Skip to main content
Log in

Path integration of head direction: updating a packet of neural activity at the correct speed using neuronal time constants

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A key question in understanding the neural basis of path integration is how individual, spatially responsive, neurons may self-organize into networks that can, through learning, integrate velocity signals to update a continuous representation of location within an environment. It is of vital importance that this internal representation of position is updated at the correct speed, and in real time, to accurately reflect the motion of the animal. In this article, we present a biologically plausible model of velocity path integration of head direction that can solve this problem using neuronal time constants to effect natural time delays, over which associations can be learned through associative Hebbian learning rules. The model comprises a linked continuous attractor network and competitive network. In simulation, we show that the same model is able to learn two different speeds of rotation when implemented with two different values for the time constant, and without the need to alter any other model parameters. The proposed model could be extended to path integration of place in the environment, and path integration of spatial view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27: 77–87

    Article  CAS  PubMed  Google Scholar 

  • Bassett J, Taube JS (2005) Head direction signal generation: ascending and descending information streams. In: Wiener SI, Taube JS (eds) Head direction cells and the neural mechanisms of Spatial orientation. MIT Press, Cambridge, pp 83–109

    Google Scholar 

  • Brunel N, Wang X-J (2001) Effects of neuromodulation in a cortical network model of object workring memory dominated by recurrent inhibition. J Comput Neurosci 11: 63–85

    Article  CAS  PubMed  Google Scholar 

  • Collett TS, Zeil J (1998) Places and landmarks: an arthropod perspective. In: Healy S (eds) Spatial representation in animals. Oxford University Press, Oxford

    Google Scholar 

  • Georges-François P, Rolls ET, Robertson RG (1999) Spatial view cells in the primate hippocampus: allocentric view not head direction or eye position or place. Cereb Cortex 9: 197–212

    Article  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436: 801–806

    Article  CAS  PubMed  Google Scholar 

  • Hahnloser RHR (2003) Emergence of neural integration in the head-direction system by visual supervision. Neuroscience 120: 877–891

    Article  CAS  PubMed  Google Scholar 

  • Hestrin S, Sah P, Nicoll R (1990) Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron 5: 247–253

    Article  CAS  PubMed  Google Scholar 

  • McNaughton BL, Barnes CA, O’Keefe J (1983) The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp Brain Res 52: 41–49

    Article  CAS  PubMed  Google Scholar 

  • Mittelstaedt H, Mittelstaedt ML (1982) Homing by path integration. In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin, pp 290–297

    Google Scholar 

  • Mittelstaedt ML, Mittelstaedt H (1980) Homing by path integration in a mammal. Naturwissenschaften 67: 566–567

    Article  Google Scholar 

  • Muller RU, Kubie JL, Bostock EM, Taube JS, Quirk GJ (1991) Spatial firing correlates of neurons in the hippocampal formation of freely moving rats. In: Paillard J (eds) Brain and space. Oxford University Press, Oxford, pp 296–333

    Google Scholar 

  • Muller RU, Ranck JB Jr, Taube JS (1996) Head direction cells: properties and functional significance. Curr Opin Neurobiol 6: 196–206

    Article  CAS  PubMed  Google Scholar 

  • Oja E (1982) A simplified neuron model as a principal component analyser. J Math Biol 15: 267–273

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map: preliminary evidence from unit activity in the freely moving rat. Brain Res 34: 171–175

    Article  PubMed  Google Scholar 

  • Ranck JB Jr (1985) Head direction cells in the deep cell layer of dorsolateral presubiculum in freely moving rats. In: Buzsáki G, Vanderwolf CH (eds) Electrical activity of the archicortex. Akadémiai Kiadó, Budapest

    Google Scholar 

  • Redish AD (1999) Beyond the cognitive map. MIT Press, Cambridge

    Google Scholar 

  • Redish AD, Elga AN, Touretzky DS (1996) A coupled attractor model of the rodent head direction system. Netw Comput Neural Syst 7: 671–685

    Article  Google Scholar 

  • Robertson RG, Rolls ET, Georges-François P (1998) Spatial view cells in the primate hippocampus: effects of removal of view details. J Neurophysiol 79: 1145–1156

    CAS  PubMed  Google Scholar 

  • Robertson RG, Rolls ET, Georges-François P (1999) Head direction cells in the primate pre-subiculum. Hippocampus 9: 206–219

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET (1999) Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9: 467–480

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET, Xiang JZ (2006) Spatial view cells in the primate hippocampus, and memory recall. Rev Neurosci 17: 175–200

    PubMed  Google Scholar 

  • Rolls ET, Robertson RG, Georges-François P (1997) Spatial view cells in the primate hippocampus. Eur J Neurosci 9: 1789–1794

    Article  CAS  PubMed  Google Scholar 

  • Samsonovich A, McNaughton BL (1997) Path integration and cognitive mapping in a continuous attractor neural network model. J Neurosci 17: 5900–5920

    CAS  PubMed  Google Scholar 

  • Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312: 758– 762

    Article  CAS  PubMed  Google Scholar 

  • Sharp PE (1996) Multiple spatial-behavioral correlates for cells in the rat postsubiculum: multiple regression analysis and comparison to other hippocampal areas. Cereb Cortex 6: 238–259

    Article  CAS  PubMed  Google Scholar 

  • Skaggs WE, Knierim JJ, Kudrimoti HS, McNaughton BL (1995) A model of the neural basis of the rat’s sense of direction. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information processing Systems, vol 7. MIT Press, Cambridge, pp 173–180

    Google Scholar 

  • Song P, Wang X-J (2005) Angular path integration by moving “hill of activity”: a spiking neuron model without recurrent excitation of the head-direction system. J Neurosci 25: 1002–1014

    Article  CAS  PubMed  Google Scholar 

  • Spruston N, Jonas P, Sakmann B (1995) Dendrite glutamte receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J Physiol 482: 325–352

    CAS  PubMed  Google Scholar 

  • Stringer SM, Rolls ET (2006) Self-organizing path integration using a linked continuous attractor and competitive network: path integration of head direction. Netw Comput Neural Syst 17: 419–445

    Article  Google Scholar 

  • Stringer SM, Trappenberg TP, Rolls ET, De Araujo IET (2002) Self-organizing continuous attractor networks and path integration: One dimensional models of head direction cells. Netw Compuat Neural Syst 13: 217–242

    CAS  Google Scholar 

  • Taube JS, Muller RU, Ranck JB Jr (1990a) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10: 436–447

    CAS  PubMed  Google Scholar 

  • Taube JS, Muller RU, Ranck JB Jr (1990b) Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci 10: 436–447

    CAS  PubMed  Google Scholar 

  • Taylor JG (1999) Neural ‘bubble’ dynamics in two dimensions: foundations. Biol Cybern 80: 393–409

    Article  Google Scholar 

  • Walters DM, Stringer SM, Rolls ET (2009) Path integration of head direction: updating a packet of neural activity at the correct speed using axonal conduction delays (submitted)

  • Wiener SI, Paul CA, Eichenbaum H (1989) Spatial and behavioural correlates of neuronal activity. J Neurosci 9: 2737–2763

    CAS  PubMed  Google Scholar 

  • Zhang K (1996) Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J Neurosci 16: 2112–2126

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Walters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walters, D.M., Stringer, S.M. Path integration of head direction: updating a packet of neural activity at the correct speed using neuronal time constants. Biol Cybern 103, 21–41 (2010). https://doi.org/10.1007/s00422-009-0355-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0355-0

Keywords

Navigation