Skip to main content
Log in

Reflexes and preflexes: on the role of sensory feedback on rhythmic patterns in insect locomotion

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Neuromuscular systems are stabilized and controlled by both feedforward and feedback signals. Feedforward pathways driven by central pattern generators (CPGs), in conjunction with preflexive mechanical reaction forces and nonlinear muscle properties, can produce stable stereotypical gaits. Feedback is nonetheless present in both slow and rapid running, and preflexive mechanisms can join with neural reflexes originating in proprioceptive sensors to yield robust behavior in uncertain environments. Here, we develop a single degree-of-freedom neuromechanical model representing a joint actuated by an agonist/antagonist muscle pair driven by motoneurons and a CPG in a periodic rhythm characteristic of locomotion. We consider two characteristic feedback modes: phasic and tonic. The former encodes states such as position in the timing of individual spikes, while the latter can transmit graded measures of force and other continuous variables as spike rates. We use results from phase reduction and averaging theory to predict phase relationships between CPG and motoneurons in the presence of feedback and compare them with simulations of the neuromechanical model, showing that both phasic and tonic feedback can shift motoneuronal timing and thereby affect joint motions. We find that phase changes in neural activation can cooperate with preflexive displacement and velocity effects on muscle force to compensate for externally applied forces, and that these effects qualitatively match experimental observations in the cockroach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn AN, Full RJ (2002) A motor and a brake: two leg extensor muscles acting at the same joint manage energy differently in a running insect. J Exp Biol 205: 379–389

    CAS  PubMed  Google Scholar 

  • Ahn AN, Meijer K, Full RJ (2006) In situ muscle power differs without varying in vitro mechanical properties in two insect leg muscles innvervated by the same motor neuron. J Exp Biol 209: 3370–3382

    Article  CAS  PubMed  Google Scholar 

  • Akay T, Büschges A (2006) Load signals assist the generation of movement-dependent reflex reversal in the femur–tibia joint of stick insects. J Neurophysiol 96: 3352–3537

    Google Scholar 

  • Akay T, Bässler U, Gerharz P, Büschges A (2001) The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur–tibia joint. J Neurophys 85(2): 594–604

    CAS  Google Scholar 

  • Akay T, Haehn S, Schmitz J, Büschges A (2004) Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. J Neurophysiol 92: 42–51

    Article  PubMed  Google Scholar 

  • Borgmann A, Hooper SL, Büschges A (2009) Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. J Neurosci 29(9): 2972–2983

    Article  CAS  PubMed  Google Scholar 

  • Brown IE, Scott SH, Loeb GE (1995) “Preflexes”—programmable, high-gain, zero-delay intrinsic responses of perturbed musculoskeletal systems. Soc Neurosci Abstr 21: 562.9

    Google Scholar 

  • Büschges A (1998) Inhibitory synaptic drive patterns motoneuronal activity in rhythmic preparations of isolated thoracic ganglia in the stick insect. Brain Res 783: 262–271

    Article  PubMed  Google Scholar 

  • Büschges A, Ludwar BC, Bucher D, Schmidt J, DiCaprio RA (2004) Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system. Eur J Neurosci 12: 1856–1862

    Article  Google Scholar 

  • Büschges A, Akay T, Gabriel JP, Schmidt J (2008) Organizing network action for locomotion: insights from studying insect walking. Brain Res Rev 57: 162–171

    Article  PubMed  Google Scholar 

  • Connor J, Walter D, McKown R (1977) Neural repetitive firing: modifications of the Hodgkin–Huxley axon suggested by experimental results from crustacean axons. Biophys J 18: 81–102

    Article  CAS  PubMed  Google Scholar 

  • Delcomyn F (1991a) Perturbation of the motor system in freely walking cockroaches I. Rear leg amputation and the timing of motor activity in leg muscles. J Exp Biol 156: 483–502

    CAS  PubMed  Google Scholar 

  • Delcomyn F (1991b) Perturbation of the motor system in freely walking cockroaches II. The timing of motor activity in leg muscles after amputation of a middle leg. J Exp Biol 156: 503–517

    CAS  PubMed  Google Scholar 

  • Ekeberg Ö (1993) A combined neuronal and mechanical model of fish swimming. Biol Cybern 69: 363–374

    Google Scholar 

  • Ekeberg Ö, Grillner S (1999) Simulations of neuromuscular control in lamprey swimming. Phil Trans R Soc B 354: 895–902

    Article  CAS  PubMed  Google Scholar 

  • Ekeberg Ö, Pearson K (2005) Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. J Neurophysiol 94: 4256–4268

    Article  PubMed  Google Scholar 

  • Ekeberg Ö, Grillner S, Landsner A (1995) The neural control of fish swimming studied through numerical simulations. Adapt Behav 3: 363–384

    Article  Google Scholar 

  • Ekeberg Ö, Blumel M, Büschges A (2004) Dynamic simulation of insect walking. Arthropod Struct Dev 33: 287–300

    Article  PubMed  Google Scholar 

  • French AS, Wong RKS (1976) The responses of trochanteral hair plate sensilla in the cockroach to periodic and random displacements. Biol Cybern 22: 33–38

    Article  Google Scholar 

  • Fuchs E (2009) Personal communication. Princeton University, Princeton

    Google Scholar 

  • Full RJ, Koditschek DE (1999) Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J Exp Biol 202: 3325–3332

    CAS  PubMed  Google Scholar 

  • Gabriel JP, Büschges A (2007) Control of stepping velocity in a single insect leg during walking. Philos Trans R Soc Lond A 365: 251–271

    Article  Google Scholar 

  • Ghigliazza RM, Holmes P (2004a) A minimal model of a central pattern generator and motoneurons for insect locomotion. SIAM J Appl Dyn Syst 3(4): 671–700

    Article  Google Scholar 

  • Ghigliazza RM, Holmes P (2004b) Minimal models of bursting neurons: how multiple currents, conductances and timescales affect bifurcation diagrams. SIAM J Appl Dyn Syst 3(4): 636–670

    Article  Google Scholar 

  • Guckenheimer J (1975) Isochrons and phaseless sets. J Math Biol 1: 259–273

    Article  Google Scholar 

  • Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York

    Google Scholar 

  • Hatze H (1977) A myocybernetic control model of skeletal muscle. Biol Cybern 25: 103–119

    Article  CAS  PubMed  Google Scholar 

  • Hatze H (1978) General myocybernetic control model of skeletal muscle. Biol Cybern 28: 143–157

    Article  CAS  PubMed  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B 126: 136–195

    Article  Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544

    CAS  PubMed  Google Scholar 

  • Holmes P, Full RJ, Koditschek D, Guckenheimer J (2006) The dynamics of legged locomotion: models, analyses and challenges. SIAM Rev 48(2): 207–304

    Article  Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (1997) Weakly connected neural networks. Springer, New York

    Google Scholar 

  • Jindrich DL, Full RJ (2002) Dynamic stabilization of rapid hexapedal locomotion. J Exp Biol 205: 2803–2823

    PubMed  Google Scholar 

  • Kotaleski JH, Grillner S, Lansner A (1999a) Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey I. Segmental oscillations dependent on reciprocal inhibition. Biol Cybern 81: 317–330

    Article  CAS  PubMed  Google Scholar 

  • Kotaleski JH, Lansner A, Grillner S (1999b) Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey II. Hemisegmental oscillations produced by mutually coupled excitatory neurons. Biol Cybern 81: 299–315

    Article  CAS  PubMed  Google Scholar 

  • Kukillaya RP, Holmes P (2007) A hexapedal jointed-leg model for insect locomotion in the horizontal plane. Biol Cybern 97(5–6): 379–395

    Article  PubMed  Google Scholar 

  • Kukillaya RP, Holmes P (2009) A model for insect locomotion in the horizontal plane: feedforward activation of fast muscles, stability, and robustness. J Theor Biol 261(2): 210–226

    Article  PubMed  Google Scholar 

  • Kukillaya RP, Proctor J, Holmes P (2009) Neuro-mechanical models for insect locomotion: stability, maneuverability, and proprioceptive feedback. CHAOS: Interdiscip J Nonlinear Sci 19(2): 026107

    Article  CAS  Google Scholar 

  • Lehman W, Szent-Görgyi AG (1975) Regulation of muscular contraction. J Gen Physiol 66: 1–30

    Article  CAS  PubMed  Google Scholar 

  • Loeb GE, Brown IE, Cheng EJ (1999) A hierarchical foundation for models of sensorimotor control. Exp Brain Res 126(1): 1–18

    Article  CAS  PubMed  Google Scholar 

  • Malkin IG (1949) Methods of Poincaré and Linstedt in the theory of nonlinear oscillations. Gostexisdat, Moscow (in Russian)

  • Malkin IG (1956) Some problems in nonlinear oscillation theory. Gostexisdat, Moscow (in Russian)

  • Marder E (2000) Motor pattern generation. Curr Opin Neurobiol 10(6): 691–698

    Article  CAS  PubMed  Google Scholar 

  • McMillen T, Williams TL, Holmes P (2008) Nonlinear muscles, passive viscoelasticity and body taper conspire to create neuro-mechanical phase lags in anguilliform swimmers. PLoS Comput Biol 4(8): e1000157

    Article  CAS  PubMed  Google Scholar 

  • Noah JA, Quimby L, Frazier SF, Zill SN (2004) Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches. J Comp Physiol A 190: 201–215

    Article  CAS  Google Scholar 

  • Pearson KG (1972) Central programming and reflex control of walking in the cockroach. J Exp Biol 56: 173–193

    Google Scholar 

  • Pearson KG (1995) Proprioceptive regulation of locomotion. Curr Opin Neurobiol 5: 786–791

    Article  CAS  PubMed  Google Scholar 

  • Pearson KG (2000) Motor systems. Curr Opin Neurobiol 10: 649–654

    Article  CAS  PubMed  Google Scholar 

  • Pearson KG, Fourtner CR (1975) Nonspiking interneurons in walking system of the cockroach. J Neurophysiol 38: 33–51

    CAS  PubMed  Google Scholar 

  • Pearson KG, Iles JF (1970) Discharge patterns of coxal levator and depressor motoneurons of the cockroach, Periplaneta americana. J Exp Biol 52: 139–165

    CAS  PubMed  Google Scholar 

  • Pearson KG, Iles JF (1973) Nervous mechanisms underlying intersegmental co-ordination of leg movements during walking in the cockroach. J Exp Biol 58: 725–744

    Google Scholar 

  • Pearson KG, Wong RKS, Fourtner CR (1976) Connexions between hair-plate afferents and motoneurones in the cockroach leg. J Exp Biol 64: 251–266

    CAS  PubMed  Google Scholar 

  • Pearson K, Ekeberg Ö, Büschges A (2006) Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends Neurosci 29(11): 625–631

    Article  CAS  PubMed  Google Scholar 

  • Rose R, Hindmarsh J (1989) The assembly of ionic currents in a thalamic neuron I. The three-dimensional model. Proc R Soc Lond B 237: 267–288

    Article  CAS  PubMed  Google Scholar 

  • Schmitt J, Holmes P (2000a) Mechanical models for insect locomotion: dynamics and stability in the horizontal plane—application. Biol Cybern 83(6): 517–527

    Article  CAS  PubMed  Google Scholar 

  • Schmitt J, Holmes P (2000b) Mechanical models for insect locomotion: dynamics and stability in the horizontal plane—theory. Biol Cybern 83(6): 501–515

    Article  CAS  PubMed  Google Scholar 

  • Seipel JE, Holmes P, Full RJ (2004) Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions. Biol Cybern 91(2): 76–90

    Article  PubMed  Google Scholar 

  • Sponberg S, Full RJ (2008) Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain. J Exp Biol 211: 433–446

    Article  CAS  PubMed  Google Scholar 

  • Tryba AK, Ritzmann RE (2000a) Multi-joint coordination during walking and foothold searching in the Blaberus cockroach. I. Kinematics and electromyograms. J Neurophysiol 83: 3323–3336

    CAS  PubMed  Google Scholar 

  • Tryba AK, Ritzmann RE (2000b) Multi-joint coordination during walking and foothold searching in the Blaberus cockroach. II. Extensor motor neuron pattern. J Neurophysiol 83: 3337–3350

    CAS  PubMed  Google Scholar 

  • Watson JT, Ritzmann RE (1998a) Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: I. Slow running. J Comp Physiol A 182: 11–22

    Article  CAS  PubMed  Google Scholar 

  • Watson JT, Ritzmann RE (1998b) Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: II. Fast running. J Comp Physiol A 182: 23–33

    Article  CAS  PubMed  Google Scholar 

  • Williams TL, Bowtell G, Curtin NA (1998) Predicting force generation by lamprey muscle during applied sinusiodal movement using a simple dynamic model. J Exp Biol 201: 869–875

    PubMed  Google Scholar 

  • Wilson DM (1965) Proprioceptive leg reflexes in cockroaches. J Exp Biol 43: 397–409

    CAS  PubMed  Google Scholar 

  • Winfree AT (2001) The geometry of biological time, 2nd edn. Springer, New York

    Google Scholar 

  • Wong RKS, Pearson KG (1976) Properties of the trochanteral hair plate and its function in the control of walking in the cockroach. J Exp Biol 64: 233–249

    CAS  PubMed  Google Scholar 

  • Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. CRC Crit Rev Lett Biomed Eng 17: 359–411

    CAS  Google Scholar 

  • Zill SN, Moran DT (1981a) The exoskeleton and insect proprioception I. Responses of tibial campaniform sensilla to external and muscle-generated force in the American cockroach, Periplaneta americana. J Exp Biol 91: 1–24

    Google Scholar 

  • Zill SN, Moran DT (1981b) The exoskeleton and insect proprioception III. Activity of tibial campaniform sensilla during walking in the American cockroach, Periplaneta americana. J Exp Biol 94: 57–75

    Google Scholar 

  • Zill SN, Moran DT, Varela FG (1981) The exoskeleton and insect proprioception II. Reflex effects of tibial campaniform sensilla in the American cockroach, Periplaneta americana. J Exp Biol 94: 43–55

    Google Scholar 

  • Zill SN, Ridgel AL, DiCaprio RA, Frazier SF (1999) Load signalling by cockroach trochanteral campaniform sensilla. Brain Res 822: 271–275

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Holmes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proctor, J., Holmes, P. Reflexes and preflexes: on the role of sensory feedback on rhythmic patterns in insect locomotion. Biol Cybern 102, 513–531 (2010). https://doi.org/10.1007/s00422-010-0383-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0383-9

Keywords

Navigation