a model of an oscillating neuronal network in the cochlear nucleus defined by genetic algorithms

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Chopper neurons in the cochlear nucleus are characterized by intrinsic oscillations with short average interspike intervals (ISIs) and relative level independence of their response (Pfeiffer, Exp Brain Res 1:220–235, 1966; Blackburn and Sachs, J Neurophysiol 62:1303–1329, 1989), properties which are unattained by models of single chopper neurons (e.g., Rothman and Manis, J Neurophysiol 89:3070–3082, 2003a). In order to achieve short ISIs, we optimized the time constants of Rothman and Manis single neuron model with genetic algorithms. Some parameters in the optimization, such as the temperature and the capacity of the cell, turned out to be crucial for the required acceleration of their response. In order to achieve the relative level independence, we have simulated an interconnected network consisting of Rothman and Manis neurons. The results indicate that by stabilization of intrinsic oscillations, it is possible to simulate the physiologically observed level independence of ISIs. As previously reviewed and demonstrated (Bahmer and Langner, Biol Cybern 95:371–379, 2006a), chopper neurons show a preference for ISIs which are multiples of 0.4 ms. It was also demonstrated that the network consisting of two optimized Rothman and Manis neurons which activate each other with synaptic delays of 0.4 ms shows a preference for ISIs of 0.8 ms. Oscillations with various multiples of 0.4 ms as ISIs may be derived from neurons in a more complex network that is activated by simultaneous input of an onset neuron and several auditory nerve fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arle JC, Kim DO (1991) Neural modelling of intrinsic and spike-discharge properties of cochlear nucleus neurons. Biol Cybern 64: 273–283

    Article  CAS  PubMed  Google Scholar 

  • Bahmer A, Langner G (2006a) Oscillating neurons in the cochlear nucleus: I. Experimental basis of a simulation paradigm. Biol Cybern 95: 371–379

    Article  PubMed  Google Scholar 

  • Bahmer A, Langner G (2006b) Oscillating neurons in the cochlear nucleus: II. Simulation results. Biol Cybern 95: 381–392

    Article  PubMed  Google Scholar 

  • Banks MI, Pearce RA, Smith PH (1993) Hyperpolarization-activated cation current (I h ) in neurons of the medial nucleus of the trapezoid body: voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem. J Neurophysiol 70: 1420–1432

    CAS  PubMed  Google Scholar 

  • Banks MI, Sachs M (1991) Regularity analysis in a compartment model of chopper units in the anteroventral cochlear nucleus. J Neurophysiol 65: 606–629

    CAS  PubMed  Google Scholar 

  • Belluzzi O, Sacchi O, Wanke E (1985) A fast transient outward current in the rat sympathetic neurons studied under voltage-clamp conditions. J Physiol 358: 91–108

    CAS  PubMed  Google Scholar 

  • Blackburn C, Sachs M (1989) Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis. J Neurophysiol 62: 1303–1329

    CAS  PubMed  Google Scholar 

  • Bleeck S (2000) Holistische Signalverarbeitung in einem Modell latenz- verknuepfter Neuronen. PhD thesis, TU Darmstadt

  • Borst JG (1995) Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol 489: 825–840

    CAS  PubMed  Google Scholar 

  • Cao XJ, Oertel D (2005) Temperature affects voltage-sensitive conductances differentially. J Neurophysiol 94: 821–832

    Article  CAS  PubMed  Google Scholar 

  • Costa PF (1996) The kinetic parameters of sodium currents in maturing acutely isolated rat hippocampal ca1 neurons. Brain Res Dev Brain Res 91: 29–40

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC, Eccles RM, Iggo A, Lundberg A (1961) Electrophysiological investigations on renshaw cells. J Physiol 159: 461–478

    CAS  PubMed  Google Scholar 

  • Ferragamo M, Golding N, Oertel D (1998) Synaptic inputs to stellate cells in the ventral cochlear nucleus. J Neurophysiol 79: 51–63

    CAS  PubMed  Google Scholar 

  • Forsythe ZRI, Stanfield P (1996) Characterization of the hyperpolarization activated nonspecific cation current I h of bushy neurons from the rat anteroventral cochlear nucleus studied in a thin brain slice preparation. Neurobiology 4: 275–276

    PubMed  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990a) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear Res 44: 99–122

    Article  CAS  PubMed  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990b) Encoding of amplitude modulation in the gerbil cochlear nucleus: II. Possible neural mechanisms. Hear Res 44: 123–142

    Article  CAS  PubMed  Google Scholar 

  • Fu XW, Brezden BL, Wu SH (1997) Hyperpolarization-activated inward current in neurons of the rat’s dorsal nucleus of the lateral lemniscus in vitro. J Neurophysiol 78: 2235–2245

    CAS  PubMed  Google Scholar 

  • Golding NL, Ferragamo M, Oertel D (1999) Role of intrinsic conductances underlying responses to transients in octopus cells of the cochlear nucleus. J Neurosci 19: 2897–2905

    CAS  PubMed  Google Scholar 

  • Hackett JT, Jackson H, Rubel EW (1982) Synaptic excitation of the second and third order auditory neurons in the avian brain stem. Neuroscience 7: 1455–1469

    Article  CAS  PubMed  Google Scholar 

  • Hewitt MJ, Meddis R, Shakleton TM (1992) A computer model of a cochlear-nucleus stellate cell: responses to amplitude-modulated and pure-tone stimuli. J Acoust Soc Am 91: 2096–2109

    Article  CAS  PubMed  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9: 1179–1209

    Article  CAS  PubMed  Google Scholar 

  • Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: a database to support computational neuroscience. J Comput Neurosci 17: 7–11

    Article  PubMed  Google Scholar 

  • Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68: 1373–1383

    CAS  PubMed  Google Scholar 

  • Josephson EM, Morest DK (1998) A quantitative profile of the synapses on the stellate cell body and axon in the cochlear nucleus of the chinchilla. J Neurocytol 27: 841–864

    Article  CAS  PubMed  Google Scholar 

  • Kanemasa T, Gan L, Perney TM, Wang LY, Kaczmarek LK (1995) Electrophysiological and pharmacological characterization of a mammalian shaw channel expressed in NIH 3T3 fibroblasts. J Neurophysiol 74: 207–217

    CAS  PubMed  Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hear Res 60: 115–142

    Article  CAS  PubMed  Google Scholar 

  • Langner G, Schreiner C (1988) Periodicity coding in the inferior colliculus of the cat: I. Neuronal mechanisms. J Neurophysiol 60: 1799–1822

    CAS  PubMed  Google Scholar 

  • Langner G, Albert M, Briede T (2002) Temporal and spatial coding of periodicity information in the inferior colliculus of awake chinchilla (chinchilla laniger). Hear Res 168: 110–130

    Article  PubMed  Google Scholar 

  • Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci 11: 2865–2880

    CAS  PubMed  Google Scholar 

  • Oertel D, Bal R, Gardner SM, Smith PH, Joris PX (2000) Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. PNAS 97: 11773–11779

    Article  CAS  PubMed  Google Scholar 

  • Ostapoff EM, Feng JJ, Morest DK (1994) A physiological and structural study of neuron types in the cochlear nucleus. II. Neuron types and their structural correlation with response properties. J Comp Neurol 346: 19–42

    Article  CAS  PubMed  Google Scholar 

  • Palmer A, Jiang D, Marshall DH (1996) Responses of ventral cochlear nucleus onset and chopper units as a function of signal bandwidth. J Neurophysiol 75: 780–794

    CAS  PubMed  Google Scholar 

  • Perney TM, Kaczmarek LK (1997) Localization of a high threshold potassium channel in the rat cochlear nucleus. J Comp Neurol 386: 178–202

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer RR (1966) Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation. Exp Brain Res 1: 220–235

    Article  CAS  PubMed  Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials computed for different somadendritic distributions of synaptic inputs. J Neurophysiol 30: 1138–1168

    CAS  PubMed  Google Scholar 

  • Rees A, Langner G (2005) Temporal coding in the auditory midbrain. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer, pp 346–376

  • Rhode WS, Greenberg SR (1994) Encoding of amplitude modulation in the cochlear nucleus of the cat. J Neurophysiol 71: 1797–1825

    CAS  PubMed  Google Scholar 

  • Rothman JS, Manis PB (2003a) Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J Neurophysiol 89: 3070–3082

    Article  CAS  PubMed  Google Scholar 

  • Rothman JS, Manis PB (2003b) Kinetic analyses of three distinct potassium conductances in ventral cochlear nucleus neurons. J Neurophysiol 89: 3083–3096

    Article  CAS  PubMed  Google Scholar 

  • Rothman JS, Manis PB (2003c) The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. J Neurophysiol 89: 3097–3113

    Article  CAS  PubMed  Google Scholar 

  • Rothman JS, Young ED, Manis PB (1993) Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model. J Neurophysiol 70: 2562–2583

    CAS  PubMed  Google Scholar 

  • Tierney TS, Russell FA, Moore DR (1997) Susceptibility of developing cochlear nucleus neurons to deafferentation-induced death abruptly ends just before the onset of hearing. J Comp Neurol 378: 295–306

    Article  CAS  PubMed  Google Scholar 

  • Travagli RA, Gillis RA (1994) Hyperpolarization-activated currents, I h and I KIR , in rat dorsal motor nucleus of the vagus neurons in vitro. J Neurophysiol 71: 1308–1317

    CAS  PubMed  Google Scholar 

  • van Hemmen JL (2006) Editorial. Biol Cybern 94(1): 1–1

    Article  PubMed  Google Scholar 

  • Wang LY, Gan L, Forsythe ID, Kaczmarek LK (1998) Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurons. J Physiol 509: 183–194

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Sachs MB (1995) Transformation of temporal discharge patterns in a ventral cochlear nucleus stellate cell model: implications for physiological mechanisms. J Neurophysiol 73: 1600–1616

    CAS  PubMed  Google Scholar 

  • Wiegrebe L, Meddis R (2004) The representation of periodic sounds in simulated sustained chopper units of the ventral cochlear nucleus. J Acoust Soc Am 115: 1207–1218

    Article  PubMed  Google Scholar 

  • Wiegrebe L, Winter IM (2001) Temporal representation of iterated rippled noise as a function of delay and sound level in the ventral cochlear nucleus. J Neurophysiol 85: 1206–1219

    CAS  PubMed  Google Scholar 

  • Winter IM, Palmer AR, Patterson LWRD (2003) Temporal coding of the pitch of complex sounds by presumed multipolar cells in the ventral cochlear nucleus. Speech Commun 41: 135–149

    Article  Google Scholar 

  • Young ED, Robert JM, Shofner WP (1988) Regularity and latency of units in ventral cochlear nucleus: Implications for unit classification and generation of response properties. J Neurophysiol 60: 1–29

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bahmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahmer, A., Langner, G. Parameters for a model of an oscillating neuronal network in the cochlear nucleus defined by genetic algorithms. Biol Cybern 102, 81–93 (2010). https://doi.org/10.1007/s00422-009-0353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0353-2

Keywords

Navigation