Skip to main content
Log in

Simulated visual homing in desert ant natural environments: efficiency of skyline cues

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Desert ants, foraging in cluttered semiarid environments, are thought to be visually guided along individual, habitual routes. While other navigational mechanisms (e.g. path integration) are well studied, the question of how ants extract reliable visual features from a complex visual scene is still largely open. This paper explores the assumption that the upper outline of ground objects formed against the sky, i.e. the skyline, provides sufficient information for visual navigation. We constructed a virtual model of the ant’s environment. In the virtual environment, panoramic images were recorded and adapted to the resolution of the desert ant’s complex eye. From these images either a skyline code or a pixel-based intensity code were extracted. Further, two homing algorithms were implemented, a modified version of the average landmark vector (ALV) model (Lambrinos et al. Robot Auton Syst 30:39–64, 2000) and a gradient ascent method. Results show less spatial aliasing for skyline coding and best homing performance for ALV homing based on skyline codes. This supports the assumption of skyline coding in visual homing of desert ants and allows novel approaches to technical outdoor navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson AM (1977) A model for landmark learning in the honey-bee. J Comp Physiol A 114(3): 335–355

    Article  Google Scholar 

  • Barta A, Horvath G (2004) Why is it advantageous for animals to detect celestial polarization in the ultraviolet? Skylight polarization under clouds and canopies is strongest in the UV. J Theor Biol 226(4): 429–437

    Article  PubMed  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46: 471–510

    Article  CAS  PubMed  Google Scholar 

  • Cartwright BA, Collett TS (1983) Landmark learning in bees. J Comp Physiol A 151(4): 521–543

    Article  Google Scholar 

  • Cheng K, Narendra A, Sommer S, Wehner R (2009) Traveling in clutter: navigation in the Central Australian desert ant Melophorus bagoti. Behav Process 80(3): 261–268

    Article  Google Scholar 

  • Cozman F, Krotov E, Guestrin C (2000) Outdoor visual position estimation for planetary rovers. Auton Robot 9(2): 135–150

    Article  Google Scholar 

  • Franz MO, Schölkopf B, Mallot HA, Bülthoff HH (1998a) Learning view graphs for robot navigation. Auton Robot 5(1): 111–125

    Article  Google Scholar 

  • Franz MO, Schölkopf B, Mallot HA, Bülthoff HH (1998b) Where did I take that snapshot? Scene-based homing by image matching. Biol Cybern 79(3): 191–202

    Article  Google Scholar 

  • Fukushi T (2001) Homing in wood ants, Formica japonica: use of the skyline panorama. J Exp Biol 204(12): 2063–2072

    CAS  PubMed  Google Scholar 

  • Gillner S, Weiß AM, Mallot HA (2008) Visual place recognition and homing in the absence of feature-based landmark information. Cognition 109(1): 105–122

    Article  PubMed  Google Scholar 

  • Gourichon S, Meyer JA, Pirim P (2002) Using coloured snapshots for short-range guidance in mobile robots. Int J Robot Autom 17: 154–162

    Google Scholar 

  • Graham P, Cheng K (2009a) Ants use the panoramic skyline as a visual cue during navigation. Curr Biol 19(20): R935–R937

    Article  CAS  PubMed  Google Scholar 

  • Graham P, Cheng K (2009b) Which portion of the natural panorama is used for view-based navigation in the Australian desert ant? J Comp Physiol A 195(7): 681–689

    Article  Google Scholar 

  • Hafner VV (2001) Adaptive homing—robotic exploration tours. Adapt Behav 9(3–4): 131–141

    Article  Google Scholar 

  • Heusser D, Wehner R (2002) The visual centring response in desert ants—Cataglyphis fortis. J Exp Biol 205(5): 585–590

    PubMed  Google Scholar 

  • Hübner W, Mallot HA (2007) Metric embedding of view-graphs: a vision and odometry-based approach to cognitive mapping. Auton Robot 23(3): 183–196

    Article  Google Scholar 

  • Johns D, Dudek G (2006) Urban position estimation from one dimensional visual cues. In: Proceedings of the third Canadian conference on computer and robot vision (CRV’06), p 22

  • Kohler M, Wehner R (2005) Idiosyncratic route-based memories in desert ants, Melophorus bagoti: how do they interact with path-integration vectors? Neurobiol Learn Mem 83(1): 1–12

    Article  PubMed  Google Scholar 

  • Kollmeier T, Röben F, Schenck W, Möller R (2007) Spectral contrasts for landmark navigation. J Opt Soc Am A 24(1): 1–10

    Article  Google Scholar 

  • Lambrinos D, Möller R, Labhart T, Pfeifer R, Wehner R (2000) A mobile robot employing insect strategies for navigation. Robot Auton Syst 30(1–2): 39–64

    Article  Google Scholar 

  • Lehrer M, Bianco G (2000) The turn-back-and-look behaviour: bee versus robot. Biol Cybern 83(3): 211–229

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Seiler H, Wen A, Zars T, Ito K, Wolf R, Heisenberg M, Liu L (2006) Distinct memory traces for two visual features in the Drosophila brain. Nature 439: 551–556

    Article  CAS  PubMed  Google Scholar 

  • Möller R (2000) Insect visual homing strategies in a robot with analog processing. Biol Cybern 83(3): 231–243

    Article  PubMed  Google Scholar 

  • Möller R (2002) Insects could exploit UV-green contrast for landmark navigation. J Theor Biol 214(4): 619–631

    Article  PubMed  Google Scholar 

  • Möller R (2009) Local visual homing by warping of two-dimensional images. Robot Auton Syst 57(1): 87–101

    Article  Google Scholar 

  • Möller R, Vardy A (2006) Local visual homing by matched-filter descent in image distances. Biol Cybern 95(5): 413–430

    Article  PubMed  Google Scholar 

  • Möller R, Lambrinos D, Pfeifer R, Labhart T, Wehner R (1998) Modeling ant navigation with autonomous agents. In: Proceedings of the fifth international conference on simulation of adaptive behavior, pp 185–195

  • Mote M, Wehner R (1980) Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J Comp Physiol 137(1): 63–71

    Article  Google Scholar 

  • O’Keefe J (1991) The hippocampal cognitive map and navigational strategies. In: Paillard J (eds) Brain and space. Oxford University Press, Oxford, pp 273–295

    Google Scholar 

  • Pratt SC, Brooks SE, Franks NR (2001) The use of edges in visual navigation by the ant Leptothorax albipennis. Ethology 107(12): 1125–1136

    Article  Google Scholar 

  • Smith L, Philippides A, Graham P, Baddeley B, Husbands P (2007) Linked local navigation for visual route guidance. Adapt Behav 15(3): 257–271

    Article  Google Scholar 

  • Stürzl W, Mallot HA (2006) Efficient visual homing based on fourier transformed panoramic images. Robot Auton Syst 54(4): 300–313

    Article  Google Scholar 

  • Stürzl W, Zeil J (2007) Depth, contrast and view-based homing in outdoor scenes. Biol Cybern 96(5): 519–531

    Article  PubMed  Google Scholar 

  • Thurrowgood S, Soccol D, Moore RJD, Bland D, Srinivasan MV (2009) A vision based system for attitude estimation of UAVs. In: Proceedings of the 2009 IEEE/RSJ international conference on intelligent robots and systems, pp 5725–5730

  • Tinbergen N, Kruyt W (1938) Über die Orientierung des Bienenwolfes III. Die Bevorzugung bestimmter Wegmarken. Z vergl Physiol 25: 292–334

    Google Scholar 

  • Vardy A, Möller R (2005) Biologically plausible visual homing methods based on optical flow techniques. Connect Sci 17(1–2): 47–89

    Article  Google Scholar 

  • Wehner R (1994) The polarization-vision project: championing organismic biology. In: Schildberger K, Elsner N (eds) Neural basis of adaptive behaviour. Fischer, Stuttgart, pp 103–143

    Google Scholar 

  • Wehner R (1997) The ants’ celestial compass system: spectral and polarization channels. In: Lehrer M (eds) Orientation and communication in arthropods. Birkhauser, Basel, pp 145–185

    Google Scholar 

  • Wehner R, Müller M (1985) Does interocular transfer occur in visual navigation by ants? Nature 315: 228–229

    Article  Google Scholar 

  • Wehner R, Räber F (1979) Visual spatial memory in desert ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Experientia 35(12): 1569–1571

    Article  Google Scholar 

  • Zeil J, Hofmann MI, Chahl JS (2003) Catchment areas of panoramic snapshots in outdoor scenes. J Opt Soc Am A 20(3): 450–469

    Article  Google Scholar 

  • Zollikofer CPE, Wehner R, Fukushi T (1995) Optical scaling in conspecific Cataglyphis ants. J Exp Biol 198(8): 1637–1646

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Basten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basten, K., Mallot, H.A. Simulated visual homing in desert ant natural environments: efficiency of skyline cues. Biol Cybern 102, 413–425 (2010). https://doi.org/10.1007/s00422-010-0375-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0375-9

Keywords

Navigation